JPH0145023Y2 - - Google Patents

Info

Publication number
JPH0145023Y2
JPH0145023Y2 JP9495281U JP9495281U JPH0145023Y2 JP H0145023 Y2 JPH0145023 Y2 JP H0145023Y2 JP 9495281 U JP9495281 U JP 9495281U JP 9495281 U JP9495281 U JP 9495281U JP H0145023 Y2 JPH0145023 Y2 JP H0145023Y2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
pressure
condenser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9495281U
Other languages
Japanese (ja)
Other versions
JPS581138U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9495281U priority Critical patent/JPS581138U/en
Publication of JPS581138U publication Critical patent/JPS581138U/en
Application granted granted Critical
Publication of JPH0145023Y2 publication Critical patent/JPH0145023Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【考案の詳細な説明】 本考案は冷凍や空調等に用いられる圧縮機の試
験装置に関し、特に圧縮機の耐久試験に適する。
[Detailed Description of the Invention] The present invention relates to a testing device for compressors used in refrigeration, air conditioning, etc., and is particularly suitable for durability testing of compressors.

従来の冷凍・空調用圧縮機の試験用負荷制御装
置では、圧縮機吐出冷媒の全部を冷却水により完
全に凝縮液化させ、その冷媒を凝縮器の排水およ
び電熱ヒータにより加熱蒸発させて圧縮機に吸入
させているため2個の水槽および2個の熱交換器
と、冷却水、電熱ヒータが必要不可欠の構成要素
となる、従つて装置が大型になり冷却水および電
力の消費量が大きいと云う欠点を有している。
In conventional load control devices for testing compressors for refrigeration and air conditioning, all of the refrigerant discharged from the compressor is completely condensed and liquefied using cooling water, and then the refrigerant is drained from the condenser and heated and evaporated using an electric heater to supply the compressor to the compressor. Because it is inhaled, two water tanks, two heat exchangers, cooling water, and an electric heater are essential components, which means that the equipment is large and consumes a large amount of cooling water and electricity. It has its drawbacks.

例えば、第1図に示す試験装置に於いて、圧縮
機1の吐出冷媒は凝縮器2に流入し冷却液化され
る。この時、圧縮機1の吐出側冷媒圧力は、図示
なき圧力検出回路により給水弁12にフイードバ
ツクし、水槽6に流入する冷却水量を調節して設
定値に保持される。レシーバ3内の液冷媒は膨張
弁4にて低圧低温となり蒸発器5に流入する。こ
こで低温の液冷媒は、凝縮器水槽6より流入する
温水、および電気ヒータ10により加熱されて蒸
発する。この時の蒸発器7内の圧力はヒータの入
力電流および温水の流入量によつて調整される。
For example, in the test apparatus shown in FIG. 1, refrigerant discharged from a compressor 1 flows into a condenser 2 and is cooled and liquefied. At this time, the refrigerant pressure on the discharge side of the compressor 1 is fed back to the water supply valve 12 by a pressure detection circuit (not shown), and the amount of cooling water flowing into the water tank 6 is adjusted to be maintained at a set value. The liquid refrigerant in the receiver 3 becomes low pressure and low temperature at the expansion valve 4 and flows into the evaporator 5. Here, the low-temperature liquid refrigerant is heated and evaporated by the hot water flowing in from the condenser water tank 6 and the electric heater 10. The pressure inside the evaporator 7 at this time is adjusted by the input current of the heater and the amount of hot water flowing in.

第2図は第1図の試験装置に於けるモリエル線
図を示す。
FIG. 2 shows a Mollier diagram for the testing apparatus of FIG. 1.

