JPH10205910A - Absorption cooling and heating apparatus - Google Patents

Absorption cooling and heating apparatus

Info

Publication number
JPH10205910A
JPH10205910A JP9022123A JP2212397A JPH10205910A JP H10205910 A JPH10205910 A JP H10205910A JP 9022123 A JP9022123 A JP 9022123A JP 2212397 A JP2212397 A JP 2212397A JP H10205910 A JPH10205910 A JP H10205910A
Authority
JP
Japan
Prior art keywords
temperature
pressure
condenser
solution
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9022123A
Other languages
Japanese (ja)
Inventor
Hidetaka Kayanuma
秀高 茅沼
敏充 ▲高▼石
Toshimitsu Takaishi
Mitsuru Ishikawa
満 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP9022123A priority Critical patent/JPH10205910A/en
Publication of JPH10205910A publication Critical patent/JPH10205910A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide heating which is felt suitable independent of the air volume during operation of a heat pump. SOLUTION: A condenser temperature-calculating part 20 consists of a map showing the correlation between a set temperature and the solution temperature Tc for having warm air at the set temperature and calculates the solution temperature Tc inside the condenser 9 based on an inputted set temperature. A vapor pressure-calculating part 22 has a solutionvapor pressure characteristic chart and, with a solution temperature Tc as the input, calculates the vapor pressure Pc in relation to the temperature Tc. A comparison part 23 compares the output Ps of a pressure sensor PS9 with the calculated vapor pressure Pc. On the basis of the result of the comparison by the comparison part 23, a burner adjusting part 24 controls a burner 7, for example, in a manner of increasing the amount of heating when the condenser pressure Ps in the sensing is lower than the calculated vapor pressure Pc. As a result, the air discharged from an indoor unit is maintained at a temperature corresponding to the condenser pressure Ps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷暖房装置
に関し、特に、室内機から送出される風量の変化にかか
わらず、常に希望通りの一定の暖房感がある適当な温風
を得ることができるようにした吸収式冷暖房装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type air conditioner, and more particularly, to a method of obtaining a suitable warm air having a desired constant heating irrespective of a change in the amount of air sent from an indoor unit. The present invention relates to an absorption type air conditioner that can be used.

【0002】[0002]

【従来の技術】従来、吸収式冷凍式の冷房装置が知られ
ていたが、さらに近年、冷房運転だけでなく、蒸発器で
外気から汲み上げた熱を利用したヒートポンプ暖房運転
も行えるようにした吸収式冷暖房装置装置に対する需要
が高まりつつある。
2. Description of the Related Art Conventionally, an absorption-type refrigeration type cooling device has been known. In recent years, not only a cooling operation but also a heat pump heating operation utilizing heat pumped from outside air by an evaporator can be performed. There is an increasing demand for a heating and cooling system.

【0003】例えば、特公平6−97127号公報で
は、冷房運転、ヒートポンプ運転による暖房、および直
火焚き(ボイラ)運転による暖房という3つのモードで
運転できるようにした吸収式冷温水機が提案されてい
る。
For example, Japanese Patent Publication No. 6-97127 proposes an absorption type water cooler / heater which can be operated in three modes of cooling operation, heating by heat pump operation, and heating by direct fired (boiler) operation. ing.

【0004】[0004]

【発明が解決しようとする課題】従来の冷暖房装置で
は、ヒートポンプ運転時に、暖房負荷が急増して室内機
からの温風の吐出量が急増すると、温風の温度が低下し
て希望したような暖房感が得られなくなる一方、室内機
からの温風吐出量が急減した場合には温風の温度が必要
以上に上昇するという問題点があった。特に、温風温度
が必要以上に高くなるのは無駄であり、運転効率の低下
を招くことにもなる。
In the conventional air conditioner, when the heating load suddenly increases during the operation of the heat pump and the amount of hot air discharged from the indoor unit suddenly increases, the temperature of the hot air decreases and the desired temperature is reduced. On the other hand, when the feeling of heating is no longer obtained, when the discharge amount of the hot air from the indoor unit suddenly decreases, there is a problem that the temperature of the hot air rises more than necessary. In particular, it is wasteful that the temperature of the hot air is unnecessarily high, which leads to a decrease in operating efficiency.

【0005】これに対し、室内機から吐出される温風の
温度を測定し、その結果をフィードバックすることによ
り一定の暖房感を得ようとしても、風の流れにはむらが
あることから温度検出結果にばらつきを生じ、検出結果
のばらつきを解消するためには制御がたいへん複雑にな
るという問題点があった。
On the other hand, even if the temperature of the hot air discharged from the indoor unit is measured and the result is fed back to obtain a certain heating sensation, the flow of the air is uneven, so the temperature is detected. There is a problem in that the results vary, and the control becomes very complicated in order to eliminate the variations in the detection results.

