JPH10202286A - Sewer treatment - Google Patents

Sewer treatment

Info

Publication number
JPH10202286A
JPH10202286A JP9012831A JP1283197A JPH10202286A JP H10202286 A JPH10202286 A JP H10202286A JP 9012831 A JP9012831 A JP 9012831A JP 1283197 A JP1283197 A JP 1283197A JP H10202286 A JPH10202286 A JP H10202286A
Authority
JP
Japan
Prior art keywords
sludge
sewage
stage
zeolite
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9012831A
Other languages
Japanese (ja)
Other versions
JP3487488B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP01283197A priority Critical patent/JP3487488B2/en
Publication of JPH10202286A publication Critical patent/JPH10202286A/en
Application granted granted Critical
Publication of JP3487488B2 publication Critical patent/JP3487488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To form the treated water treated at a high degree by adding at least zeolite system ores to the sewage prior to a biological treatment and subjecting the sewage to a sepn. of solid from the liquid with a device for forming the powder obtd. by dehydrating sludge, then drying the sludge while adding quicklime thereto and kneading the sludge as a raw material for production of cement. SOLUTION: Treating agents 21 consisting of the fine powder of the zeolite ores or this fine powder and inorg. flocculating agent are added to the sewage 11 to adsorb and remove ammonia in the sewage 11 with the zeolite and, thereafter, the sewage is transferred to a final setting stage 1 where the sewage is subjected to settling and separating. The effluent 12 in the final settling stage 1 is then subjected to the biological treatment in an aeration stage 2 and the treated matter 13 contg. the excess sludge is transferred to the final settling stage 3. Next, the excess sludge 15 subjected to the settling and separating in this stage joins with the settled sludge 16 in the final setting stage 1. A dehydration arid 22 is added and mixed to and with the sludge in a sludge storage stage 4 and, thereafter, the sludge is subjected to a dehydration treatment in a dehydration treating stage 5. The quicklime 23 is added to the resultant dehydrated cake 17 and is dried to dry powder 18 in a mixing stage 6. This dry powder is used as the raw material for cement factories.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な下水処理方
法に関し、特に下水の高度処理と、処理工程から発生す
る汚泥を他へ有効利用することのできる複合効果を有す
る下水処理方法に関する。
[0001] The present invention relates to a novel sewage treatment method, and more particularly to a sewage treatment method having a combined effect of advanced sewage treatment and sludge generated from the treatment step can be effectively used for other purposes.

【0002】[0002]

【従来の技術】従来、下水処理において発生する汚泥
は、その大部分は脱水処理を経て焼却された後、埋立処
分されているが、埋立処分する場所の確保が次第に困難
な状況になっており、下水汚泥の有効利用について種々
検討がなされている。上記汚泥の有効利用の一つとし
て、最も有望視されている利用法は、セメントの原料化
であり、下水汚泥中の無機物をセメントの原料として有
効利用するものである。すなわち、下水汚泥の脱水ケー
キに生石灰を添加し混練して、下記の化学式(1)で示
す生石灰の水和熱により、水分を蒸発させた乾燥粉末状
物(以下単に「乾粉」という。)をセメントの製造原料
として利用するものである。 生石灰の水和熱
2. Description of the Related Art Conventionally, most of the sludge generated in sewage treatment is incinerated after dehydration treatment and then disposed of in landfills. However, it has become increasingly difficult to secure a place for landfill disposal. Various studies have been made on the effective use of sewage sludge. As one of the effective uses of the sludge, the most promising use method is to use cement as a raw material, and to effectively utilize inorganic substances in sewage sludge as a raw material for cement. That is, dry lime is added to the dewatered cake of sewage sludge, kneaded, and the water is evaporated by the heat of hydration of quick lime represented by the following chemical formula (1) to obtain a dry powder (hereinafter simply referred to as “dry powder”). It is used as a raw material for producing cement. Heat of hydration of quicklime