圧縮機吐出冷媒の圧力の点の圧力は、凝縮機能
力を制御して設定値に保持され、凝縮器により冷
却されてb点に至る。b点の液冷媒は膨張弁にて
減圧され、c点の状態(低圧、低温)になる。c
点の冷媒は、蒸発器に流入し加熱されて蒸発し、
d点になる。なおd点の圧力は、蒸発器の加熱量
により、又温度は膨張弁の流量調節により吸入ガ
スとして適正な値に調整される。
The pressure at the compressor discharge refrigerant pressure point is maintained at a set value by controlling the condensing function and is cooled by the condenser to point b. The liquid refrigerant at point b is depressurized by the expansion valve and becomes the state at point c (low pressure, low temperature). c.
The refrigerant at the point flows into the evaporator and is heated and evaporated,
It will be point d. Note that the pressure at point d is adjusted to a value appropriate for the suction gas by the heating amount of the evaporator, and the temperature is adjusted by adjusting the flow rate of the expansion valve.

本考案は上記試験装置の欠点を解消するため圧
力調弁と高温ガス冷媒のバイパス回路を設けて、
低温液冷媒をこの高温ガス冷媒により加熱するこ
とによつて、従来装置から蒸発器を無くすると共
に、凝縮器の容量低減をも可能にし小型、軽量、
安価で使用時のエネルギー消費量(冷却水消費、
ヒータ用電力消費)の少ない圧縮機試験装置を供
給しようとするものである。
In order to eliminate the drawbacks of the above test equipment, the present invention is equipped with a pressure regulating valve and a bypass circuit for high-temperature gas refrigerant.
By heating the low-temperature liquid refrigerant with this high-temperature gas refrigerant, it is possible to eliminate the evaporator from conventional equipment and reduce the capacity of the condenser, resulting in a compact, lightweight,
Low cost and low energy consumption during use (cooling water consumption,
The aim is to provide a compressor testing device that consumes less power (heater power consumption).

以下に本考案の構成を図面の実施例に従つて説
明する。
The configuration of the present invention will be explained below according to the embodiments shown in the drawings.

供試用圧縮機1の吐出ガスは吐出圧力調整弁2
0により設定圧力に保持され、吐出圧力調整弁2
0を通過した高温のガス冷媒の一部は凝縮器21
に流入し液化してレシーバタンク22に流れる。
この時凝縮器21の能力はその内部の凝縮圧力が
吐出圧力調整弁20の設定圧力以下の値とするに
充分な値としておく。レシーバタンク22の液冷
媒は膨張弁23により減圧されて低温の液冷媒と
なつてアツキユムレータタンク24に流入する。
The discharge gas of the test compressor 1 is controlled by the discharge pressure regulating valve 2.
The set pressure is maintained by 0, and the discharge pressure regulating valve 2
A part of the high temperature gas refrigerant that has passed through the condenser 21
It flows into the receiver tank 22 after being liquefied.
At this time, the capacity of the condenser 21 is set to a value sufficient to make the condensation pressure inside the condensation pressure equal to or lower than the set pressure of the discharge pressure regulating valve 20. The liquid refrigerant in the receiver tank 22 is depressurized by the expansion valve 23 and flows into the accumulator tank 24 as a low-temperature liquid refrigerant.

一方高温ガス配管25からバイパス配管26に
流入した高温ガス冷媒は、圧力調整弁27によつ
て圧縮機1の吸入設定圧力に減圧された後、アツ
キユムレータタンク24に流入し、膨張弁23か
ら流入した低温液冷媒を加熱蒸発させる。
On the other hand, the high temperature gas refrigerant flowing into the bypass pipe 26 from the high temperature gas pipe 25 is reduced in pressure to the suction set pressure of the compressor 1 by the pressure regulating valve 27, and then flows into the accumulator tank 24 and then from the expansion valve 23. The inflowing low-temperature liquid refrigerant is heated and evaporated.