【0006】本発明は、上記問題点に鑑み、簡単な制御
で、風量が変化しても適当な暖房感を確実に得ることが
できる吸収式冷暖房装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an absorption-type cooling and heating apparatus which can reliably obtain an appropriate heating sensation even with a change in air flow with simple control.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決し、目
的を達成するための本発明は、冷媒を貯留する蒸発器
と、前記蒸発器で発生した冷媒蒸気を吸収する吸収剤を
含む溶液を収容する吸収器と、前記溶液の吸収剤濃度を
回復させるため、該溶液を加熱して冷媒蒸気を抽出する
再生器と、前記再生器で抽出された冷媒蒸気を凝縮させ
て前記蒸発器へ供給するための凝縮器とを有する吸収式
冷暖房装置において、冷房運転時は前記蒸発器内を通過
した冷水を前記室内機に循環させて冷風を吐出するよう
にし、ヒートポンプ運転時は前記吸収器内および前記凝
縮器内を通過させた冷却水を前記室内機に循環させて温
風を吐出させるように構成するとともに、前記溶液に暖
房用熱量を与えることができる凝縮温度に対応する凝縮
器内圧力を維持するようにヒートポンプ運転時の前記再
生器の加熱量を制御するように構成した点に第1の特徴
がある。
SUMMARY OF THE INVENTION In order to solve the above problems and achieve the object, the present invention provides an evaporator for storing a refrigerant, and a solution containing an absorbent for absorbing refrigerant vapor generated in the evaporator. And a regenerator for heating the solution to extract the refrigerant vapor in order to recover the absorbent concentration of the solution, and condensing the refrigerant vapor extracted by the regenerator to the evaporator. In the absorption type air conditioning system having a condenser for supplying, in the cooling operation, the cold water passing through the evaporator is circulated to the indoor unit to discharge the cool air, and in the heat pump operation, the inside of the absorber is discharged. And a configuration in which the cooling water passed through the condenser is circulated to the indoor unit to discharge hot air, and the pressure in the condenser corresponding to a condensing temperature capable of providing the solution with a heating calorie. Maintain There is a first feature that is configured to control the heating amount of the regenerator during sea urchin heat-pump operation.

【0008】また、本発明は、前記冷媒としてトリフル
オロエタノールを使用し、前記凝縮器内圧力が、設定温
度に基づいて250mmHg〜500mmHgの範囲内
で算出されるように構成した点に第2の特徴がある。さ
らに、本発明は、前記冷却水の循環量をほぼ一定に維持
した点に第3の特徴がある。
Further, the present invention is characterized in that trifluoroethanol is used as the refrigerant, and the internal pressure of the condenser is calculated within a range of 250 mmHg to 500 mmHg based on a set temperature. There are features. Further, the present invention has a third feature in that the circulation amount of the cooling water is maintained substantially constant.

【0009】上記第1ないし第3の特徴によれば、室内
機からの温風温度を決定づける冷却水の温度が、該冷却
水に熱量を与える凝縮器内の冷媒液温度と一定の相関関
係を有する凝縮器内圧力を予定範囲内の値に維持するこ
とによって所望値に維持される。
According to the first to third features, the temperature of the cooling water that determines the temperature of the hot air from the indoor unit has a certain correlation with the temperature of the refrigerant liquid in the condenser that gives the calorific value to the cooling water. The desired pressure is maintained by maintaining the internal pressure of the condenser within a predetermined range.

【0010】[0010]

【発明の実施の形態】以下に、図面を参照して本発明を
詳細に説明する。図1は本発明の一実施形態に係る吸収
式冷暖房装置の要部構成を示す系統ブロック図である。
蒸発器1には冷媒としてトリフルオロエタノール(TF
E)等のフッ化アルコールが、吸収器2には吸収剤を含
む溶液としてDMI誘導体(ジメチルイミダゾリジノ
ン)が収容されている。この場合、前記冷媒はフッ化ア
ルコールに限らず非凍結範囲が広くとれるものであれば
よい。溶液についてはDMI誘導体に限らず非結晶範囲
が広く取れるものであり、TFEよりも高い常圧沸点を
有し、TFEを吸収しうる吸収剤であればよい。例え
ば、水と臭化リチウムの組み合わせは、外気温度が零度
近くになった状態での暖房運転時において、冷媒である
水が凍結するおそれがあるので、本実施形態の系統に好
適とは言い難い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a system block diagram showing a main configuration of an absorption type cooling and heating apparatus according to one embodiment of the present invention.
In the evaporator 1, trifluoroethanol (TF) is used as a refrigerant.
E) or the like, and the absorber 2 contains a DMI derivative (dimethylimidazolidinone) as a solution containing an absorbent. In this case, the refrigerant is not limited to the fluorinated alcohol and may be any refrigerant that can have a wide non-freezing range. The solution is not limited to the DMI derivative, but can have a wide non-crystalline range, and may be any absorbent that has a higher normal pressure boiling point than TFE and can absorb TFE. For example, a combination of water and lithium bromide is not suitable for the system according to the present embodiment because water as a refrigerant may freeze during a heating operation in a state where the outside air temperature is close to zero degrees. .

【0011】蒸発器1と吸収器2とは、図示しない蒸発
(冷媒)通路を介して互いに流体的に連結されており、
これらの空間を、例えば30mmHg程度の低圧環境下に
保持すると蒸発器1内の冷媒が蒸発し、前記通路を介し
て吸収器2内に入る。なお、前記蒸発通路には予冷器1
8が設けられている。予冷器18は、冷媒蒸気中に残存
するミスト(霧状の冷媒)を加熱して蒸気化させるとと
もに、凝縮器9から送給される冷媒の温度を下げる働き
をする。冷媒蒸気を吸収器2内の吸収剤溶液が吸収して
吸収冷凍動作が行われる。
The evaporator 1 and the absorber 2 are fluidly connected to each other through an evaporating (refrigerant) passage (not shown).
When these spaces are kept under a low pressure environment of, for example, about 30 mmHg, the refrigerant in the evaporator 1 evaporates and enters the absorber 2 through the passage. The evaporating passage has a precooler 1
8 are provided. The precooler 18 functions to heat and vaporize the mist (mist-like refrigerant) remaining in the refrigerant vapor, and to lower the temperature of the refrigerant supplied from the condenser 9. The absorbent vapor in the absorber 2 absorbs the refrigerant vapor, and the absorption refrigeration operation is performed.