【0003】[0003]

【化1】 Embedded image

【0004】[0004]

【発明が解決しようとする課題】しかし、脱水ケーキに
生石灰を添加すると、汚泥が強アルカリ性になり、汚泥
から高濃度のアンモニアガスが発生するという大きな欠
点があり、また、脱水ケーキの水分が高いため生石灰の
所要量が多く処理コストを高くし、そのうえ、この利用
法にあっては、下水汚泥の有効利用ができるのみで、下
水の浄化工程及び汚泥の脱水工程の改善には何ら寄与し
ないものであった。本発明は、生石灰の添加により、下
水汚泥から乾粉を製造する工程において、下水の高度処
理(窒素、リンの除去)も同時に行われ、さらに汚泥脱
水工程の改善、生石灰の添加により生ずるアンモニア臭
の軽減及び生石灰所要量の削減ができる新規な下水処理
方法の提供を目的とする。
However, when quicklime is added to the dewatered cake, the sludge becomes strongly alkaline, and there is a great disadvantage that sludge generates a high concentration of ammonia gas, and the dewatered cake has a high water content. Therefore, the amount of quicklime required is large and the treatment cost is high.In addition, this method only allows effective use of sewage sludge and does not contribute to improving the sewage purification process and sludge dewatering process. Met. According to the present invention, in the process of producing dry powder from sewage sludge by adding quicklime, advanced treatment of sewage (removal of nitrogen and phosphorus) is also performed at the same time, further improving the sludge dewatering process, and removing ammonia odor generated by adding quicklime. It is an object of the present invention to provide a new sewage treatment method which can reduce the amount of quicklime and the amount of quicklime required.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の下水処理方法においては、下水の生物処理
工程で生じる汚泥を脱水し、該脱水汚泥に生石灰を添加
し混練しながら乾燥して得た粉体をセメント製造原料と
する下水処理方法において、生物処理前の下水に少なく
ともゼオライト系鉱物を添加してから固液分離し、該固
液分離汚泥を脱水してから生石灰を添加することを特徴
とするものであり、また、好ましくは生物処理前の下水
に、無機凝集剤を添加することを特徴とするものであ
り、さらに、生物処理工程の余剰汚泥を前記固液分離汚
泥と混合し脱水することを特徴とするものである。
In order to achieve the above object, in the sewage treatment method of the present invention, sludge generated in a biological treatment step of sewage is dewatered, and quicklime is added to the dewatered sludge and dried while kneading. In a sewage treatment method using the powder obtained as a raw material for cement production, at least a zeolite-based mineral is added to sewage before biological treatment, solid-liquid separation is performed, and the solid-liquid separated sludge is dehydrated, and then quicklime is added. Preferably, an inorganic flocculant is added to the sewage before biological treatment, and furthermore, the excess sludge in the biological treatment step is separated into the solid-liquid separated sludge. And dewatered.

【0006】[0006]

【発明の実施の形態】本発明の構成および作用を図1の
工程図を参照しながら詳細に説明する。下水処理場Aに
流入する下水11に、適当な手段によりゼオライト系鉱
物微粉末、またはこれと無機凝集剤(硫酸アルミニウム
または塩化第2鉄など)からなる処理剤21を添加し、
混和して下水11中に存在するアンモニアをゼオライト
に吸着除去した後、最初沈殿工程1に移送し、ここで緩
慢な撹拌下で所定の時間滞留した後、下水11中のSS
とアンモニアを吸着したゼオライトを沈降分離する。な
お、ゼオライト系鉱物微粉末と共に無機凝集剤を添加す
る場合には、リンも凝集除去される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and operation of the present invention will be described in detail with reference to the process chart of FIG. To the sewage 11 flowing into the sewage treatment plant A, a zeolite-based mineral fine powder or a treating agent 21 composed of an inorganic coagulant (aluminum sulfate or ferric chloride) is added by appropriate means,
After being mixed and adsorbing and removing ammonia present in the sewage 11 on the zeolite, it is first transferred to the precipitation step 1, where it is retained for a predetermined time under slow stirring, and then the SS in the sewage 11 is removed.
And the zeolite adsorbing ammonia is separated by settling. When an inorganic coagulant is added together with the zeolite-based mineral fine powder, phosphorus is also coagulated and removed.

