JPH10206394A - ジルコニウム合金部材の非破壊検査方法および装置 - Google Patents

ジルコニウム合金部材の非破壊検査方法および装置

Info

Publication number
JPH10206394A
JPH10206394A JP991897A JP991897A JPH10206394A JP H10206394 A JPH10206394 A JP H10206394A JP 991897 A JP991897 A JP 991897A JP 991897 A JP991897 A JP 991897A JP H10206394 A JPH10206394 A JP H10206394A
Authority
JP
Japan
Prior art keywords
measured
frequency
eddy current
measurement
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP991897A
Other languages
English (en)
Inventor
Masahiro Otaka
正廣 大高
Toshio Kubo
利雄 久保
Shinichi Okuda
慎一 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP991897A priority Critical patent/JPH10206394A/ja
Publication of JPH10206394A publication Critical patent/JPH10206394A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

(57)【要約】 【課題】ジルコニウム合金材の水素脆化の程度を、高精
度に且つ短時間で計測できる非破壊検査装置を提供す
る。 【解決手段】ジルコニウム合金材の電気抵抗を測定する
渦電流測定装置4と、被測定体の電気抵抗の変化を検出
する測定用の渦電流センサプローブ1と、平衡用の渦電
流センサプローブ1aと、それらに対し相対的に低周波
と高周波の交流電流を切り換えて供給する周波数可変交
流電源42と、低周波電流により測定した不平衡信号と
高周波電流により測定した不平衡信号を基に影響因子に
よるノイズを除去するノイズ除去手段5と、ノイズを除
去した不平衡信号による電気抵抗から、ジルコニウム合
金が含有している水素化物量と電気抵抗の所定特性に基
づいて水素化物量を算出する水素濃度演算手段6と、セ
ンサプローブ1のリフトオフの設定や、被測定体の測定
位置の可変を行う駆動制御装置3を備えている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はジルコニウム合金部
材の強度または脆化程度の非破壊検査装置に係り、特
に、渦電流法により測定した電気抵抗の変化から、ジル
コニウム合金材の吸収水素濃度を判定する非破壊検査方
法及び装置に関する。
【0002】
【従来の技術】金属の脆化測定法の例として、八島、他
2名「超音波探傷法による水素侵食の検出(非破壊検査
Vol.三四,No.2A,pp118−119,昭和
60年2月)」がある。ここには、炭素鋼や低合金鋼に
おいて、水素侵食による脱炭や粒界割れなどで音響イン
ピーダンスが変化した箇所を、超音波エコーで測定する
方法が示されている。
【0003】しかしながら、ジルコニウム合金の脆化は
水素が結晶中に侵食して引き起こされるものではない。
ジルコニウム合金中に固溶しきれなくなった水素が、ジ
ルコニウム合金と化学反応し、水素化物(ZrH2)を
生成して、これがジルコニウム合金中にほぼ面状に析出
することによって、脆化が引き起こされる。水素化物の
性質は元の金属とほぼ等しく、材料の音響インピーダン
スには殆ど変化が生じないので、超音波の音速や減衰率
によるジルコニウム合金材の水素濃度、したがってその
強度または脆化度の検出は困難である。
【0004】一方、特開昭62−142258号に開示
のように、ジルコニウム合金材の強度を渦電流測定法
(以下、渦電流法と呼ぶ)によって非破壊検査する方法
が、本発明者等によって提案されている。これによれ
ば、ジルコニウム合金材の被測定体と基準試験片に交流
信号を印加し、発生した過電流による交流ブリッジの不
平衡電圧の値と位相角を計測し、最大不平衡電圧がしき
い値以下の場合は試験片と同定度と判定し、しきい値よ
り大きい場合はその最大不平衡電圧と位相角を予め用意
した校正曲線と比較して、被測定体の水素濃度及び合金
の強度を算出する。
【0005】
【発明が解決しようとする課題】上記の渦電流法による
非破壊検査方法は、ジルコニウム合金中の抵抗率の変化
から水素化物の濃度と、それに伴う脆化の程度を検出す