【0012】まずバーナ7が点火され、再生器3によっ
て吸収器2内の溶液濃度が高められると(バーナおよび
再生器ならびに溶液濃縮については後述する)、吸収器
2内の溶液が冷媒蒸気を吸収し、該冷媒の蒸発による潜
熱によって蒸発器1内が冷却される。蒸発器1内には冷
水が通過する管路1aが設けられる。管路1aの一端
(図では出口端)は第1の四方弁V1の#1開口に、そ
の他端(図では入口端)は第2の四方弁V2の#1開口
にそれぞれ連結される。
First, when the burner 7 is ignited and the solution concentration in the absorber 2 is increased by the regenerator 3 (the burner, the regenerator and the solution concentration will be described later), the solution in the absorber 2 absorbs the refrigerant vapor. Then, the inside of the evaporator 1 is cooled by the latent heat due to the evaporation of the refrigerant. Inside the evaporator 1, a pipe line 1a through which cold water passes is provided. One end (outlet end in the figure) of the pipeline 1a is connected to the # 1 opening of the first four-way valve V1, and the other end (inlet end in the figure) is connected to the # 1 opening of the second four-way valve V2.

【0013】冷媒はポンプP1によって蒸発器1内に設
けられた散布手段1bに導かれ、前記冷水が通過してい
る管路1a上に散布される。前記冷媒は管路1a内の冷
水から蒸発熱を奪って冷媒蒸気となり、蒸発通路を通っ
て吸収器2に流入する。その結果、前記管路1a内の冷
水の温度は降下する。蒸発器1内の冷媒は前記散布手段
1bに導かれるほか、後述するように、その一部はフィ
ルタ4を通って精留器6にも給送される。蒸発器1とフ
ィルタ4との間には流量調節弁V5が設けられている。
なお、管路1aを流れる冷水としてはエチレングレコー
ル又はプロピレングレコ−ル水溶液を使用するのが好ま
しい。
The refrigerant is guided by the pump P1 to the spraying means 1b provided in the evaporator 1, and is sprayed on the pipeline 1a through which the cold water passes. The refrigerant removes heat of evaporation from the cold water in the pipe 1a to become refrigerant vapor, and flows into the absorber 2 through the evaporation passage. As a result, the temperature of the cold water in the pipe 1a drops. The refrigerant in the evaporator 1 is guided to the spraying means 1b, and a part of the refrigerant is supplied to the rectifier 6 through the filter 4 as described later. A flow control valve V5 is provided between the evaporator 1 and the filter 4.
In addition, it is preferable to use an ethylene glycol or propylene glycol aqueous solution as the cold water flowing through the pipeline 1a.

【0014】前記フッ化アルコールの蒸気つまり冷媒蒸
気が吸収器2の溶液に吸収されると、吸収熱によって該
溶液の温度は上昇する。溶液の吸収能力は該溶液の温度
が低いほど、また、溶液濃度が高いほど大きい。そこ
で、該溶液の温度上昇を抑制するため、吸収器2の内部
には管路2aが設けられ、該管路2aには冷却水が通さ
れる。管路2aの一端(図では出口端)は凝縮器9内を
通過した後、ポンプP3を介して第1の四方弁V1の#
2開口に、管路2aの他端(図では入口端)は第2の四
方弁V2の#2開口にそれぞれ連結される。管路2aを
通過する冷却水として、前記冷水と同じ水溶液を使用す
る。
When the vapor of the fluorinated alcohol, ie, the refrigerant vapor, is absorbed by the solution in the absorber 2, the temperature of the solution rises due to the heat of absorption. The absorption capacity of a solution increases as the temperature of the solution decreases and as the concentration of the solution increases. Therefore, in order to suppress a rise in the temperature of the solution, a pipe 2a is provided inside the absorber 2, and cooling water is passed through the pipe 2a. After passing through the condenser 9 at one end (outlet end in the figure) of the pipe line 2a, the # 4 of the first four-way valve V1 is
The other end (the inlet end in the figure) of the pipeline 2a is connected to the # 2 opening of the second four-way valve V2, respectively. As the cooling water passing through the pipe 2a, the same aqueous solution as the cold water is used.

【0015】溶液はポンプP2によって吸収器2内に設
けられた散布手段2bに導かれ、管路2a上に散布され
る。その結果、溶液は管路2aを通っている冷却水で冷
却される。一方、冷却水は熱を吸収するのでその温度が
上昇する。吸収器2内の溶液が冷媒蒸気を吸収し、その
吸収剤濃度が低下すると吸収能力が低下する。そこで、
再生器3および精留器6によって吸収剤溶液から冷媒蒸
気を分離発生させることにより、溶液の濃度を高めて吸
収能力を回復させる。
The solution is guided to the spraying means 2b provided in the absorber 2 by the pump P2, and is sprayed on the pipeline 2a. As a result, the solution is cooled by the cooling water passing through the pipe 2a. On the other hand, the temperature of the cooling water rises because it absorbs heat. The solution in the absorber 2 absorbs the refrigerant vapor, and the absorption capacity decreases when the concentration of the absorbent decreases. Therefore,
By separating and generating the refrigerant vapor from the absorbent solution by the regenerator 3 and the rectifier 6, the concentration of the solution is increased and the absorption capacity is restored.