【0007】最初沈殿工程1で、SSとアンモニアを吸
着したゼオライトを沈降分離したか、これに加えてリン
を凝集沈殿した流出水12は、曝気工程2に流入し、曝
気により生物処理され、余剰汚泥を含む処理物13が最
終沈殿工程3に移行し、所定の滞留を経て余剰汚泥を沈
降分離した上澄水が処理水14として放流される。最終
沈殿工程3で沈降分離した余剰汚泥15は、最初沈殿工
程1で沈降したSSとアンモニアを吸着したゼオライト
の混合物を主体とする沈降汚泥16を合流して汚泥貯留
工程4に移行し、所定の時間滞留した後、順次引き出し
て脱水助剤22を添加混合し、汚泥脱水工程5により脱
水処理し、得られた脱水ケーキ17に生石灰23を添加
し、混合工程6で混練する間に生石灰23の水和熱によ
り水分を蒸発させて乾粉18となし、これをセメント工
場向け原料とする。
[0007] In the first precipitation step 1, zeolite adsorbing SS and ammonia is sedimented or separated, and in addition to this, the effluent water 12 in which phosphorus is coagulated and precipitated flows into the aeration step 2 where it is biologically treated by aeration and the excess water is removed. The treated material 13 containing the sludge proceeds to the final sedimentation step 3, and the supernatant water obtained by settling and separating the excess sludge through a predetermined stagnation is discharged as the treated water 14. The surplus sludge 15 settled and separated in the final settling step 3 is combined with the settled sludge 16 mainly composed of the mixture of SS and ammonia-adsorbed zeolite which has been settled in the first settling step 1, and the process proceeds to the sludge storage step 4, where the sludge is stored. After the stagnation time, the dewatering aid 22 is added and mixed sequentially, and the mixture is dewatered in a sludge dewatering step 5. The quicklime 23 is added to the obtained dewatered cake 17, and the quicklime 23 is kneaded in the mixing step 6. The moisture is evaporated by the heat of hydration to form a dry powder 18, which is used as a raw material for a cement factory.

【0008】汚泥脱水工程5から生ずる分離水19は最
初沈殿工程1に返送し、また前記余剰汚泥15の一部は
曝気工程2に返送する。上記において、最初沈殿工程1
からの流出水12はアンモニア、リンを含まず、BOD
成分が主体のものに変わっているので、生物処理として
標準活性汚泥法が適用でき、この処理で、容易、かつ高
度に浄化でき、複雑な工程と維持管理を要する生物学的
窒素、リンの除去工程を必要としない大きな利点があ
る。
The separated water 19 generated from the sludge dewatering step 5 is first returned to the settling step 1, and a part of the excess sludge 15 is returned to the aeration step 2. In the above, first precipitation step 1
Effluent 12 from BOD does not contain ammonia and phosphorus and has BOD
Since the components are changed to the main components, the standard activated sludge method can be applied as biological treatment, and this treatment can remove biological nitrogen and phosphorus that can be easily and highly purified, and require complicated processes and maintenance. There is a great advantage that no process is required.