る画期的な試みである。しかし、1つの基準片と被測定
体の1点に対し、交流信号の周波数を広範に変化(5k
Hz〜5MHz)させながらデータ収集し、これを被測
定体の測定点変更の度に繰り返し行うため、検査に長時
間を必要とする。
【0006】また、特定の含有水素濃度による試験片を
基準としているので、校正曲線による定量的評価の精度
に問題がある。このため、含有水素濃度を変更した多数
の試験片を用意し、試験片を取り換えながら上記の測定
を繰返し、最大不平衡電圧が最小となる試験片の水素濃
度をもって、測定点の水素濃度とする方法も提案されて
いるが、検査時間はいっそう長くなる。
【0007】さらに、渦電流法の測定結果には酸化皮膜
厚、温度などによる影響因子が含まれ、その除去が必要
となる。引用例には酸化皮膜厚について、低周波数での
測定値を利用する記載があるものの、有効な方法とは言
えない。また、温度等の影響因子に対しては考慮が及ん
でいない。例えば、原子炉機器のように高温高圧下のジ
ルコニウム合金部材では、酸化皮膜や部材温度による影
響が大きく、その排除なしには実用レベルの測定精度を
確保できない。さらに、機器の分解によらない部材の検
査では、その形状による影響因子も無視できない。
【0008】本発明の目的は、ジルコニウム合金部材に
おける水素濃度ないし水素脆化の程度を短時間に測定で
きるジルコニウム部材の非破壊検査方法及び装置を提供
することにある。また、各影響因子によるノイズを除去
して、精度の高いジルコニウム部材の非破壊検査方法及
び装置を提供することにある。
【0009】
【課題を解決するための手段】上記目的は、ジルコニウ
ム合金による部材の電気抵抗を渦電流法によって測定
し、水素化物量に応じて電気抵抗が変化する該合金の特
性を利用して、被測定体の水素濃度や脆化程度を判定す
る非破壊検査方法において、ジルコニウム合金材に対す
る電磁誘導に表皮効果の影響が殆ど現われない第1の周
波数の交流信号と、表皮効果の影響が顕著に現われる第
2の周波数の交流信号を、順次、前記渦電流法の測定回
路に供給するようにし、第1及び第2の周波数の各々に
ついて、前記測定回路に2つの渦電流センサを接続して
平衡をとり、一方のセンサのリフトオフ方向を位相角0
度に設定したのち、該一方のセンサを被測定体に接して
不平衡電圧の値と位相角を測定し、前記第1の周波数及
び前記第2の周波数による不平衡電圧を複素平面上で差
引き、その差分から前記特性に基づいて被測定体の水素
化物量を求めるにより達成される。
【0010】前記測定回路は、少なくとも等価的には交
流ブリッジである。また、前記第1の周波数は100k
Hz以上で500kHz以下、前記第2の周波数は1M
Hz以上で10MHz以下の範囲から設定されることを
特徴とする。これにより、検査時間の大幅な短縮が可能
になる。
【0011】また、前記第1の周波数による不平衡電圧
から、前記第2の周波数による不平衡電圧の位相角0度
の成分を差引き、さらに前記第2の周波数による不平衡
電圧に位相角0度以外の成分があるときは当該成分を差
引き、被測定体の酸化皮膜や温度変化による影響を除外
したことを特徴とする。これにより、前記不平衡電圧か
ら被測定体の酸化皮膜や温度変化の影響によるノイズ成
分を除去でき、検出精度を向上できる。
【0012】さらに、上記目的は、ジルコニウム合部材
の電気抵抗を測定する渦電流測定装置と、ジルコニウム
合金材が含有している水素化物量に応じて電気抵抗が変
化する特性に従って被測定体の水素濃度や脆化程度を判
定する解析装置を備える非破壊検装置において、被測定
体の電気抵抗の変化を検出する測定用の渦電流センサプ
ローブと、平衡用の渦電流センサプローブと、それらセ
ンサプローブに対し相対的に低周波と高周波の2つの交
流電流を切り換えて供給できる周波数可変交流電源を、
前記渦電流測定装置に備え、さらに、前記低周波により
測定した不平衡信号と前記高周波により測定した不平衡
信号を基に所定因子による影響を除去するノイズ除去手
段と、ジルコニウム合金が吸収している水素化物量と電
気抵抗の所定関係に基づいてノイズを除去した不平衡信
号による電気抵抗から水素化物量を算出する水素濃度演
算手段を、前記解析装置に備えたことにより達成され
る。
【0013】また、前記測定用のセンサプローブのリフ
トオフの設定や、被測定体の測定位置の可変を行う駆動
制御装置を備えていることを特徴とする。あるいは、前
記渦電流センサプローブは、センサプローブの先端の鉄
芯コアを2重にし、渦電流を効率良く被測定体表面に発
生できるよう構造にしたことをを特徴とする。
【0014】以下に、本発明の作用を説明する。図2
に、ジルコニウム合金材の組織写真の模式図を示す。水
素濃度の増加とともに材料中に水素化物が析出し、水素