【0016】吸収器2で冷媒蒸気を吸収して希釈された
溶液つまり希液は前記散布手段2bに導かれるほか、ポ
ンプP2により管路7bを通じて精留器6に給送され再
生器3へと流下する。ポンプP2と再生器3とをつなぐ
管路7bには開閉弁V3が設けられている。再生器3は
吸収器2から供給される希液を加熱するバーナ7を有し
ている。該バーナ7はガスバーナが好ましいが、他の型
式のどのような加熱手段であってもよい。再生器3で加
熱され、冷媒蒸気が抽出されて濃度が高められた溶液
(濃液)は、管路7aを通って吸収器2に戻される。管
路7a上には開閉弁V4が設けられている。このとき、
温度が比較的高い濃液は散布手段2cによって管路2a
に散布される。
The solution diluted by absorbing the refrigerant vapor in the absorber 2, that is, the dilute solution, is guided to the spraying means 2 b, and is also fed to the rectifier 6 through the pipe 7 b by the pump P 2 to the regenerator 3. Flow down. An on-off valve V3 is provided in a pipe 7b connecting the pump P2 and the regenerator 3. The regenerator 3 has a burner 7 for heating the dilute solution supplied from the absorber 2. The burner 7 is preferably a gas burner, but may be any other type of heating means. The solution (concentrated solution) heated by the regenerator 3 to increase the concentration by extracting the refrigerant vapor is returned to the absorber 2 through the pipe 7a. An on-off valve V4 is provided on the pipeline 7a. At this time,
The concentrated solution having a relatively high temperature is sprayed by the spraying means 2c to the pipeline 2a.
Sprayed on.

【0017】再生器3に給送された希液がバーナ7で加
熱されると、冷媒蒸気が発生する。前記冷媒蒸気に混入
された吸収剤溶液は精留器6によって分離され、より一
層純度を高められた冷媒蒸気が凝縮器9へ給送される。
そこで冷却されて凝縮液化された冷媒は、前記予冷器1
8、減圧弁11を経由して蒸発器1に戻され、散布され
る。
When the diluted liquid supplied to the regenerator 3 is heated by the burner 7, refrigerant vapor is generated. The absorbent solution mixed into the refrigerant vapor is separated by the rectifier 6, and the refrigerant vapor having a higher purity is fed to the condenser 9.
The refrigerant cooled and condensed and liquefied there is supplied to the pre-cooler 1
8. Returned to the evaporator 1 via the pressure reducing valve 11 and sprayed.

【0018】なお、凝縮器9から蒸発器1に供給される
蒸気の純度は極めて高くなってはいるが、還流冷媒中に
ごくわずかに混在する吸収剤成分が長時間の運転サイク
ルによって蓄積し、蒸発器1内の冷媒の純度が徐々に低
下することは避けられない。そこで、上述のように、蒸
発器1から冷媒のごく一部をフィルタ4を介して精留器
6に給送し、再生器3から生じる冷媒蒸気と共に再び純
度を上げるためのサイクルを経るようにするのが望まし
い。
Although the purity of the vapor supplied from the condenser 9 to the evaporator 1 is extremely high, a very small amount of the absorbent component mixed in the refluxing refrigerant accumulates over a long operation cycle. It is inevitable that the purity of the refrigerant in the evaporator 1 gradually decreases. Therefore, as described above, only a small part of the refrigerant is supplied from the evaporator 1 to the rectifier 6 via the filter 4 so as to pass through a cycle for increasing the purity again together with the refrigerant vapor generated from the regenerator 3. It is desirable to do.

【0019】再生器3から出た管路7a中の高温濃液
は、吸収器2と精留器6を連結する管路の中間に設けら
れた熱交換器12により、吸収器2から出た希液と熱交
換して冷却された後、吸収器2内に散布される。一方、
熱交換器12で予備的に加熱された希液は精留器6へ給
送される。こうして熱効率の向上が図られているが、さ
らに、還流される前記濃液の熱を吸収器2または凝縮器
9から出た管路2a内の冷却水に伝達するための熱交換
器(図示せず)を設けることにより、吸収器2に還流さ
れる濃液の温度をより一層低下させ、冷却水温度はさら
に上げることができるような構成をとってもよい。
The high-temperature concentrated liquid in the pipe 7a discharged from the regenerator 3 is discharged from the absorber 2 by the heat exchanger 12 provided in the middle of the pipe connecting the absorber 2 and the rectifier 6. After being cooled by exchanging heat with the dilute solution, it is sprayed into the absorber 2. on the other hand,
The diluted liquid preliminarily heated by the heat exchanger 12 is supplied to the rectifier 6. Although the thermal efficiency is improved in this way, a heat exchanger (not shown) for transferring the heat of the concentrated liquid to be refluxed to the cooling water in the pipe line 2a coming out of the absorber 2 or the condenser 9 is further provided. The temperature of the concentrated liquid recirculated to the absorber 2 may be further reduced by providing (i), and the cooling water temperature may be further increased.