【0009】一方、ゼオライト粉末が共存する沈殿汚泥
16に、公知のポリマー系脱水助剤22を添加し、汚泥
脱水工程5により脱水すると、ゼオライトの共存によっ
て汚泥の脱水性が向上しているため、容易に低水分の脱
水ケーキ17が得られ、例えば、汚泥脱水工程5として
遠心脱水機を用いた場合には、脱水ケーキ17の水分が
70%台となり、また、ゼオライト粉末単独またはゼオ
ライト粉末と無機凝集剤の添加によっても汚泥の脱水性
が向上し、脱水ケーキ17が低水分になるので生石灰2
3の所用量を少なくすることができる。
On the other hand, when a known polymer-based dehydration aid 22 is added to the precipitated sludge 16 in which zeolite powder coexists and dewatering is performed in the sludge dewatering step 5, the coexistence of zeolite improves the dewatering property of the sludge. A low-moisture dewatered cake 17 can be easily obtained. For example, when a centrifugal dewatering machine is used as the sludge dewatering step 5, the water content of the dewatered cake 17 is on the order of 70%. The addition of the flocculant also improves the dewatering properties of the sludge, and the dewatered cake 17 has a low water content.
3, the dose can be reduced.

【0010】斯様な脱水ケーキ17に生石灰23を添加
し混練するときには、水分の蒸発により、水分が10%
程度の乾粉18を与え、ゼオライト系鉱物はシリカ、ア
ルミナ系の鉱物であることから、良好なセメント原料と
なり、セメントの製造に有効利用できる。本発明におい
て、アンモニアはゼオライトに吸着しているため生石灰
23を添加してもアンモニアガスの発生が少なく、乾粉
18の製造中および輸送中において、悪臭の発生による
トラブルを引き起こすことなく乾粉18をセメントの製
造プラントに供給できる。
When the quicklime 23 is added to such a dewatered cake 17 and kneaded, the water content is reduced by 10% due to evaporation of the water content.
A certain amount of dry powder 18 is provided, and since the zeolite-based mineral is a silica or alumina-based mineral, it is a good cement raw material and can be effectively used for the production of cement. In the present invention, since ammonia is adsorbed on zeolite, the generation of ammonia gas is small even if quick lime 23 is added, and during the production and transportation of the dry powder 18, the dry powder 18 can be cemented without causing trouble due to generation of offensive odor. Can be supplied to a manufacturing plant.

【0011】[0011]

【実施例】以下、実施例により、本発明を具体的に説明
するが、本発明はこの実施例により限定されるものでは
ない。 実施例1 主なる組成が表1にまとめる数値である下水を図1の処
理系を有する下水処理場Aにて処理した。上記組成の下
水に粉末ゼオライトを400mg/lー下水で添加し、
20分間撹拌混合して最初沈殿工程に流入させた。1時
間滞留により汚泥を沈降分離した流出水を標準活性汚泥
法を採用する曝気工程で生物処理したのち、最終沈殿工
程において余剰汚泥を沈降分離した上澄水を処理水14
として放流した。最初沈殿工程3で沈降分離された汚泥
16は汚泥貯留工程4を経て順次引き出し、脱水助剤2
2としてカチオン系高分子凝集剤エバグロースC104
GをSSに対して1%(乾物濃度)で添加し、汚泥脱水
工程5において遠心脱水機で脱水処理し、得られた脱水
ケーキ17に生石灰23を重量比で1対0.5となるよ
うに添加し、混合工程6で30分混練して乾物18を得
た。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1 Sewage whose main composition is the numerical value summarized in Table 1 was treated in a sewage treatment plant A having the treatment system of FIG. Add powder zeolite to sewage of the above composition at 400 mg / l sewage,
The mixture was stirred and mixed for 20 minutes, and was first allowed to flow into the precipitation step. The effluent obtained by sedimentation and separation of sludge by residence for one hour is subjected to biological treatment in an aeration step employing a standard activated sludge method, and the supernatant water obtained by sedimentation and separation of excess sludge in a final sedimentation step is treated water 14.
Released as. The sludge 16 settled and separated in the first settling step 3 is sequentially pulled out through the sludge storage step 4 and is dehydrated.
2. Cationic polymer flocculant Ebagrose C104
G is added to SS at 1% (dry matter concentration) and dewatered by a centrifugal dewatering machine in sludge dewatering process 5 so that the obtained dewatered cake 17 has a ratio of quicklime 23 of 1: 0.5 by weight. And kneaded in a mixing step 6 for 30 minutes to obtain a dry product 18.