化物は水素濃度が低いと点状に析出し、水素濃度は高く
なるに従い連結して析出している。水素濃度が150pp
m前後で水素化物は、点状析出から連結型析出へ移行す
る。
【0015】図3に、水素濃度(水素化物量)と電気抵
抗の関係を示す。図示のグラフは、ジルコニウム合金の
電気抵抗率をρZr=5×10~6Ωm、水素化物は半導体特
性を持つことから電気抵抗率をρZrH2=5Ωm(ρZr×1
06)として、2次元抵抗体の解析モデル1,2による計
算値と実測値(黒丸)、及びそれらの外挿による。
【0016】室温でのジルコニウム中に固溶される水素
濃度は30ppm程度のため、水素濃度と水素化物量は同
じとみなした。解析モデルによる水素化物の電気抵抗率
は、水素濃度100ppm程度から急激に増加し、実際の
材料の電気抵抗値は、連結型析出の量で決定されている
ことが分かる。なお、解析モデル1は2次元抵抗体のマ
トリックスがジルコニウム合金、点状析出物が水素化物
とするモデル、解析モデル2はマトリックスが水素化物
で、連結型析出に適応したモデルである。
【0017】このように、ジルコニウム合金中の抵抗率
の変化量から水素化物量(水素濃度)を測定できるので、
水素化物の析出量に伴う材料の靭性の低下度(脆化程
度)の実績データから、材料の強度または脆化程度を推
定することが可能になる。
【0018】渦電流法においては、ジルコニウム合金材
の抵抗変化は交流ブリッジのプローブコイルのインピー
ダンス変化となり、ブリッジの不平衡電圧として測定で
きる。図4は、過電流法を等価的に示した交流ブリッジ
回路である。図5に、プローブコイルと材料の渦電流に
よる相互誘導をモデル化した(a)結合回路と(b)等
価回路を示す。
【0019】プローブコイルの電流入力点から見たイン
ピーダンスZinは、式(1)で表わされる。
【0020】
【数1】
【0021】ここで、Ri及びLiはプローブコイルの抵
抗及び自己インダクタンスであり、ri'及びLi'は渦
電流の流れる領域で決まる抵抗及び自己インダクタンス
である。Mはプローブコイルと被測定材の渦電流との間
の相互インダクタンスである。
【0022】式(1)において、右辺第1項及び第2項
は、プローブコイル単一のインピーダンスであり、第3
項は材料中の渦電流によってのみ変化する項である。
【0023】プローブコイルのインピーダンスZ1,Z
2を等しいとし、Z1=Z2=Z’とすると、交流ブリ
ッジ回路の不平衡電圧の伝達関数H(jω)は式(2)で
表わされる。
【0024】
【数2】
【0025】ここで、Z0は任意のインピーダンスであ
る。
【0026】したがって、相互インダクタンスMによる
不平衡電圧の変化H(jω)△Mは、式(3)で表わされ
る。また、初期設定条件より、プローブコイルのリフト
オフ信号を位相角0°に設定すると、式(2)で表わさ
れる不平衡電圧の位相角∠H(jω)△Mは式(4)の条
件を満たさなければならない。
【0027】
【数3】
【0028】一方、被測定材の抵抗による不平衡電圧の
変化H(jω)△Rは、式(5)で表わされる。したがっ
て、式(5)で材料の抵抗が変化すると、式(4)の関
係から、不平衡電圧の位相角∠H(jω)△Rは式(6)
で表わされる。
【0029】
【数4】
【0030】さらに、被測定材の自己インダクタンスに
よる不平衡電圧の変化H(jω)△Lは、式(7)で表わ
される。したがって、式(7)で材料のインダクタンス
が変化すると、式(4)の関係から、不平衡電圧の位相
角∠H(jω)△Lは式(8)で表わされる。
【0031】
【数5】
【0032】被測定材のインピーダンス変化に伴う不平
衡電圧の挙動は、上記の式(4)、式(6)及び式
(8)に基づき、これを複素平面上に表わすと図6のよ
うになる。ここで、位相角θbの取り得る範囲は、θb
が抵抗RとインダクタンスLで決まり、R,L≧0であ
ることから、0≦θb≦90°の値となる。よって、被
測定材の抵抗成分の増加による不平衡電圧の位相角∠H
(jω)=−θbは、270°≦(360°−θb)≦3
60°の範囲に現われる。
【0033】従って、水素濃度による電気抵抗の変化
は、他の影響がなければ特定の位相角の方向にのみ変化
する。発明者等の水素を富化したジルコニウム合金片の
測定では、被測定材の水素濃度の増加による不平衡電圧
の位相角(−θb)は概ね335°であり、これには試
験片の電気抵抗の変化が反映されている。
【0034】一般には、計測した不平衡電圧には酸化皮
膜や温度変化等による影響があり、これを除去したとき
の特定位相角の信号値から水素化物量(水素濃度)を測
定する必要がある。このため、酸化皮膜や温度変化の影
響を受けていない相対的に低周波の測定値から、それら
の影響を反映している高周波の測定値を、複素平面上で
差引いて除去する。図7に示すように、酸化皮膜による
影響の成分はリフトオフ(位相角0°)の方向に、材料
の温度変化は位相角θ△Tの方向となる。
【0035】相対的な高周波には、表皮効果の発生によ
って磁界浸透が浅く酸化皮膜の範囲を測定する周波数
(1MHz〜10MHz)値を用い、これを表皮効果の
発生しない低周波(100kHz〜500kHz)によ
る不平衡電圧のリフトオフ成分から差し引く。また、高
周波測定でリフトオフ以外の成分は、被測定材の温度変
化の影響であり、同様に低周波の測定測定値(ベクトル
量)から差し引く。このように、低周波による測定デー
タを高周波の測定データで補正して、酸化皮膜や温度変
化の影響を除去し、水素化物量ないし水素濃度を高精度
に測定することで、それらと強度(陣性)の関係を示す
実績データを基に、ジルコニウム材料の脆化度を精度よ
く推定できる。また、従来のように広範囲の周波数によ
る測定を繰り返さないので、検査が簡単で大幅な時間短
縮が可能になる。
【0036】
【発明の実施の形態】以下、本発明の実施形態につい
て、原子炉の燃料部材に適用した例で説明する。燃料部
材のジルコニウム合金は、ジルコニウム中に固溶できる
水素濃度は室温で約30ppmであり、残りの水素は水素
化物として析出する。水素化物の電気抵抗率ρZrH2は半
導体の性質を持ち、ジルコニウム金属の電気抵抗率ρZr
(ρZr=0.49×10ー6Ωm at 20℃)に対して、ρZrH2≫
ρZrの関係にある。この関係を利用して、水素濃度の増
加に伴いジルコニウム金属中に析出する水素化物による
材質の不連続性を検出し、水素濃度を推定する。
【0037】図1は、一実施例によるジルコニウム合金
材の脆化度の非破壊検査装置の構成図を示す。非破壊検
査装置は直接的には、ジルコニウム合金材で構成される
被測定体の水素化物を測定するために、被測定体1を検
査するセンサプローブ2、センサプローブ2を遠隔操作
するための駆動制御装置3、センサプローブ2で被測定
体1の交流インピーダンスを測定するための渦電流測定
装置(ECT)4、その測定出力から位相角分析により
ノイズ成分を除去するノイズ除去装置5、ノイズ除去後
の出力から被測定体1の(水素濃度、)水素化物量及び
脆化度を演算する演算装置6から構成される。また、セ
ンサプローブ2の使用環境での温度ノイズ等を除去する
目的から、平衡用のセンサプローブ2a及び平衡用ダミ
ー材1aを備えている。
【0038】図1(b)は、渦電流測定装置の構成図を
示す。交流ブリッジ40は図4に示した等価回路と同様
の構成でなり、例えばセンサプローブ2,2aの抵抗R
と自己インダクタンスLがプローブコイル1,2のそれ
に対応する。また、プローブを流れる交流信号の電磁誘
導によって、プローブ2と被測定体1及びプローブ2a
とダミー材1aの間に、渦電流の発生と変化をもたらす
図2の相互誘導回路が形成される。
【0039】交流電源41は交流ブリッジ40に、2周
波数発信器42によるf1またはf2に同期した電流i
を給電する。発振器42は高周波と低周波を発振するも
ので、100kHz≦f1≦500kHz、及び1MHz≦f2≦10MHzの
2つ周波数範囲で任意の周波数に調整できる。交流電圧
計43はブリッジの不平衡電圧v(ベクトル量)を計測
し、インピーダンス計44によってインピーダンスZに
計算して演算装置に出力する。
【0040】ジルコニウム合金の被測定体1は、パイプ
または薄板の部品形状をしている。このため、本実施例
のセンサプローブ2及び2aは、被測定体1に適応した
プローブ形状を有している。図8はパイプ形状に、図9
は薄板に対応したプローブコイルを示す。鉄芯コア22
1及びコイル222がそれぞれ被測定体1の表面に密着
する構造になっている。また、コイル222の中心と外
側に鉄芯221を配置し、空心に比べ磁界が被測定体表
面に効率良く入射するようにして、検出精度を向上させ
ている。
【0041】図10に、本実施例の測定手順のゼネラル
フローを示す。測定開始で、センサプローブ2を原点に
セットする(S101)。検査位置、測定方法が入力さ
れると(S102)、駆動制御装置3はセンサプローブ
2を測定開始位置へ移動する(S103)。所定位置で
の測定Aを後述のように、高周波と低周波によって行
い、ノイズを除去する(S104)。次の位置へ移動
し、最終位置に到達するまで測定Aを繰り返す(S10
5)。測定Aの終了後、水素濃度、水素化物量及び脆化
度の評価Cを行う(S106)。
【0042】図11と図12に、測定Aの詳細フローを
示す。図11は高周波による測定処理で、酸化被膜等の
厚さが判定できる。図12は低周波による測定処理で、
測定値から酸化皮膜や温度による影響を除去した出力を
得る。
【0043】まず、ブリッジ40の交流信号の周波数を
高周波f2に設定し、センサープローブ2を被測定体1
から持ち上げ、リフトオフ方向を位相角0°に調整する
(S201)。また、プローブ2,2aを基準材(平衡
用ダミー材)1aに押当て、ブリッジ40のゼロ平衡を
とる(S202)。次に、プローブ2aはそのままで、
プローブ2を被測定体1に押当て、不平衡電圧を測定す
る(S203)。これらの作業は駆動制御装置3によっ
て自動的に進められる。
【0044】次に、ノイズ除去演算装置5により、不
平衡電圧を位相角θ△T方向(位相角約270°)とリ
フトオフ方向に分解し(S204)、リフトオフ成分
から酸化皮膜厚さ分を判定する(S205)。すなわ
ち、高周波測定では渦電流の表皮効果によってジルコニ
ウム材料や形状の影響を受けないため、リフトオフ成分
が酸化皮膜厚分に等しいと推定できる。従って、もし、
の分解によってリフトオフ方向の信号と異なる成分が
得られた場合、基準材と被測定体の間の温度差の影響と
推定できるため、位相角θ△T方向の電圧から、被測
定体1の温度上昇分を判定する(S206)。
【0045】この後、ブリッジ40の交流信号の周波数
を低周波f1に設定し、高周波の場合と同様の手順で低
周波測定を実施する(S301〜S303)。次に、
低周波測定で得られた不平衡電圧から高周波測定での位
相角0°の不平衡電圧を差し引いて酸化被膜の影響を除
去する(S304)。さらに、高周波測定による位相
角θ△T方向の電圧を差し引いて被測定体の温度上昇分
の影響を除去する(S305)。さらに、被測定体測
定位置ずれ分による位相角約80°の電圧を除去し、
位相角θH2方向の電圧との交点を決定する(S30
6)。最後に、原点と交点間の電圧から、水素濃度を
求める(S307)。
【0046】ここで、測定値に及ぼす影響因子につい
て、実験データに基づき具体的に説明する。図13に、
実機測定での影響因子の概念図を示す。影響因子にはジ
ルコニウム合金材の酸化被膜厚さtfと温度、ケーブル
長及びプローブの温度特性、さらには被測定体の形状等
がある。
【0047】図14に、表面皮膜厚さtfとリフトオフ
電圧V0の実測データを示す。tfとV0は直線的な関係
にあり、高周波(1MHz)と低周波(200kHz)
の測定結果もほぼ一致している。従って、2周波の測定
利得を予め調整しておけば、酸化皮膜の影響は高周波に
よる位相角0°方向の電圧成分から判定でき、低周波測
定の位相角0°方向の電圧から差し引けば、その影響を
除去できることが認められる。
【0048】図15に、酸化皮膜の有る試験片と無い試
験片について、高周波と低周波で測定した不平衡電圧の
ベクトルを示す。磁界の浸透が浅い1MHzの波測定で
は、酸化皮膜の除去前はリフトオフ方向の不平衡電圧
(黒角)が検出されているが、酸化皮膜の除去後はほぼ
原点に位置し、酸化皮膜量の影響を検出していることが
分かる。一方、200kHzの測定では、除去前の不平
衡電圧は335°方向の黒丸、除去後は305°方向の
白丸に検出された。そして、白丸と黒丸を結ぶベクトル
量が、高周波による酸化皮膜の影響量と一致しているこ
とが認められた。これより、低周波による不平衡電圧の
ベクトル量から、高周波によるベクトル量(厳密にはリ
フトオフ方向の値)を差し引けば、被検査体における酸
化皮膜の影響を簡単に除去できる。
【0049】次に、ケーブル長及びプローブの温度特性
の影響であるが、本実施例では平衡用プローブを用いて
いるため、測定プローブと平衡用プローブが同一環境に
位置するようにすることで影響なく測定ができる。これ
は、水素濃度による不平衡電圧の位相角−θbが(式
(6),式(8))、被測定材料のみで決まることから
も明らかである。
【0050】実際に、図13の測定条件に、延長ケーブ
ル20mを追加し、さらに測定環境を43℃の水中とし
てプローブコイルに温度変化を与えて測定した。図16
に測定結果を示す。これより、不平衡電圧は図15の黒
丸と同じ位相角335°方向に現われており、温度によ
るプローブのインピーダンス変化には影響されないこと
が確認できた。
【0051】被測定体の温度上昇は、平衡用試験体との
バランスを崩すため、高周波及び低周波の測定信号に影
響が出る。図17は、その測定結果を示し、高周波測定
(白三角)での試験片温度上昇による不平衡電圧がリフ
トオフの場合と異なり、リフトオフ方向と異なる成分と
なって現われるので、これより容易に温度上昇が確認で
きる。
【0052】このように、従来技術では評価できなかっ
た水素化物の検査が、本実施例の検査では実験的にも裏
付けられ、実用化が可能になった。
【0053】
【発明の効果】ジルコニウム合金部材の水素化物が短時
間に且つ精度良く測定でき、機器の脆化程度を未然に非
破壊検査して事故の防止に役立てることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による非破壊検査装置の構