【0020】前記冷水または冷却水を外気と熱交換する
ための顕熱交換器14には管路4a、室内機15には管
路3aが設けられている。管路3a、4aの各一端(図
では入口端)は第1の四方弁V1の#3および#4開口
に、その他端(図では出口端)は第2の四方弁V2の#
3および#4開口にそれぞれ連結される。室内機15は
冷暖房を行う室内に備えられるもので、冷風または温風
の吹出し用ファン(両者は共通)10と吹出し出口(図
示せず)とが設けられる。前記顕熱交換器14は室外に
置かれ、ファン19で強制的に外気との熱交換が行われ
る。
The sensible heat exchanger 14 for exchanging the cold water or the cooling water with the outside air is provided with a pipe 4a, and the indoor unit 15 is provided with a pipe 3a. One end (the inlet end in the figure) of each of the conduits 3a, 4a is at the opening # 3 and # 4 of the first four-way valve V1, and the other end (the outlet end in the figure) is the # of the second four-way valve V2.
3 and # 4 openings respectively. The indoor unit 15 is provided in a room that performs cooling and heating, and is provided with a cooling air or warm air blowing fan (both are common) 10 and a blowing outlet (not shown). The sensible heat exchanger 14 is placed outdoors, and the fan 19 forcibly exchanges heat with the outside air.

【0021】蒸発器1には冷媒の量を感知するレベルセ
ンサL1、冷媒の温度を感知する温度センサT1、およ
び蒸発器1内の圧力を感知する圧力センサPS1が設け
られている。吸収器2には溶液の量を感知するレベルセ
ンサL2が設けられている。凝縮器9には、凝縮した冷
媒の量を感知するレベルセンサL9、冷媒の温度を感知
する温度センサT9、および凝縮器9内の圧力を感知す
る圧力センサPS9が設けられている。また、顕熱交換
機14、再生器3、および室内機15にはそれぞれ温度
センサT14、T3およびT15が設けられている。顕
熱交換機14の温度センサT14は外気温度を感知し、
室内機15の温度センサT15は冷暖房をする室内の温
度を感知する。また、再生器3の温度センサT3は溶液
の温度を感知する。
The evaporator 1 is provided with a level sensor L1 for detecting the amount of the refrigerant, a temperature sensor T1 for detecting the temperature of the refrigerant, and a pressure sensor PS1 for detecting the pressure in the evaporator 1. The absorber 2 is provided with a level sensor L2 for sensing the amount of the solution. The condenser 9 is provided with a level sensor L9 for sensing the amount of condensed refrigerant, a temperature sensor T9 for sensing the temperature of the refrigerant, and a pressure sensor PS9 for sensing the pressure in the condenser 9. The sensible heat exchanger 14, the regenerator 3, and the indoor unit 15 are provided with temperature sensors T14, T3, and T15, respectively. The temperature sensor T14 of the sensible heat exchanger 14 detects the outside air temperature,
The temperature sensor T15 of the indoor unit 15 senses the temperature of the room for cooling and heating. Further, the temperature sensor T3 of the regenerator 3 senses the temperature of the solution.

【0022】以上の構成において、冷房運転時には、前
記第1および第2の四方弁V1、V2をそれぞれの#1
および#3開口が連通され、#2および#4開口が連通
されるような位置に切替え制御する。これにより、管路
1aに冷媒が散布されて温度が下げられた冷水が室内機
15の管路3aへ導かれて室内の冷房が行われる。
In the above configuration, during the cooling operation, the first and second four-way valves V1 and V2 are connected to the respective # 1 valves.
The opening and the # 3 openings are communicated and the # 2 and # 4 openings are communicated with each other. Thereby, the cold water whose temperature has been lowered by the refrigerant being sprayed on the pipeline 1a is guided to the pipeline 3a of the indoor unit 15 to cool the room.

【0023】一方、暖房運転時には、前記第1および第
2の四方弁V1、V2をそれぞれの#1および#4開口
が連通され、#2および#3開口が連通されるような位
置に切替え制御する。これにより、管路2a内の暖めら
れた冷却水が室内機15の管路3aへ導かれて室内の暖
房が行われる。
On the other hand, during the heating operation, the first and second four-way valves V1 and V2 are switched to positions where the # 1 and # 4 openings are communicated and the # 2 and # 3 openings are communicated. I do. Thereby, the warmed cooling water in the pipeline 2a is guided to the pipeline 3a of the indoor unit 15 to heat the room.

【0024】なお、暖房運転時に、外気温度が極端に低
くなると、顕熱交換器14を介して外気から熱を汲み上
げ難くなり、暖房能力が低下する。このようなときのた
めに、凝縮器9と再生器3(または精留器6)との間を
バイパスする環流通路9aおよび開閉弁17を設けてい
る。すなわち、外気からの熱の汲み上げが困難なときに
は、吸収冷凍サイクル運転は停止して、再生器3で発生
した蒸気を凝縮器9との間で環流させ、バーナ7による
加熱熱量を凝縮器9内で効率よく管路2a内の冷却水に
伝導させられる直火焚き運転により前記冷却水を昇温さ
せて暖房能力を向上させるようにする。
If the outside air temperature becomes extremely low during the heating operation, it becomes difficult to pump heat from the outside air via the sensible heat exchanger 14, and the heating capacity is reduced. For such a case, a recirculation passage 9a and an on-off valve 17 are provided to bypass between the condenser 9 and the regenerator 3 (or the rectifier 6). That is, when it is difficult to pump up heat from the outside air, the absorption refrigeration cycle operation is stopped, the steam generated in the regenerator 3 is circulated to the condenser 9, and the heat generated by the burner 7 is transferred to the condenser 9. Thus, the temperature of the cooling water is increased by a direct fired operation in which the cooling water is efficiently transmitted to the cooling water in the pipe line 2a to improve the heating capacity.