【0012】上記実施の結果、最初沈殿工程1で固液分
離した流出水の水質は、上記表1にまとめて示すよう
に、流入下水の水質に対して、SSがおよそ58%、B
ODがおよそ45%、アンモニア性窒素がおよそ92
%、そしてリンがおよそ32%減少し、ゼオライトの添
加によって、アンモニア成分が高度に除去され、放流し
た処理水14の水質も表1にまとめて示すように基準値
を充分に満足するものであった。
As a result of the above-mentioned operation, the quality of the effluent that has been solid-liquid separated in the first precipitation step 1 is about 58% SS and B with respect to the quality of the inflow sewage as shown in Table 1 above.
OD is about 45%, ammonia nitrogen is about 92
% And phosphorus were reduced by about 32%, the addition of zeolite resulted in a high removal of the ammonia component, and the quality of the discharged treated water 14 sufficiently satisfied the reference values as shown in Table 1. Was.

【0013】[0013]

【表1】 [Table 1]

【0014】また、脱水工程5による脱水処理で得られ
た脱水ケーキ17の水分は78%であり、生石灰23の
添加、混練により水分が11〜12%の白色粉末が得ら
れ、この乾粉18はセメント原料に使用できることが認
められた。生石灰23の添加および混合工程6における
アンモニアガス濃度は50ppm程度であった。
The moisture content of the dehydrated cake 17 obtained by the dehydration treatment in the dehydration step 5 is 78%, and the addition and kneading of the quicklime 23 yields a white powder having a moisture content of 11 to 12%. It was recognized that it can be used as a cement raw material. The ammonia gas concentration in the addition and mixing step 6 of the quicklime 23 was about 50 ppm.

【0015】実施例2 実施例1において、流入下水に粉末ゼオライト単独を添
加した処理に代えて、粉末ゼオライト400mg/lー
下水と、硫酸アルミニウム150mg/lー下水を併用
添加した以外は、同様に処理した。その結果、最初沈殿
工程1からの流出水の水質は表2にまとめるように、流
入下水の水質に対し、SSがおよそ85%、BODがお
よそ77%、アンモニア性窒素がおよそ93%そしてリ
ンがおよそ93%減少し、無機凝集剤を併用添加するこ
とにより、リンが高度に除去され、また、SSの除去が
更に向上した。
Example 2 The procedure of Example 1 was repeated, except that powder zeolite 400 mg / l-sewage and aluminum sulfate 150 mg / l-sewage were added in combination, instead of the treatment in which powdered zeolite alone was added to the inflow sewage. Processed. As a result, as shown in Table 2, the quality of the effluent from the first precipitation step 1 is about 85% of SS, about 77% of BOD, about 93% of ammonia nitrogen, and By about 93% reduction, phosphorus was removed to a high degree by addition of the inorganic coagulant, and the removal of SS was further improved.

【0016】[0016]

【表2】 [Table 2]

【0017】また、脱水ケーキ17の水分は76%で、
実施例1の脱水ケーキ17の水分に比して2%低くな
り、脱水性が改善される傾向が認められ、生石灰23の
添加により得られた乾粉18の水分は実施例1よりも低
目であった。
The water content of the dewatered cake 17 is 76%,
The water content of the dry powder 18 obtained by the addition of the quicklime 23 was lower than that of Example 1 by 2% lower than the water content of the dewatered cake 17 of Example 1 and a tendency of improving the dewatering property was recognized. there were.