またこの時同時に感温筒28がアツキユムレー
タタンク24から流出するガス冷媒の過熱度を検
出し膨張弁23にフイードバツクして、膨張弁2
3を通過する液冷媒の流量を調整して過熱度を適
正値に保つ、なお、圧縮機の回転数の変化や液冷
媒流量の変化によつて生じる。吸入冷媒圧力の変
化は、圧力調整弁27が検出し、自動調整する。
At the same time, the temperature sensing cylinder 28 detects the degree of superheat of the gas refrigerant flowing out from the accumulator tank 24 and sends feedback to the expansion valve 23.
The degree of superheating is maintained at an appropriate value by adjusting the flow rate of the liquid refrigerant passing through 3. Note that this occurs due to changes in the rotational speed of the compressor and changes in the flow rate of the liquid refrigerant. Changes in suction refrigerant pressure are detected by the pressure regulating valve 27 and automatically adjusted.

上述の冷媒の変化を第4図(モリエル線図上の
サイクル)により説明する。
The above-mentioned change in the refrigerant will be explained with reference to FIG. 4 (cycle on Mollier diagram).

圧縮機1の吐出冷媒は吐出圧力調整弁20によ
りA点に保持され、吐出圧力調整弁20を通過し
た高温高圧冷媒の一部は凝縮器21にて冷却液化
され、C点に至り、膨張弁23によりD点の状態
(低圧低温)になりアツキユムレータタンク24
に流入する。他方、高温ガスのままバイパス回路
26に流入したガス冷媒は、圧力調整弁27によ
つて、E点まで減圧されてアツキユムレータタン
ク24内に流入し、アツキユムレータでは、D点
の低温冷媒とE点の高温冷媒が混合し、F点の状
態(圧縮機吸入ガス条件として適正な状態)にな
る。なおF点の圧力は主に圧力調整弁27が、温
度は膨張弁23が各々自動調整する。
The refrigerant discharged from the compressor 1 is held at point A by the discharge pressure regulating valve 20, and a part of the high-temperature, high-pressure refrigerant that has passed through the discharge pressure regulating valve 20 is cooled and liquefied in the condenser 21, reaches point C, and passes through the expansion valve. 23, the state of point D (low pressure and low temperature) is reached, and the accumulator tank 24
flows into. On the other hand, the gas refrigerant that has flowed into the bypass circuit 26 as a high-temperature gas is reduced in pressure to point E by the pressure regulating valve 27 and flows into the accumulator tank 24, where it is mixed with the low-temperature refrigerant at point D and E. The high-temperature refrigerants at the point are mixed, resulting in a state at point F (a state appropriate for the compressor suction gas conditions). Note that the pressure at point F is mainly automatically adjusted by the pressure regulating valve 27, and the temperature is automatically adjusted by the expansion valve 23.

以上の如く本考案の構成によれば、冷凍サイク
ル内の高温ガス冷媒と低温液冷媒を混合すること
によつて、圧縮機吸入ガス冷媒として適正な条件
に、圧縮機吸入ガスを調整できるので、従来必要
とした蒸発器が不要になり、同時に蒸発器を加熱
する熱源も不要となる。又さらに凝縮器に流入す
る冷媒流量も従来の約1/3となるので、凝縮器能
力も従来の約1/3に縮小可能となる。従つて装置
の大巾な小型・軽量化が可能になると共に、製作
費の低減、使用時のエネルギー消費量の大巾な節
約が可能になる。
As described above, according to the configuration of the present invention, by mixing the high-temperature gas refrigerant and the low-temperature liquid refrigerant in the refrigeration cycle, the compressor suction gas can be adjusted to conditions suitable for the compressor suction gas refrigerant. The conventional evaporator is no longer necessary, and at the same time, the heat source for heating the evaporator is also no longer necessary. Furthermore, since the flow rate of refrigerant flowing into the condenser is approximately 1/3 that of the conventional system, the condenser capacity can also be reduced to approximately 1/3 of that of the conventional system. Therefore, it becomes possible to significantly reduce the size and weight of the device, and also to reduce manufacturing costs and save energy consumption during use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧縮機試験装置の回路図、第2
図はそのモリエル線図、第3図は本考案に係る圧
縮機試験装置の回路図、そして第4図は第3図に
示す装置のモリエル線図である。 1……供試用圧縮機、21……凝縮器、22…
…レシーバタンク、23……膨張弁、24……ア
ツキユムレータタンク、26……バイパス配管、
27……圧力調整弁。
Figure 1 is a circuit diagram of a conventional compressor testing device, Figure 2
3 is a circuit diagram of a compressor testing device according to the present invention, and FIG. 4 is a Mollier diagram of the device shown in FIG. 3. 1... Test compressor, 21... Condenser, 22...
... Receiver tank, 23 ... Expansion valve, 24 ... Accumulator tank, 26 ... Bypass piping,
27...Pressure regulating valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、凝縮器、レシーバタンク、アツキユム
レータタンク等を配管により接続し、圧縮機の耐
久試験等を行うものに於いて、圧縮機と凝縮器と
の配管途中にバイパス管を設け、前記レシーバタ
ンクと前記アツキユムレータタンクとの間に設け
た膨張弁後流に高温ガス冷媒と低温液冷媒を混合
するために前記バイパス管を接続すると共にバイ
パス管の途中に圧力調整弁を設けたことを特徴と
する圧縮機試験装置。
When a compressor, a condenser, a receiver tank, an accumulator tank, etc. are connected by piping and a durability test of the compressor is performed, a bypass pipe is installed in the middle of the piping between the compressor and the condenser, and the receiver The bypass pipe is connected to the downstream side of the expansion valve provided between the tank and the accumulator tank to mix high temperature gas refrigerant and low temperature liquid refrigerant, and a pressure regulating valve is provided in the middle of the bypass pipe. Features of compressor testing equipment.
JP9495281U 1981-06-26 1981-06-26 Compressor testing equipment Granted JPS581138U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9495281U JPS581138U (en) 1981-06-26 1981-06-26 Compressor testing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9495281U JPS581138U (en) 1981-06-26 1981-06-26 Compressor testing equipment

Publications (2)

Publication Number Publication Date
JPS581138U JPS581138U (en) 1983-01-06
JPH0145023Y2 true JPH0145023Y2 (en) 1989-12-26

Family

ID=29889872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9495281U Granted JPS581138U (en) 1981-06-26 1981-06-26 Compressor testing equipment

Country Status (1)

Country Link
JP (1) JPS581138U (en)

Also Published As

Publication number Publication date
JPS581138U (en) 1983-01-06

Similar Documents

Publication Publication Date Title
US4409796A (en) Reversible cycle heating and cooling system
CN212538209U (en) Heat pump system, heat pump air conditioner comprising same and heat pump water heater
CN102032699A (en) Refrigeration cycle apparatus and hot water heater
CN205137703U (en) Air -conditioner
JP3956674B2 (en) Refrigerant circuit
CN106989545A (en) Refrigerant cooling device and air conditioner
CN113883579B (en) Water system air conditioner
JPH04254156A (en) Heat pump type hot water supply device
KR101351525B1 (en) Integrated heat pump system provided with cooling, heating, hot water and defrosting function
JP2518451Y2 (en) Heat pump water heater
JPH0145023Y2 (en)
CN213873001U (en) Energy-saving humidifier and air conditioning unit
CN110641242B (en) Defrosting control method and device for heat pump air conditioner of electric automobile and computer readable storage medium
CN106196693B (en) Constant temperature defrosting air conditioner
US20210033302A1 (en) Air-conditioning apparatus and air handling unit
JP3448680B2 (en) Absorption air conditioner
CN217785532U (en) Temperature adjusting system and adjusting equipment
CN219656370U (en) Bathing sewage latent heat secondary recovery unit
KR20010018309A (en) Refrigerant compressor calorimeter system utilizing wasted condenser hot water
JP2912811B2 (en) Air conditioner
JPS6021721Y2 (en) Absorption chiller control device
CN211552130U (en) Energy-saving reation kettle and refrigeration heating temperature control system for test equipment
CN211552129U (en) Energy-saving type accurate temperature control low-temperature water chilling unit
JPH0117011Y2 (en)
JP3009481B2 (en) Heat pump type air conditioner