【0025】続いて、室内機15の吐出風量にかかわら
ず適当な暖房感が得られるようにするための運転につい
て説明する。設定温度、室内温度および外気温度から計
算される負荷の変化によって室内機15の風量は変化さ
せられている。負荷の増大によって風量が増大すると冷
却水温度が下がり暖房感が得られなくなるので、本実施
形態では、冷却水の温度を維持して常に適当な暖房感が
得られるように制御している。
Next, a description will be given of an operation for obtaining an appropriate feeling of heating regardless of the amount of air discharged from the indoor unit 15. The air volume of the indoor unit 15 is changed by a change in load calculated from the set temperature, the indoor temperature, and the outside air temperature. If the air flow increases due to an increase in the load, the cooling water temperature decreases and a feeling of heating cannot be obtained. Therefore, in the present embodiment, the temperature of the cooling water is maintained so that an appropriate feeling of heating is always obtained.

【0026】ところで、暖房運転では、最終的には凝縮
器9を通過した冷却水が室内機15に送給されている。
したがって、室内機15に入る冷却水温度は熱損失を無
視すれば凝縮器9を出るときの冷却水の温度と等しい。
一方、凝縮器9内の溶液の温度と蒸気圧とは次の関係に
ある。図3は溶液の温度と蒸気圧、ならびに溶液中の吸
収剤濃度との関係を示す特性図である。凝縮器9を通過
する溶液は、冷媒(TFE)100%であるから、該溶
液の温度と蒸気圧との関係は図3の特性Aにより求めら
れる。この特性から理解されるように、溶液の温度と蒸
気圧との間には一定の相関があるから、溶液の温度を所
望値にするための溶液の蒸気圧は特定される。
By the way, in the heating operation, the cooling water finally passed through the condenser 9 is supplied to the indoor unit 15.
Therefore, the temperature of the cooling water entering the indoor unit 15 is equal to the temperature of the cooling water exiting the condenser 9 ignoring the heat loss.
On the other hand, the temperature of the solution in the condenser 9 and the vapor pressure have the following relationship. FIG. 3 is a characteristic diagram showing the relationship between the temperature of the solution, the vapor pressure, and the concentration of the absorbent in the solution. Since the solution passing through the condenser 9 is 100% of the refrigerant (TFE), the relationship between the temperature and the vapor pressure of the solution is obtained from the characteristic A in FIG. As understood from this characteristic, since there is a certain correlation between the temperature of the solution and the vapor pressure, the vapor pressure of the solution for bringing the temperature of the solution to a desired value is specified.

【0027】ところで、本発明者等の実験によれば、凝
縮器9から出る冷却水の温度をほぼ45°C〜60°C
にすることにより、室内機15の吐出温度を40°C〜
50°Cに保持できることがわかっている。ここで、凝
縮器9内の冷媒液の温度と冷却水の温度とは一定の相関
があり、図3に示した特性によれば、冷媒の蒸気圧が2
50mmHg〜500mmHgの範囲において、冷媒液
の温度は48°C〜63°Cである。したがって、この
蒸気圧範囲を保持すれば、冷却水の温度を45°C〜6
0°C、すなわち室内機15の吐出温度をほぼ40°C
〜50°Cに維持できる。
According to experiments by the present inventors, the temperature of the cooling water discharged from the condenser 9 is set to approximately 45 ° C. to 60 ° C.
By setting the discharge temperature of the indoor unit 15 to 40 ° C.
It has been found that the temperature can be maintained at 50 ° C. Here, there is a certain correlation between the temperature of the refrigerant liquid in the condenser 9 and the temperature of the cooling water, and according to the characteristics shown in FIG.
In the range of 50 mmHg to 500 mmHg, the temperature of the refrigerant liquid is 48 ° C to 63 ° C. Therefore, if this vapor pressure range is maintained, the temperature of the cooling water is set to 45 ° C. to
0 ° C, that is, the discharge temperature of the indoor unit 15 is almost 40 ° C
~ 50 ° C.

【0028】本実施形態では、上述の温度と蒸気圧との
関係に基づき、凝縮器9の冷媒凝縮圧力を予定値に保持
して、結果的に室内機15に循環させる冷却水の温度を
保持する。具体的には、冷却水の循環量はほぼ一定にし
たまま、凝縮器9に設けられた前記圧力センサPS9の
検知圧力が予定値に保持されるように再生器3の加熱量
を調整する。
In the present embodiment, the refrigerant condensing pressure of the condenser 9 is maintained at a predetermined value based on the above-mentioned relationship between the temperature and the vapor pressure, and as a result, the temperature of the cooling water circulated to the indoor unit 15 is maintained. I do. Specifically, the heating amount of the regenerator 3 is adjusted such that the detected pressure of the pressure sensor PS9 provided in the condenser 9 is maintained at a predetermined value while the circulation amount of the cooling water is kept substantially constant.

【0029】再生器3の加熱量を調整するための制御手
段の要部機能を、ブロック図を参照して説明する。図2
において、制御部25はマイクロコンピュータで構成す
ることができる。該制御部25には凝縮器9内の圧力を
感知する圧力センサPS9の出力が取り込まれる。凝縮
器温度算出部20は温度設定器21から入力された設定
温度に基づき凝縮器9内の溶液の温度Tcを算出する。
具体的には、予め実験によって求められた設定温度と、
該設定温度の温風を得るための溶液の温度Tcとの相関
を表すマップを用い、設定温度を入力として溶液の温度
Tcを得る。
The main function of the control means for adjusting the heating amount of the regenerator 3 will be described with reference to a block diagram. FIG.
In, the control unit 25 can be constituted by a microcomputer. The output of the pressure sensor PS9 that senses the pressure in the condenser 9 is taken into the control unit 25. The condenser temperature calculator 20 calculates the temperature Tc of the solution in the condenser 9 based on the set temperature input from the temperature setter 21.
Specifically, a set temperature previously determined by an experiment,
The temperature Tc of the solution is obtained by using the map indicating the correlation with the temperature Tc of the solution for obtaining the hot air at the set temperature and inputting the set temperature.

【0030】蒸気圧算出部22は前記溶液の温度Tcを
入力として該温度Tcと関連する蒸気圧Pcを算出す
る。具体的には、前記溶液−蒸気圧特性図(図3)に基
づいて作成されたマップを用いる。比較部23は圧力セ
ンサPS9の感知圧力Psと算出された蒸気圧Pcとを
比較する。バーナ調整部24は前記比較部23での比較
結果に基づき、バーナ7の調整を行う。例えば、算出さ
れた蒸気圧Pcよりも感知された凝縮器圧力Psが低い
場合は、加熱量を上げるようにバーナ7を制御する。
The vapor pressure calculator 22 receives the temperature Tc of the solution as input and calculates a vapor pressure Pc related to the temperature Tc. Specifically, a map created based on the solution-vapor pressure characteristic diagram (FIG. 3) is used. The comparing unit 23 compares the sensed pressure Ps of the pressure sensor PS9 with the calculated vapor pressure Pc. The burner adjusting section 24 adjusts the burner 7 based on the comparison result of the comparing section 23. For example, when the detected condenser pressure Ps is lower than the calculated vapor pressure Pc, the burner 7 is controlled to increase the heating amount.

【0031】バーナ7による加熱量を増大させることに
より、凝縮器9へ給送される冷媒蒸気が増大して凝縮器
圧力Psが高められる。そうすると凝縮器9内の冷媒温
度が上昇し、結果的に、室内機15から吐出される空気
が前記凝縮器圧力Psに対応する温度に維持される。
By increasing the amount of heating by the burner 7, the refrigerant vapor supplied to the condenser 9 is increased, and the condenser pressure Ps is increased. Then, the temperature of the refrigerant in the condenser 9 rises, and as a result, the air discharged from the indoor unit 15 is maintained at a temperature corresponding to the condenser pressure Ps.

【0032】上述のように、本実施形態によれば、ヒー
トポンプ運転時に、負荷の増減による風量の変化にかか
わらず、室内機15の吐出温度を維持できる。特に、凝
縮器圧力に基づいて再生器3の加熱量を制御しているた
めに、加熱による圧力変化に対する応答が速いという利
点がある。また、再生器3の加熱量を制御することによ
り再生器3自体の圧力も高く維持されるので、再生器3
から吸収器2への溶液循環量を確保することもできる。
As described above, according to the present embodiment, the discharge temperature of the indoor unit 15 can be maintained during the operation of the heat pump regardless of the change in the air flow due to the increase or decrease of the load. In particular, since the amount of heating of the regenerator 3 is controlled based on the condenser pressure, there is an advantage that the response to a pressure change due to heating is fast. Further, by controlling the heating amount of the regenerator 3, the pressure of the regenerator 3 itself is also maintained at a high level.
It is also possible to secure the amount of solution circulating from the filter to the absorber 2.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、請求項
1ないし請求項3の発明によれば、ヒートポンプ運転時
に、室内機の風量変化があったとしても、再生器の加熱
量を上げることによって冷却水の温度低下が補償され
る。特に、凝縮器圧力に基づいて加熱量の制御を行って
いるため、制御応答が速い。
As is apparent from the above description, according to the first to third aspects of the present invention, the heating amount of the regenerator can be increased even when the air volume of the indoor unit changes during the operation of the heat pump. This compensates for the temperature drop of the cooling water. In particular, since the heating amount is controlled based on the condenser pressure, the control response is fast.

【0034】また、請求項3の発明によれば、冷却水の
循環量は一定でよいため、循環用のポンプの構成が簡単
になる。
According to the third aspect of the present invention, the circulation amount of the cooling water may be constant, so that the configuration of the circulation pump is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る吸収式冷暖房装置の
構成を示す系統図である。
FIG. 1 is a system diagram showing a configuration of an absorption type cooling and heating apparatus according to an embodiment of the present invention.

【図2】 本発明の実施形態に係る吸収式冷暖房装置の
制御機能を示す機能ブロック図である。
FIG. 2 is a functional block diagram showing a control function of the absorption type air conditioner according to the embodiment of the present invention.

【図3】 溶液の温度と蒸気圧、ならびに溶液中の吸収
剤濃度との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a solution temperature and a vapor pressure, and an absorbent concentration in the solution.

【符号の説明】[Explanation of symbols]

1…蒸発器、 2…吸収器、 3…再生器、 9…凝縮
器、 11…減圧弁、14…顕熱交換器、 15…室内
機、 25…制御部
DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2 ... Absorber, 3 ... Regenerator, 9 ... Condenser, 11 ... Pressure reducing valve, 14 ... Sensible heat exchanger, 15 ... Indoor unit, 25 ... Control part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を貯留する蒸発器と、前記蒸発器で
発生した冷媒蒸気を吸収する吸収剤を含む溶液を収容す
る吸収器と、前記溶液の吸収剤濃度を回復させるため、
該溶液を加熱して冷媒蒸気を抽出する再生器と、前記再
生器で抽出された冷媒蒸気を凝縮させて前記蒸発器へ供
給するための凝縮器とを有する吸収式冷暖房装置におい
て、 室内機と、 冷房運転時は前記蒸発器内を通過した冷水を前記室内機
に循環させて冷風を吐出するようにし、ヒートポンプ運
転時は前記吸収器内および前記凝縮器内を通過させた冷
却水を前記室内機に循環させて温風を吐出させるように
形成した循環路と、 前記凝縮器内の圧力を感知する圧力センサと、 前記凝縮器内の冷媒の温度を、該溶液に暖房用熱量を与
えることができる凝縮温度に維持するため、予定の相関
関係に基づいて前記凝縮温度に対応する凝縮器内圧力を
算出する圧力算出手段と、 前記圧力センサによって感知された圧力および前記圧力
算出手段で求められた蒸気圧の大小を判別する比較手段
と、 前記比較手段による判別結果に基づいてヒートポンプ運
転時の前記再生器の加熱量を制御する加熱量調整手段と
を具備したことを特徴する吸収式冷暖房装置。
1. An evaporator for storing a refrigerant, an absorber for containing a solution containing an absorbent for absorbing refrigerant vapor generated in the evaporator, and an absorbent for recovering the absorbent concentration of the solution.
An absorption-type cooling and heating device having a regenerator that heats the solution to extract a refrigerant vapor and a condenser for condensing the refrigerant vapor extracted by the regenerator and supplying the condensed refrigerant vapor to the evaporator; During the cooling operation, the cold water that has passed through the evaporator is circulated to the indoor unit so as to discharge the cool air, and when the heat pump is operating, the cooling water that has passed through the absorber and the inside of the condenser is cooled by the indoor unit. A circulation path formed so as to circulate through the machine to discharge hot air; a pressure sensor for sensing a pressure in the condenser; and a temperature of the refrigerant in the condenser, and applying a heating calorie to the solution. A pressure calculating means for calculating a condenser internal pressure corresponding to the condensing temperature based on a predetermined correlation, and a pressure sensed by the pressure sensor and the pressure calculating means. An absorption type air conditioner comprising: comparison means for determining the magnitude of the determined vapor pressure; and heating amount adjustment means for controlling the heating amount of the regenerator during a heat pump operation based on the determination result by the comparison means. apparatus.
【請求項2】 前記冷媒としてトリフルオロエタノール
を使用し、 前記凝縮器内圧力が、設定温度に基づいて250mmH
g〜500mmHgの範囲内で算出されるように前記圧
力算出手段を構成したことを特徴とする請求項1記載の
吸収式冷暖房装置。
2. The method according to claim 1, wherein trifluoroethanol is used as the refrigerant, and the pressure in the condenser is 250 mmH based on a set temperature.
2. The absorption type cooling and heating apparatus according to claim 1, wherein said pressure calculating means is configured to calculate within a range of g to 500 mmHg.
【請求項3】 前記冷却水の循環量をほぼ一定に維持し
たことを特徴とする請求項1または2記載の吸収式冷暖
房装置。
3. The absorption type cooling and heating apparatus according to claim 1, wherein the circulation amount of the cooling water is maintained substantially constant.
JP9022123A 1997-01-21 1997-01-21 Absorption cooling and heating apparatus Pending JPH10205910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9022123A JPH10205910A (en) 1997-01-21 1997-01-21 Absorption cooling and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9022123A JPH10205910A (en) 1997-01-21 1997-01-21 Absorption cooling and heating apparatus

Publications (1)

Publication Number Publication Date
JPH10205910A true JPH10205910A (en) 1998-08-04

Family

ID=12074114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9022123A Pending JPH10205910A (en) 1997-01-21 1997-01-21 Absorption cooling and heating apparatus

Country Status (1)

Country Link
JP (1) JPH10205910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155927B2 (en) * 2001-09-04 2007-01-02 Sanyo Electric Co., Ltd. Exhaust heat utilizing refrigeration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155927B2 (en) * 2001-09-04 2007-01-02 Sanyo Electric Co., Ltd. Exhaust heat utilizing refrigeration system

Similar Documents

Publication Publication Date Title
JP3393780B2 (en) Absorption air conditioner
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
KR100445616B1 (en) Absorbed refrigerator
JP3223122B2 (en) Method of stopping operation of absorption refrigeration system
KR101351525B1 (en) Integrated heat pump system provided with cooling, heating, hot water and defrosting function
KR100417197B1 (en) Absorption type refrigerating apparatus
JP4901655B2 (en) Absorption chiller / heater
JPH10205910A (en) Absorption cooling and heating apparatus
JP2001099474A (en) Air conditioner
JP3281275B2 (en) Absorption air conditioner
JP3735745B2 (en) Cooling operation control method for absorption air conditioner
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP3466866B2 (en) Absorption air conditioner
JP3138164B2 (en) Absorption refrigerator
JP2022044123A (en) Controller of heat exchange medium of waste heat utilization/absorption type freezer, and waste heat utilization/absorption type refrigeration system
JP2779422B2 (en) Absorption chiller / heater
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP2002005538A (en) Absorptive freezer and cooling water flow rate control method
JP3308795B2 (en) Absorption air conditioner
JPH07248161A (en) Absorption type cooler/heater and hot water supplying apparatus
JP2003287315A (en) Absorption refrigerating machine
JPH0145023Y2 (en)
JP2000161812A (en) Control device of absorption refrigerating machine
JP2001208443A (en) Absorption freezer