【0018】比較例1 実施例1において、流入下水への粉末ゼオライトの添加
を欠如した以外は、実施例1と同様に処理した。この結
果、最初沈殿工程1からの流出水の水質は表3にまとめ
るように、流入下水の水質に対し、SSがおよそ41
%、BODがおよそ41%、リンがおよそ38%といず
れも50%以下の減少であり、アンモニア性窒素は全く
除去されないものであり、脱水ケーキ17の水分も86
%と高く、実施例1同様の乾粉18を得るために生石灰
23の添加量が重量比で1対1に上昇した。また、混合
工程6におけるアンモニアガスの濃度は300〜400
ppmとなり、強烈な臭気が生じた。
Comparative Example 1 The procedure of Example 1 was repeated, except that the addition of the powdered zeolite to the incoming sewage was omitted. As a result, as shown in Table 3, the effluent quality of the effluent from the first sedimentation step 1 was about 41
%, BOD is about 41%, and phosphorus is about 38%, all of which are 50% or less, ammonia nitrogen is not removed at all, and the water content of the dehydrated cake 17 is 86%.
%, And the addition amount of quicklime 23 was increased to 1 to 1 by weight ratio in order to obtain the same dry powder 18 as in Example 1. The concentration of the ammonia gas in the mixing step 6 is 300 to 400.
ppm, and a strong odor was generated.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明によれば、下水からアンモニア性
窒素またはアンモニア、リンを効果的に除去するので、
生物処理を容易として高度に処理された処理水を得るこ
とができ、乾粉の調製に際しては、脱水ケーキの水分を
低下して生石灰の所要量を少なくすると共にアンモニア
臭気の発生を減少して作業環境を改善し、下水処理に使
用した粉末ゼオライトはシリカアルミナ鉱物であり、ま
た無機凝集剤はアルミニウムまたは鉄分を含み、これら
の物質はいずれもセメント製造の原料足りうる物質であ
るので、セメント製造原料として有効に利用できる。
According to the present invention, ammonia nitrogen or ammonia and phosphorus are effectively removed from sewage.
Highly treated water can be obtained by facilitating biological treatment, and when preparing dry powder, the water content of the dewatered cake is reduced to reduce the required amount of quicklime and the generation of ammonia odor, thereby reducing the working environment. The powdered zeolite used for sewage treatment is a silica-alumina mineral, and the inorganic coagulant contains aluminum or iron.All of these substances are sufficient materials for cement production. Can be used effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の下水処理方法の概略を示す図である。FIG. 1 is a diagram showing an outline of a sewage treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 最初沈殿工程 2 曝気工程 3 最終沈殿工程 4 汚泥貯留工程 5 汚泥脱水工程 6 混合工程 11 下水 12 最初沈殿工程流出水 13 曝気処理物 14 処理水 15 余剰汚泥 16 最初沈殿工程沈降汚泥 17 脱水ケーキ 18 乾粉 19 脱水工程分離水 21 処理剤 22 脱水助剤 23 生石灰 DESCRIPTION OF SYMBOLS 1 First sedimentation step 2 Aeration step 3 Final sedimentation step 4 Sludge storage step 5 Sludge dewatering step 6 Mixing step 11 Sewage 12 First sedimentation step effluent 13 Aeration treated material 14 Treated water 15 Excess sludge 16 First sedimentation step settled sludge 17 Dewatering cake 18 Dry powder 19 Dewatering process separation water 21 Treatment agent 22 Dehydration aid 23 Quicklime