成図。
【図2】ジルコニウム合金材中の水素化物の析出状態を
示す組織写真の模式図。
【図3】水素化物析出量に応じた電気抵抗の解析結果を
示す特性図。
【図4】渦電流法の交流ブリッジ回路(等価回路)図。
【図5】渦電流プローブと渦電流の相互誘導による結合
回路図。
【図6】渦電流プローブ(図5)の等価回路図。
【図7】高周波測定による被測定体の酸化皮膜と温度上
昇の影響を示す説明図。
【図8】一実施形態によるセンサプローブの構成図。
【図9】他の実施形態によるセンサプローブの構成図。
【図10】一実施形態による非破壊検査装置の概略の測
定手順を示すフロー図。
【図11】高周波による測定Aの詳細を示すフロー図。
【図12】低周波による測定Aの詳細を示すフロー図。
【図13】ECT測定条件と測定に及ぼす影響因子の説
明図。
【図14】酸化被膜厚さとリフトオフ電圧の測定結果の
グラフ。
【図15】不平衡電圧に含まれる酸化皮膜影響の測定結
果のグラフ。
【図16】プローブコイルのケーブル長、温度変化の影
響を測定したグラフ。
【図17】不平衡電圧に含まれる被検査体温度影響の測
定結果のグラフ。
【符号の説明】
1…被測定体、1a…比較材、2…センサプローブ、2
a…平衡用のセンサプローブ、3…駆動制御装置、4…
渦電流測定装置、5…ノイズ除去演算装置、6…水素脆
化演算装置、211…センサ治具、221…鉄芯、22
2…コイル。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 慎一 茨城県日立市大みか町三丁目18番1号 茨 城日立情報サービス株式会社内

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 ジルコニウム合金による被測定体の電気
    抵抗を渦電流法によって測定し、含有する水素化物量に
    応じて電気抵抗が変化する該合金の特性を利用し、被測
    定体の水素濃度や脆化程度を判定する非破壊検査方法に
    おいて、 ジルコニウム合金材に対する電磁誘導に表皮効果の影響
    を生じない第1の周波数の交流信号と、表皮効果の影響
    が顕著に現われる第2の周波数の交流信号を、順次、前
    記渦電流法の測定回路(交流ブリッジまたは等価的に交
    流ブリッジ)に供給するようにし、 第1及び第2の周波数の各々について、前記測定回路に
    2つの渦電流センサを接続して平衡をとり、一方のセン
    サのリフトオフ方向を位相角0度に設定したのち、該一
    方のセンサを被測定体に接して不平衡電圧の値と位相角
    を測定し、 前記第1の周波数及び前記第2の周波数による不平衡電
    圧を複素平面上で差引き、その差分から前記特性に基づ
    いて被測定体の水素化物量を求めることを特徴とするジ
    ルコニウム合金部材の非破壊検査方法。
  2. 【請求項2】 請求項1において、 前記第1の周波数は100kHz以上で500kHz以
    下、前記第2の周波数は1MHz以上で10MHz以下
    の範囲から設定されることを特徴とするジルコニウム合
    金部材の非破壊検査方法。
  3. 【請求項3】 請求項1または2において、 前記第1の周波数による不平衡電圧から、前記第2の周
    波数による不平衡電圧の位相角0度の成分を差引き、さ
    らに前記第2の周波数による不平衡電圧に位相角0度以
    外の成分があるときは当該成分を差引き、被測定体の酸
    化皮膜及び温度変化による影響を除外したことを特徴と
    するジルコニウム合金部材の非破壊検査方法。
  4. 【請求項4】 ジルコニウム合部材の電気抵抗を測定す
    る渦電流測定装置と、ジルコニウム合金材が含有してい
    る水素化物量に応じて電気抵抗が変化する特性に従い被
    測定体の水素濃度や脆化程度を判定する解析装置と、を
    備える非破壊検装置において、 被測定体の電気抵抗の変化を検出する測定用の渦電流セ
    ンサプローブと、平衡用の渦電流センサプローブと、そ
    れらセンサプローブに対し相対的に低周波と高周波の2
    つの交流電流を切り換えて供給する周波数可変交流電源
    を、前記渦電流測定装置に備え、 さらに、前記低周波により測定した不平衡信号と前記高
    周波により測定した不平衡信号を基に所定因子による影
    響を除去するノイズ除去手段と、ジルコニウム合金が吸
    収している水素化物量と電気抵抗の所定関係に基づいて
    ノイズを除去した不平衡信号による電気抵抗から水素化
    物量を算出する水素濃度演算手段を、前記解析装置に備
    えたことを特徴とするジルコニウム合部材の非破壊検査
    装置。
  5. 【請求項5】 請求項4において、 前記測定用のセンサプローブのリフトオフの設定や、被
    測定体の測定位置の可変を行う駆動制御装置を備えてい
    ることを特徴とするジルコニウム合部材の非破壊検査装
    置。
  6. 【請求項6】 請求項4または5において、 前記渦電流センサプローブは、センサプローブの先端の
    鉄芯コアを2重にし、渦電流を効率よく被測定体表面に
    生成できる構造としたことを特徴とするジルコニウム合
    金部材の非破壊検査装置。
JP991897A 1997-01-23 1997-01-23 ジルコニウム合金部材の非破壊検査方法および装置 Pending JPH10206394A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP991897A JPH10206394A (ja) 1997-01-23 1997-01-23 ジルコニウム合金部材の非破壊検査方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP991897A JPH10206394A (ja) 1997-01-23 1997-01-23 ジルコニウム合金部材の非破壊検査方法および装置

Publications (1)

Publication Number Publication Date
JPH10206394A true JPH10206394A (ja) 1998-08-07

Family

ID=11733484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP991897A Pending JPH10206394A (ja) 1997-01-23 1997-01-23 ジルコニウム合金部材の非破壊検査方法および装置

Country Status (1)

Country Link
JP (1) JPH10206394A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034768A1 (en) * 1998-11-26 2000-06-15 Abb Atom Ab A method and a device for determining hydride content
JP2008304471A (ja) * 2000-03-28 2008-12-18 Toshiba Corp 膜厚測定装置、膜厚測定方法および記録媒体
KR100934615B1 (ko) * 2007-12-28 2009-12-31 이봉규 와전류 검사 장치 및 방법
CZ306012B6 (cs) * 2014-09-03 2016-06-22 Vysoké Učení Technické V Brně Nedestruktivní indikátor lokálních podpovrchových nehomogenit
JP2016161562A (ja) * 2015-03-05 2016-09-05 非破壊検査株式会社 渦電流検査装置及び渦電流検査方法
US11054393B2 (en) 2016-03-18 2021-07-06 Nagano Prefectural Government Inspection device, inspection method and non-contact sensor
CN114012363A (zh) * 2021-11-16 2022-02-08 浙江华田特种材料有限公司 超长管单管四工位连续智能制造工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034768A1 (en) * 1998-11-26 2000-06-15 Abb Atom Ab A method and a device for determining hydride content
JP2008304471A (ja) * 2000-03-28 2008-12-18 Toshiba Corp 膜厚測定装置、膜厚測定方法および記録媒体
KR100934615B1 (ko) * 2007-12-28 2009-12-31 이봉규 와전류 검사 장치 및 방법
CZ306012B6 (cs) * 2014-09-03 2016-06-22 Vysoké Učení Technické V Brně Nedestruktivní indikátor lokálních podpovrchových nehomogenit
JP2016161562A (ja) * 2015-03-05 2016-09-05 非破壊検査株式会社 渦電流検査装置及び渦電流検査方法
US11054393B2 (en) 2016-03-18 2021-07-06 Nagano Prefectural Government Inspection device, inspection method and non-contact sensor
CN114012363A (zh) * 2021-11-16 2022-02-08 浙江华田特种材料有限公司 超长管单管四工位连续智能制造工艺

Similar Documents

Publication Publication Date Title
US6734670B2 (en) Determining a surface profile of an object
JPH0771905A (ja) 核燃料棒に析出した強磁性物質の厚みを決定する方法
Luo et al. Method for removing secondary peaks in remote field eddy current testing of pipes
JPH10206394A (ja) ジルコニウム合金部材の非破壊検査方法および装置
CN109540053B (zh) 一种基于单线圈的金属母材及表面非金属涂层快速测厚方法
Han et al. Pulsed eddy currents in ferromagnetic pipes with cladding in nuclear power plants
Dmitriev et al. Application of an eddy-current method to measure electrical conductivity of thin films
JP4020361B2 (ja) 非破壊き裂深さ判定法
JPH0641938B2 (ja) ジルコニウム合金材の非破壊測定方法
JPH09113488A (ja) 電磁気的材質評価方法及び装置
Wang et al. A new system for defects inspection of boiler water wall tubes using a combination of EMAT and MFL
Thomas et al. Finite element analysis of EMAT using comsol multiphysics
Camerini et al. Eddy Current System for Complex Geometry Inspection in High Speed Application
Sullivan et al. Comparing a one-dimensional skin effect equation with through transmission eddy current phenomena: British journal of non-destructive testing, Vol. 32, No. 2, pp. 71–75 (Feb. 1990)
JPH01119756A (ja) 金属材料の劣化検査装置
Wu et al. Improvement of measuring accuracy for coating covered on conical steel shells by correction of eddy current signals
KR102290197B1 (ko) 전자파와 차단 캐비티 프로브를 이용한 도체 균열 검출장치
RU2686866C1 (ru) Способ магнитного контроля дефектов трубопроводов и устройство для его осуществления
Ishkov et al. Scanning steel junctions using eddy current probe
Sardellitti Design and development of sensors, measurement systems, and measurement methods in the NDE 4.0 framework.
Lysenko et al. Analysis of formation processes of informative features in eddy current probes with pulsed excitation mode
JP4267389B2 (ja) 非接触流速測定方法および装置
JPH09318570A (ja) 薄板ジルコニウム合金材の脆化度の非破壊検査装置
JPS59120903A (ja) 窒化層厚さ測定装置
Valleau Eddy current nondestructive testing of graphite composite materials: Materials evaluation, Vol. 48, No. 2, pp. 230–239 (Feb. 1990)