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 11/14 C02F 11/14 C C04B 7/24 C04B 7/24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 11/14 C02F 11/14 C C04B 7/24 C04B 7/24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下水の生物処理工程で生じる汚泥を脱水
し、該脱水汚泥に生石灰を添加し混練しながら乾燥して
得た粉体をセメント製造原料とする下水処理方法におい
て、生物処理前の下水に少なくともゼオライト系鉱物を
添加してから固液分離し、該固液分離汚泥を脱水してか
ら生石灰を添加することを特徴とする下水処理方法。
1. A sewage treatment method in which powder obtained by dehydrating sludge generated in a biological treatment step of sewage, adding quicklime to the dehydrated sludge, and kneading and drying the mixture is used as a cement production raw material. A sewage treatment method comprising adding at least a zeolite-based mineral to sewage, performing solid-liquid separation, dehydrating the solid-liquid separated sludge, and then adding quicklime.
【請求項2】 生物処理前の下水に、無機凝集剤を添加
することを特徴とする請求項1記載の下水処理方法。
2. The sewage treatment method according to claim 1, wherein an inorganic coagulant is added to the sewage before biological treatment.
【請求項3】 生物処理工程の余剰汚泥を前記固液分離
汚泥と混合し脱水することを特徴とする請求項1記載の
下水処理方法。
3. The sewage treatment method according to claim 1, wherein excess sludge in the biological treatment step is mixed with the solid-liquid separated sludge and dewatered.
JP01283197A 1997-01-27 1997-01-27 Sewage treatment method Expired - Fee Related JP3487488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01283197A JP3487488B2 (en) 1997-01-27 1997-01-27 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01283197A JP3487488B2 (en) 1997-01-27 1997-01-27 Sewage treatment method

Publications (2)

Publication Number Publication Date
JPH10202286A true JPH10202286A (en) 1998-08-04
JP3487488B2 JP3487488B2 (en) 2004-01-19

Family

ID=11816334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01283197A Expired - Fee Related JP3487488B2 (en) 1997-01-27 1997-01-27 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP3487488B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413203B1 (en) * 2001-03-22 2003-12-31 이센텍(주) No wasting activated sludge process
WO2014103549A1 (en) * 2012-12-28 2014-07-03 無臭元工業株式会社 Method for treating sewage
CN114349208A (en) * 2021-12-27 2022-04-15 江苏陆氏金刚石工具有限公司 Diamond cutting piece surface finish is with zero pollution discharge's sewage treatment plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413203B1 (en) * 2001-03-22 2003-12-31 이센텍(주) No wasting activated sludge process
WO2014103549A1 (en) * 2012-12-28 2014-07-03 無臭元工業株式会社 Method for treating sewage
JP2014128753A (en) * 2012-12-28 2014-07-10 Mushugen Industries Co Ltd Method for processing wastewater
CN114349208A (en) * 2021-12-27 2022-04-15 江苏陆氏金刚石工具有限公司 Diamond cutting piece surface finish is with zero pollution discharge's sewage treatment plant

Also Published As

Publication number Publication date
JP3487488B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP2006524128A (en) Digestion sludge treatment method
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP2774096B2 (en) Purification agent for polluted wastewater
JP3487488B2 (en) Sewage treatment method
JPH01215387A (en) Continuous treating method of paper coating plant waste water
JP2004174407A (en) Inorganic sludge modifying/flocculating/purifying agent
JP2002205077A (en) Method and apparatus for treating organic sewage
JP3181521B2 (en) Water treatment method and water treatment device
JPS62237913A (en) Treating method and treating agent for polluted water
JPH05220387A (en) Deodorization and decoloration of waste water utilizing coal ash and high-grade processing agent
JPH0880488A (en) Complete treatment of organic sewage
JP6202564B2 (en) Cement sludge water treatment method
JPH0649197B2 (en) Organic wastewater treatment method
CN107117696A (en) A kind of preparation method and application of novel adsorption molysite composite flocculation agent
JP6284263B2 (en) Wastewater treatment method
JPH11315005A (en) Production of exterminate against sanitary insect pest using boron contained in sewage
JPH0364199B2 (en)
JPS6321556B2 (en)
JPS5919760B2 (en) Sludge treatment method
JP2017060903A (en) Desalting method of burned ash
JPH0141399B2 (en)
JPS6094200A (en) Treatment before dehydration of organic sludge
JPH05123700A (en) Method for treating sludge from organic waste water and apparatus therefor
JPS5778996A (en) Treatment of org. waste water
JPS6238295A (en) Treatment of organic sewage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees