JPH10202064A - Method for catalytically reducing nitrogen oxide - Google Patents

Method for catalytically reducing nitrogen oxide

Info

Publication number
JPH10202064A
JPH10202064A JP9011508A JP1150897A JPH10202064A JP H10202064 A JPH10202064 A JP H10202064A JP 9011508 A JP9011508 A JP 9011508A JP 1150897 A JP1150897 A JP 1150897A JP H10202064 A JPH10202064 A JP H10202064A
Authority
JP
Japan
Prior art keywords
catalyst
silver
reducing agent
nitrogen oxides
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9011508A
Other languages
Japanese (ja)
Other versions
JP3924341B2 (en
Inventor
Tadao Nakatsuji
忠夫 仲辻
Ritsu Yasukawa
律 安川
Keiichi Tabata
啓一 田畑
Kazuyuki Ueda
計幸 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP01150897A priority Critical patent/JP3924341B2/en
Priority to EP97300816A priority patent/EP0788829B1/en
Priority to DE69730764T priority patent/DE69730764T2/en
Priority to US08/796,884 priority patent/US6045765A/en
Publication of JPH10202064A publication Critical patent/JPH10202064A/en
Application granted granted Critical
Publication of JP3924341B2 publication Critical patent/JP3924341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain stable and efficient catalytic reduction of NOx in waste gas at a low temp. without using a large amt. of a reducing agent even under coexistence of O2 , SOx and moisture when NOx is catalytically reduced with hydrocarbon as a reducing agent. SOLUTION: When NOx contained in waste gas is catalytically reduced with a reducing agent in the presence of a catalyst, the waste gas contg. NOx and hydrocarbons as a reducing agent is brought into contact with a 1st catalyst obtd. by carrying phosphoric acid and at least one of phosphates, chlorides and sulfates of groups Ib, VIIa and VIII elements of the Periodic table on a carrier in the 1st stage and the waste gas is brought into contact with a 2nd catalyst selected from among silver, silver oxide and silver aluminate in the 2nd stage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガスに含まれる
窒素酸化物を触媒の存在下に還元剤を用いて接触還元す
る方法に関し、詳しくは、工場や自動車等、特に、リー
ンバーンガソリン自動車やディーゼルエンジン車両から
排出される排ガス中の有害な窒素酸化物を還元剤として
炭化水素を用いて、窒素酸化物に対する還元剤の比率
(モル比)を小さくしながら、安定に且つ効率よく還元
除去することができる窒素酸化物の接触還元方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for catalytically reducing nitrogen oxides contained in exhaust gas using a reducing agent in the presence of a catalyst. Using hydrocarbon as a reducing agent for harmful nitrogen oxides in exhaust gas discharged from diesel engine vehicles, reducing and removing the ratio (molar ratio) of the reducing agent to nitrogen oxides stably and efficiently. To a method for catalytic reduction of nitrogen oxides.

【0002】[0002]

【従来の技術】従来、排ガス中に含まれる窒素酸化物
は、窒素酸化物を酸化した後、アルカリに吸収させる方
法や、アンモニア、水素、一酸化炭素、炭化水素等の還
元剤を用いて、窒素に変換する方法等によって除去され
ている。
2. Description of the Related Art Conventionally, nitrogen oxides contained in exhaust gas are obtained by oxidizing the nitrogen oxides and then absorbing them into an alkali, or by using a reducing agent such as ammonia, hydrogen, carbon monoxide, or a hydrocarbon. It has been removed by a method of converting to nitrogen.

【0003】しかしながら、前者の方法によれば、生成
するアルカリ廃液を処理して、公害の発生を防止する方
策が必要である。他方、後者の方法によれば、還元剤と
してアンモニアを用いるときは、これが排ガス中の硫黄
酸化物と反応して塩類を生成し、その結果、触媒の還元
活性が低下する問題がある。また、水素、一酸化炭素、
炭化水素等を還元剤として用いる場合でも、これらが低
濃度に存在する窒素酸化物よりも高濃度に存在する酸素
と反応するので、窒素酸化物を低減するためには、多量
の還元剤を必要とするという問題がある。
However, according to the former method, it is necessary to take measures for treating the generated alkaline waste liquid to prevent the occurrence of pollution. On the other hand, according to the latter method, when ammonia is used as the reducing agent, it reacts with the sulfur oxide in the exhaust gas to form salts, and as a result, the reduction activity of the catalyst is reduced. Also, hydrogen, carbon monoxide,
Even when hydrocarbons and the like are used as reducing agents, they react with oxygen present at a higher concentration than nitrogen oxides present at a lower concentration, so a large amount of reducing agent is required to reduce nitrogen oxides. There is a problem that.

【0004】このため、最近では、還元剤の不存在下に
窒素酸化物を触媒にて直接分解する方法も提案されてい
るが、しかし、従来、知られているそのような触媒は、
窒素酸化物の分解活性が低いために、実用に供し難いと
いう問題がある。
[0004] For this reason, recently, a method of directly decomposing nitrogen oxides with a catalyst in the absence of a reducing agent has been proposed. However, such a conventionally known catalyst has been proposed.
There is a problem that it is difficult to put into practical use due to low decomposition activity of nitrogen oxides.

【0005】また、炭化水素や含酸素化合物を還元剤と
して用いる新たな窒素酸化物接触還元用触媒として、H
型ゼオライトやCuイオン交換ZSM−5等が提案され
ており、なかでも、H型ZSM−5(SiO2 /Al2
3 モル比=30〜40)が最適であるとされている。
しかしながら、このようなH型ZSM−5でも、未だ十
分な還元活性を有するものとはいい難く、特に、ガス中
に水分が含まれるとき、ゼオライト構造体中のアルミニ
ウムが脱アルミニウムして、性能が急激に低下するの
で、一層高い還元活性を有し、更に、ガスが水分を含有
する場合にも、すぐれた耐久性を有する窒素酸化物接触
還元用触媒が要望されている。
Further, as a new catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon or an oxygen-containing compound as a reducing agent, H
Zeolite and Cu ion exchange ZSM-5 have been proposed. Among them, H-type ZSM-5 (SiO 2 / Al 2
O 3 molar ratio = 30 to 40) is considered to be optimal.
However, even with such H-type ZSM-5, it is still difficult to say that the H-type ZSM-5 has a sufficient reducing activity. In particular, when moisture is contained in the gas, the aluminum in the zeolite structure is dealuminated and the performance is reduced. There is a demand for a catalyst for catalytic reduction of nitrogen oxides which has a higher reduction activity because of a rapid decrease and has excellent durability even when the gas contains moisture.

【0006】[0006]

【発明が解決しようとする課題】そこで、銀又は銀酸化
物を無機酸化物に担持させてなる触媒も提案されている
が、そのような触媒は、酸化活性が高く、窒素酸化物に
対する選択反応性が低いために、窒素酸化物の除去率が
低い。また、触媒が窒素酸化物の分解活性を有する温度
域が450〜600℃のように高いので、排ガス中の窒
素酸化物を有効に分解するには、排ガスを予め加熱する
ことが必要であって、実用化には問題がある。更に、銀
又は銀酸化物を無機酸化物に担持させてなる触媒は、硫
黄酸化物の共存下での触媒活性の劣化が著しいという問
題もある(特開平5−317647号公報)。そのう
え、従来の窒素酸化物接触還元用触媒は、一般に、耐熱
性が十分ではなく、用途によっては、一層の耐熱性が強
く要望されている。
Accordingly, a catalyst comprising silver or silver oxide supported on an inorganic oxide has been proposed. However, such a catalyst has a high oxidation activity and a selective reaction to nitrogen oxide. The removal rate of nitrogen oxides is low because of low properties. Further, since the temperature range in which the catalyst has a nitrogen oxide decomposition activity is as high as 450 to 600 ° C., it is necessary to heat the exhaust gas in advance in order to effectively decompose the nitrogen oxide in the exhaust gas. However, there is a problem in practical use. Further, a catalyst in which silver or silver oxide is supported on an inorganic oxide has a problem that the catalytic activity is remarkably deteriorated in the presence of sulfur oxide (JP-A-5-317647). In addition, conventional catalysts for catalytic reduction of nitrogen oxides generally do not have sufficient heat resistance, and there is a strong demand for even higher heat resistance depending on the application.

【0007】本発明は、上述したような事情に鑑みてな
されたものであって、その目的とするところは、炭化水
素を還元剤として用いて、窒素酸化物を触媒の存在下に
接触還元する方法であって、窒素酸化物に対する還元剤
の比率(モル比)を低くしながら、酸素や硫黄酸化物や
水分の共存下においても、排ガス中の窒素酸化物を安定
して且つ効率よく接触還元することができる窒素酸化物
の接触還元方法を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to catalytically reduce nitrogen oxides in the presence of a catalyst using a hydrocarbon as a reducing agent. A method for stably and efficiently reducing nitrogen oxides in an exhaust gas while reducing the ratio (molar ratio) of a reducing agent to nitrogen oxides in the presence of oxygen, sulfur oxides, and moisture. To provide a method for catalytic reduction of nitrogen oxides.

【0008】[0008]

【課題を解決するための手段】本発明は、排ガスに含ま
れる窒素酸化物を触媒の存在下に還元剤を用いて接触還
元する方法において、第1段階として、炭化水素からな
る還元剤と窒素酸化物とを含む排ガスを担体にリン酸、
周期律表第Ib、VIIa及びVIII族元素のリン酸塩、塩化物
及び硫酸塩から選ばれる少なくとも1種を担持させてな
る第1の触媒に接触させ、第2段階として、銀、酸化銀
及びアルミン酸銀から選ばれる第2の触媒に接触させる
ことを特徴とする。
According to the present invention, there is provided a method for catalytically reducing nitrogen oxides contained in exhaust gas using a reducing agent in the presence of a catalyst. Phosphoric acid on the carrier with exhaust gas containing oxides,
Contact with a first catalyst carrying at least one selected from the group consisting of phosphates, chlorides and sulfates of Group Ib, VIIa and VIII elements, and as a second step, silver, silver oxide and It is characterized by being brought into contact with a second catalyst selected from silver aluminate.

【0009】[0009]

【発明の実施の形態】本発明の方法によれば、第1段階
として、炭化水素からなる還元剤と窒素酸化物とを含む
排ガスを担体にリン酸、リン酸塩、塩化物及び硫酸塩か
ら選ばれる少なくとも1種(単に、リン酸等ということ
がある。)を担持させてなる第1の触媒に接触させるこ
とによって、上記還元剤を窒素酸化物との反応性にすぐ
れる化合物、例えば、含酸素有機化合物や、より低分子
量の炭化水素に転換させ、これらを第2段階において、
第2の触媒の存在下に還元剤として窒素酸化物に作用さ
せる。
According to the method of the present invention, as a first step, an exhaust gas containing a reducing agent consisting of hydrocarbons and nitrogen oxides is transferred to a carrier from phosphoric acid, phosphate, chloride and sulfate. By bringing the reducing agent into contact with a first catalyst supporting at least one selected member (which may be simply referred to as phosphoric acid or the like), the reducing agent has excellent reactivity with nitrogen oxides, for example, Oxygen-containing organic compounds and lower molecular weight hydrocarbons are converted into
The nitrogen oxide acts as a reducing agent in the presence of the second catalyst.

【0010】上記リン酸塩、塩化物及び硫酸塩は、それ
ぞれ周期律表第Ib、VIIa及びVIII族元素のリン酸塩、塩
化物及び硫酸塩である。従って、リン酸塩の具体例とし
ては、例えば、リン酸銀、リン酸銅、リン酸マンガン、
リン酸鉄、リン酸コバルト、リン酸ニッケル等を挙げる
ことができる。塩化物の具体例としては、例えば、塩化
銀、塩化銅、塩化マンガン、塩化鉄、塩化コバルト、塩
化ニッケル等を挙げることができる。また、硫酸塩の具
体例としては、例えば、硫酸銀、硫酸銅、硫酸マンガ
ン、硫酸鉄、硫酸コバルト、硫酸ニッケル等を挙げるこ
とができる。
The above-mentioned phosphates, chlorides and sulfates are phosphates, chlorides and sulfates of Group Ib, VIIa and VIII elements, respectively. Therefore, specific examples of phosphates include, for example, silver phosphate, copper phosphate, manganese phosphate,
Examples thereof include iron phosphate, cobalt phosphate, and nickel phosphate. Specific examples of chlorides include, for example, silver chloride, copper chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride and the like. Further, specific examples of the sulfate include, for example, silver sulfate, copper sulfate, manganese sulfate, iron sulfate, cobalt sulfate, nickel sulfate and the like.

【0011】上記第1の触媒は、γ−アルミナ等の適宜
の担体に含浸法等の適宜の方法によって、リン酸等を担
持させてなるものである。例えば、γ−アルミナにリン
酸等を含浸させた後、空気中、200〜500℃程度の
温度で焼成することによって、γ−アルミナにリン酸等
を担持させてなる触媒を得ることができる。
The first catalyst is obtained by supporting an appropriate carrier such as γ-alumina with phosphoric acid or the like by an appropriate method such as an impregnation method. For example, after γ-alumina is impregnated with phosphoric acid or the like, it is calcined in air at a temperature of about 200 to 500 ° C. to obtain a catalyst in which γ-alumina supports phosphoric acid or the like.

【0012】上記リン酸等の担体への担持率、即ち、リ
ン酸等と担体の合計重量に対するリン酸等の割合は、触
媒が置かれる反応条件等にもよるが、通常、0.05〜5
重量%の範囲であり、好ましくは、0.1〜3重量%の範
囲である。リン酸等の担体への担持率が0.05重量%よ
りも少ないときは、炭化水素からなる還元剤を含酸素有
機化合物や低分子量炭化水素に転換する能力が不十分で
あって、第2段階において、窒素酸化物を効率よく接触
還元することができない。しかし、担持率が5重量%よ
りも多いときも、第2段階において、窒素酸化物を効率
よく接触還元することができない。
The loading ratio of phosphoric acid or the like on the carrier, that is, the ratio of phosphoric acid or the like to the total weight of the phosphoric acid or the like and the carrier depends on the reaction conditions in which the catalyst is placed, but is usually 0.05 to 5%. 5
%, Preferably in the range of 0.1 to 3% by weight. When the supporting ratio of phosphoric acid or the like on a carrier is less than 0.05% by weight, the ability to convert a reducing agent comprising a hydrocarbon into an oxygen-containing organic compound or a low-molecular-weight hydrocarbon is insufficient. In the stage, the nitrogen oxides cannot be efficiently catalytically reduced. However, even when the loading is more than 5% by weight, the catalytic reduction of nitrogen oxides cannot be efficiently performed in the second stage.

【0013】第1段階において、炭化水素からなる還元
剤と窒素酸化物とを含む排ガスをこのような第1の触媒
に接触させる際の空間速度は、通常、10000〜10
00000hr-1の範囲である。
In the first stage, the space velocity when the exhaust gas containing the reducing agent composed of hydrocarbons and nitrogen oxide is brought into contact with such a first catalyst is usually 10,000 to 10
It is in the range of 00000 hr -1 .

【0014】本発明の方法によれば、還元剤として、炭
化水素が用いられる。具体例として、例えば、メタン、
エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプ
タン、オクタン、ノナン、デカン等のアルカン類、エチ
レン、プロピレン、イソブチレン、1−ブテン、2−ブ
テン等のアルケン類、ベンゼン、トルエン、キシレン等
の芳香族炭化水素類、ガソリン、灯油、軽油、重油等の
鉱油系炭化水素、これらの2種以上の混合物等を挙げる
ことができる。特に、本発明においては、上記したなか
でも、プロパン、ブタン等の低級アルカン類、エチレ
ン、プロピレン、イソブチレン、1−ブテン、2−ブテ
ン等の低級アルケン類や、軽油等が好ましく用いられ
る。これら炭化水素は、単独で用いてもよく、又は必要
に応じて二種以上併用してもよい。
According to the method of the present invention, a hydrocarbon is used as the reducing agent. As specific examples, for example, methane,
Alkanes such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, and decane; alkenes such as ethylene, propylene, isobutylene, 1-butene and 2-butene; and aromatic carbonization such as benzene, toluene and xylene Examples thereof include hydrogen, mineral oil-based hydrocarbons such as gasoline, kerosene, light oil, and heavy oil, and mixtures of two or more of these. Particularly, in the present invention, among the above, lower alkanes such as propane and butane, lower alkenes such as ethylene, propylene, isobutylene, 1-butene and 2-butene, and light oil are preferably used. These hydrocarbons may be used alone or in combination of two or more as needed.

【0015】更に、本発明によれば、リーンバーンガソ
リン自動車の排ガスに含まれる炭素数6までの低級アル
ケン類、低級アルカン類又はこれらの混合物からなる低
級脂肪族炭化水素類は、還元剤の炭化水素成分として好
ましく用いられる。なかでも、エチレン、プロピレン、
ブチレン等のアルケン類、プロパン、ブタン等のアルカ
ン類、これらの混合物を主成分とする炭化水素が好まし
く用いられる。
Further, according to the present invention, the lower aliphatic hydrocarbons composed of lower alkenes, lower alkanes or a mixture thereof having up to 6 carbon atoms contained in the exhaust gas of a lean-burn gasoline vehicle are converted to carbonized reducing agents. It is preferably used as a hydrogen component. Among them, ethylene, propylene,
Alkenes such as butylene, alkanes such as propane and butane, and hydrocarbons mainly containing a mixture thereof are preferably used.

【0016】上記還元剤である炭化水素は、用いる具体
的な炭化水素によって異なるが、通常、排ガス中の窒素
酸化物に対するモル比にて、0.1〜5程度の範囲にて用
いられる。炭化水素の使用量が窒素酸化物に対するモル
比にて、0.1未満であるときは、窒素酸化物に対して十
分な還元活性を得ることができず、他方、モル比が5を
越えるときは、未反応の炭化水素の排出量が多くなるた
めに、窒素酸化物の接触還元処理の後に、これを回収す
るための後処理が必要となる。
The hydrocarbon as the reducing agent varies depending on the specific hydrocarbon used, but is usually used in a molar ratio to nitrogen oxides in the exhaust gas in a range of about 0.1 to 5. When the amount of the hydrocarbon used is less than 0.1 in terms of the molar ratio to the nitrogen oxides, sufficient reducing activity cannot be obtained for the nitrogen oxides. On the other hand, when the molar ratio exceeds 5, Since a large amount of unreacted hydrocarbons is emitted, a post-treatment for recovering the nitrogen oxides after the catalytic reduction treatment of the nitrogen oxides is required.

【0017】本発明の方法によれば、このように、好ま
しくは、排ガス中の窒素酸化物に対して所定のモル比の
炭化水素からなる還元剤を第1の触媒に接触させること
によって、上記還元剤を窒素酸化物との選択反応性にす
ぐれる含酸素有機化合物や低分子量炭化水素に効率よく
変換し、第2段階において、これらを還元剤として用い
て、窒素酸化物と共に第2の触媒に接触させることによ
って、窒素酸化物に対する還元剤の使用量を小さくしつ
つ、安定に且つ効率よく、窒素酸化物を還元除去するこ
とができる。
According to the method of the present invention, preferably, the reducing agent comprising a hydrocarbon having a predetermined molar ratio with respect to nitrogen oxides in the exhaust gas is brought into contact with the first catalyst, thereby obtaining The reducing agent is efficiently converted into an oxygen-containing organic compound or a low molecular weight hydrocarbon having excellent selective reactivity with nitrogen oxides, and in the second stage, these are used as reducing agents to form a second catalyst together with nitrogen oxides. Thus, the nitrogen oxide can be reduced and removed stably and efficiently while reducing the amount of the reducing agent used for the nitrogen oxide.

【0018】本発明の方法において、第2の触媒は、
銀、酸化銀又はアルミン酸銀から選ばれるものである
が、なかでも、触媒活性の高いアルミン酸銀が好ましく
用いられる。これらの第2の触媒のうち、銀及び酸化銀
は、通常、比表面積の大きい酸化物、例えば、アルミ
ナ、シリカ、シリカ−アルミナ、ジルコニア、チタニ
ア、ゼオライト等の固体酸担体に担持させて用いられ
る。これらの担体のなかでは、特に、担持効果にすぐれ
るアルミナが好ましく用いられる。
In the method of the present invention, the second catalyst is
It is selected from silver, silver oxide or silver aluminate, and among them, silver aluminate having high catalytic activity is preferably used. Among these second catalysts, silver and silver oxide are usually used by being supported on a solid acid carrier such as an oxide having a large specific surface area, for example, alumina, silica, silica-alumina, zirconia, titania, and zeolite. . Among these carriers, alumina having an excellent supporting effect is particularly preferably used.

【0019】アルミナのなかでも、特開平7−1713
47号公報に記載されているように、アルカリ金属及び
アルカリ土類金属の含有量が0.5重量%以下であり、径
60オングストローム以下の細孔から形成される細孔容
積が0.06cm3 /g以上、径80オングストローム以下
の細孔から形成される細孔容積が0.1cm3 /g以上であ
るアルミナが特に好ましく用いられる。このような細孔
容積を有する多孔質のアルミナは、還元剤の適度な酸化
を促進し、これに担持されている銀又は酸化銀と協同し
て、窒素酸化物を効果的に接触還元することができる。
Among aluminas, Japanese Patent Application Laid-Open No. 7-1713
As described in Japanese Patent No. 47, the content of alkali metals and alkaline earth metals is 0.5% by weight or less, and the volume of pores formed from pores having a diameter of 60 Å or less is 0.06 cm 3. / G and alumina having a pore volume of 0.1 cm 3 / g or more formed from pores having a diameter of 80 Å or less are particularly preferably used. Porous alumina having such a pore volume promotes appropriate oxidation of the reducing agent and cooperates with silver or silver oxide carried thereon to effectively catalytically reduce nitrogen oxides. Can be.

【0020】このように、銀又は酸化銀からなる第2の
触媒は、従来、知られている成形方法によって、それ自
体にて、又は担体に担持させた後、ハニカム状、球状等
の種々の形状に成形することができる。この成形の際
に、成形助剤、成形体補強体、無機繊維、有機バインダ
ー等を適宜配合してもよい。また、第2の触媒は、予め
成形された不活性な基材上にウオッシュ・コート法等に
よって被覆担持させることもできる。上記基材として
は、例えば、コージェライトのような粘土からなるハニ
カム構造体に担持させることができる。
As described above, the second catalyst composed of silver or silver oxide can be used in various forms such as honeycomb, spherical, etc. by itself or after being supported on a carrier by a conventionally known molding method. It can be formed into a shape. At the time of this molding, a molding aid, a molded body reinforcement, an inorganic fiber, an organic binder, and the like may be appropriately compounded. Further, the second catalyst can be coated and supported on a preformed inert substrate by a wash coat method or the like. As the substrate, for example, it can be supported on a honeycomb structure made of clay such as cordierite.

【0021】銀又は酸化銀の担体への担持量は、銀換算
にて、0.1〜5重量%の範囲であり、特に、0.5〜3重
量%の範囲であることが好ましい。担持量が0.1重量%
よりも少ないときは、窒素酸化物の還元活性が十分でな
く、他方、5重量%よりも多いときは、酸化活性が高す
ぎて、選択性に劣ることとなる。
The amount of silver or silver oxide supported on the carrier is, in terms of silver, in the range of 0.1 to 5% by weight, preferably 0.5 to 3% by weight. The loading amount is 0.1% by weight
When the amount is less than the above, the reducing activity of the nitrogen oxide is not sufficient. On the other hand, when the amount is more than 5% by weight, the oxidizing activity is too high and the selectivity is poor.

【0022】本発明においては、第2の触媒としては、
アルミン酸銀からなる触媒が好ましく用いられる。この
アルミン酸銀からなる第2の触媒も、通常、比表面積の
大きい酸化物、例えば、アルミナ、シリカ、シリカ−ア
ルミナ、ジルコニア、チタニア、ゼオライト等の固体酸
担体に担持させて用いられ、このような触媒は、例え
ば、次に示す(1)から(4)のいずれかの方法に従っ
て調製することができる。
In the present invention, as the second catalyst,
A catalyst comprising silver aluminate is preferably used. This second catalyst composed of silver aluminate is also usually used by being supported on a solid acid carrier such as an oxide having a large specific surface area, for example, alumina, silica, silica-alumina, zirconia, titania, and zeolite. Such a catalyst can be prepared, for example, according to any one of the following methods (1) to (4).

【0023】(1)固体酸担体を分散させたスリラー中
に硝酸銀等の水溶性銀塩を投入し、スラリーのpHを銀
水酸化物の生成しない8.0近傍に維持して、固体酸のイ
オン交換サイトに銀イオンを固定する。ここに、固体酸
としてアルミナを用いた場合は、このようにして、銀イ
オンを固定した固体酸を、その銀イオンを固定するのに
十分な塩素イオンを含有する水溶液、例えば、塩酸水溶
液中に浸漬することによって、塩化銀を生成させた後、
過剰の塩素イオンを水洗等によって除去することによっ
て、先ず、塩化銀を担持した固体酸触媒を調製する。
(1) A water-soluble silver salt such as silver nitrate is charged into a chiller in which a solid acid carrier is dispersed, and the pH of the slurry is maintained at around 8.0 where no silver hydroxide is formed, and the pH of the solid acid is reduced. The silver ions are fixed on the ion exchange site. Here, when alumina is used as the solid acid, the solid acid in which silver ions are fixed in this way is converted into an aqueous solution containing sufficient chloride ions to fix the silver ions, for example, an aqueous hydrochloric acid solution. After generating silver chloride by immersion,
First, a solid acid catalyst supporting silver chloride is prepared by removing excess chlorine ions by washing with water or the like.

【0024】次いで、これを空気等のような酸化雰囲気
下、好ましくは、水蒸気の存在下に、600〜900℃
程度、好ましくは、700〜800℃程度の温度にて加
熱焼成することによって、アルミン酸銀を生成させれ
ば、アルミン酸銀を担持させてなる固体酸触媒を得るこ
とができる。
Next, this is heated at 600 to 900 ° C. in an oxidizing atmosphere such as air or the like, preferably in the presence of steam.
If silver aluminate is produced by heating and baking at a temperature of about 700 ° C., preferably about 700 ° C. to 800 ° C., a solid acid catalyst carrying silver aluminate can be obtained.

【0025】(2)例えば、硝酸アルミニウム等のよう
な固体酸の前駆体である水溶性塩と硝酸銀等のような水
溶性銀塩を均一に混合した水溶液を調製し、この水溶液
を塩素イオンの存在下で中和する等の方法によって、沈
殿物を生成させ、次いで、この沈殿物を濾過、水洗、リ
パルプを繰り返して行なった後、乾燥し、焼成して、固
体酸を生成させると同時に塩化銀をその固体酸に担持さ
せる。
(2) For example, an aqueous solution is prepared by uniformly mixing a water-soluble salt which is a precursor of a solid acid such as aluminum nitrate and the like with a water-soluble silver salt such as silver nitrate and the like. A precipitate is formed by a method such as neutralization in the presence, and then the precipitate is repeatedly subjected to filtration, washing with water, and repulping. Silver is supported on the solid acid.

【0026】次いで、これを上述したと同様にして、酸
化雰囲気下、好ましくは、水蒸気の存在下に、600〜
900℃程度、好ましくは、700〜800℃程度の温
度にて加熱焼成することによって、アルミン酸銀を生成
させれば、アルミン酸銀を担持させてなる固体酸触媒を
得ることができる。
Then, in the same manner as described above, in an oxidizing atmosphere, preferably in the presence of water vapor,
If silver aluminate is generated by heating and baking at a temperature of about 900 ° C., preferably about 700 to 800 ° C., a solid acid catalyst carrying silver aluminate can be obtained.

【0027】(3)硝酸アルミニウムのような水溶性ア
ルミニウム塩と硝酸銀のような水溶性銀塩の水溶液に水
和アルミナを浸漬し、上記アルミニウム塩と銀塩とをア
ルミナの細孔に含浸させた後、噴霧乾燥機のような適当
な手段にて乾燥させ、この後、これを前述したように、
酸化雰囲気下、好ましくは、水蒸気の存在下に、600
〜900℃程度、好ましくは、700〜800℃程度の
温度にて加熱焼成することによって、アルミン酸銀を生
成させれば、アルミン酸銀を担持させてなる固体酸触媒
を得ることができる。
(3) Hydrated alumina was immersed in an aqueous solution of a water-soluble aluminum salt such as aluminum nitrate and a water-soluble silver salt such as silver nitrate to impregnate the pores of the alumina with the aluminum salt and silver salt. Thereafter, it is dried by a suitable means such as a spray dryer, and thereafter, as described above,
In an oxidizing atmosphere, preferably in the presence of steam, 600
If silver aluminate is produced by heating and baking at a temperature of about 900 ° C., preferably about 700 ° C. to 800 ° C., a solid acid catalyst carrying silver aluminate can be obtained.

【0028】(4)更に、別の方法として、アルミン酸
ナトリウムのようなアルミン酸アルカリ金属塩とその1
〜4倍当量の硝酸銀の水溶液を噴霧乾燥によって均一に
混合すると共に乾燥させ、得られた粒状物を水分の不存
在下に300〜800℃の温度にて共融させることによ
って、アルミン酸銀を得、これを水洗し、過剰の硝酸銀
と硝酸ナトリウムを除去すれば、アルミン酸銀の高純度
品を得ることができる。このアルミン酸銀とアルミナ等
の固体酸とをボールミル等を用いて湿式にて均一に混合
粉砕した後、乾燥させれば、アルミン酸銀を担持させた
アルミナを得ることができる。
(4) As another method, an alkali metal aluminate such as sodium aluminate and the like
By mixing and drying an aqueous solution of silver nitrate equivalent to 44 times equivalent by spray drying and drying, and eutecticizing the obtained granules at a temperature of 300 to 800 ° C. in the absence of moisture, silver aluminate is obtained. The resultant is washed with water to remove excess silver nitrate and sodium nitrate, whereby a highly pure silver aluminate can be obtained. This silver aluminate and a solid acid such as alumina are uniformly mixed and pulverized by a wet method using a ball mill or the like, and then dried, whereby alumina carrying silver aluminate can be obtained.

【0029】第2の触媒の調製においても、固体酸担体
としては、特に、アルミナが好ましく用いられ、このア
ルミナのなかでも、前述したように、アルカリ金属及び
アルカリ土類金属の含有量が0.5重量%以下であり、径
60オングストローム以下の細孔から形成される細孔容
積が0.06cm3 /g以上、径80オングストローム以下
の細孔から形成される細孔容積が0.1cm3 /g以上であ
るアルミナが特に好ましく用いられる。このような細孔
容積を有する多孔質のアルミナは、還元剤の適度な酸化
を促進し、これに担持されているアルミン酸銀と協同し
て、窒素酸化物を効果的に接触還元することができる。
Also in the preparation of the second catalyst, alumina is particularly preferably used as the solid acid carrier, and among these aluminas, as described above, the content of alkali metal and alkaline earth metal is 0.1%. 5% by weight or less, and the pore volume formed from pores having a diameter of 60 Å or less is 0.06 cm 3 / g or more, and the pore volume formed from pores having a diameter of 80 Å or less is 0.1 cm 3 / g. g or more of alumina is particularly preferably used. Porous alumina having such a pore volume promotes appropriate oxidation of the reducing agent and cooperates with silver aluminate carried thereon to effectively catalytically reduce nitrogen oxides. it can.

【0030】第2の触媒において、固体酸担体へのアル
ミン酸銀の担持量は、銀換算にて、0.01〜10重量%
の範囲であることが好ましい。アルミン酸銀の担持量が
銀換算にて10重量%を越えるときは、得られる触媒の
酸化力が高すぎて、選択性に劣り、他方、担持量が銀換
算にて0.01重量%よりも少ないときは、触媒活性が十
分でない。特に、本発明においては、アルミン酸銀の担
持量は、0.1〜5重量%の範囲であることが好ましい。
担持量がこの範囲にあるときは、窒素酸化物の接触還元
反応の空間速度依存性が極めて小さいというすぐれた特
性をも得ることができる。
In the second catalyst, the loading amount of silver aluminate on the solid acid carrier is 0.01 to 10% by weight in terms of silver.
Is preferably within the range. When the supported amount of silver aluminate exceeds 10% by weight in terms of silver, the oxidizing power of the obtained catalyst is too high and the selectivity is poor. On the other hand, the supported amount is less than 0.01% by weight in terms of silver. When the amount is too small, the catalytic activity is not sufficient. In particular, in the present invention, the loading amount of silver aluminate is preferably in the range of 0.1 to 5% by weight.
When the supported amount is in this range, an excellent characteristic that the space velocity dependence of the catalytic reduction reaction of nitrogen oxide is extremely small can be obtained.

【0031】第2段階において、窒素酸化物と共に還元
剤を含む排ガスをこのような第2の触媒に接触させる際
の空間速度は、通常、5000〜100000hr-1
範囲である。第2段階において用いる第2の触媒は、第
1段階において用いる第1の触媒に比べて、酸化活性が
小さく、窒素酸化物との選択性にすぐれるので、高い脱
硝率を得るには、空間速度は小さいことが好ましいが、
通常、実用上、上記の範囲の空間速度が採用される。
In the second stage, the space velocity when the exhaust gas containing the reducing agent together with the nitrogen oxide is brought into contact with such a second catalyst is usually in the range of 5,000 to 100,000 hr -1 . The second catalyst used in the second step has a lower oxidizing activity and is superior in selectivity to nitrogen oxides compared to the first catalyst used in the first step. The speed is preferably low, but
Usually, in practical use, the space velocity in the above range is adopted.

【0032】本発明の方法によれば、第1段階及び第2
段階における反応温度は、150〜600℃の範囲であ
り、好ましくは、250〜550℃の範囲である。必要
に応じて、第1段階及び第2段階において、反応温度を
変えてもよい。
According to the method of the present invention, the first step and the second step
The reaction temperature in the step is in the range of 150 to 600C, preferably in the range of 250 to 550C. If necessary, the reaction temperature may be changed in the first stage and the second stage.

【0033】本発明によれば、上述したように、第1段
階において、炭化水素からなる還元剤と窒素酸化物とを
含む排ガスを比較的、部分酸化活性が高いが、完全酸化
能の低い第1の触媒に接触させて、上記還元剤を含酸素
有機化合物や低分子量炭化水素に効率よく部分酸化し
て、窒素酸化物との選択反応性にすぐれる還元剤とし、
第2段階において、これら還元剤の存在下に窒素酸化物
の選択還元活性にすぐれる第2の触媒に排ガスを接触さ
せることによって、窒素酸化物に対する還元剤の使用比
率(モル比)を小さくしても、酸素や硫黄酸化物や水分
の存在下においても、窒素酸化物を安定して且つ効率よ
く還元分解することができる。
According to the present invention, as described above, in the first stage, the exhaust gas containing a reducing agent composed of a hydrocarbon and nitrogen oxides has a relatively high partial oxidation activity, but has a low complete oxidation ability. Contacting the reducing agent with an oxygen-containing organic compound or a low-molecular-weight hydrocarbon by efficient partial oxidation to form a reducing agent having excellent selective reactivity with nitrogen oxides;
In the second stage, the exhaust gas is brought into contact with a second catalyst having excellent selective reduction activity of nitrogen oxides in the presence of these reducing agents, thereby reducing the usage ratio (molar ratio) of the reducing agents to nitrogen oxides. However, even in the presence of oxygen, sulfur oxides and moisture, nitrogen oxides can be stably and efficiently reduced and decomposed.

【0034】[0034]

【実施例】以下に各段階のための触媒の調製例と共に実
施例を挙げて本発明を説明するが、本発明はこれら実施
例により何ら限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples along with examples of catalyst preparation for each step, but the present invention is not limited to these examples.

【0035】(1)第1の触媒の調製 調製例1 γ−アルミナ(住友化学工業(株)製KHA−24)の
ペレットを粉砕して得たアルミナ粉末60gとアルミナ
ゾル(日産化学工業(株)製520)6gと適量の水と
を混和し、得られた混合物をジルコニアボール100g
を粉砕媒体として遊星ミルで5分間湿式粉砕して、ウオ
ッシュ・コート用スラリーを調製した。このスラリーを
セル数400セル/平方インチのコージェライト基材に
塗布して、γ−アルミナを約170g/Lの割合で担持
させた。これを空気中、500℃で3時間焼成して、γ
−アルミナを担持させた担体(コージェライト)を調製
した。
(1) Preparation of First Catalyst Preparation Example 1 60 g of alumina powder obtained by pulverizing pellets of γ-alumina (KHA-24 manufactured by Sumitomo Chemical Co., Ltd.) and alumina sol (Nissan Chemical Industry Co., Ltd.) 520) 6 g and an appropriate amount of water are mixed, and the obtained mixture is mixed with 100 g of zirconia balls.
Was wet-ground with a planetary mill for 5 minutes to prepare a wash coat slurry. The slurry was applied to a cordierite substrate having a cell number of 400 cells / square inch, and γ-alumina was supported at a rate of about 170 g / L. This is fired in air at 500 ° C. for 3 hours to obtain γ
-A carrier supporting alumina (cordierite) was prepared.

【0036】一方、リン酸水溶液(85重量%濃度)3.
6gをイオン交換水に溶解させ、液量を30mLとし、
これに上記アルミナを担持させたコージェライト担体を
浸漬して、γ−アルミナ担持担体にリン酸を十分に含浸
させた。次いで、上記アルミナ担持担体をリン酸水溶液
から分離し、表面に付着した過剰の水溶液を除去した
後、100℃で12時間乾燥させ、更に、空気中、50
0℃で焼成して、γ−アルミナにリン酸を2.0重量%の
担持量で担持させてなる触媒(A−1)を得た。
On the other hand, a phosphoric acid aqueous solution (85% by weight concentration) 3.
6 g is dissolved in ion-exchanged water to a liquid volume of 30 mL,
The cordierite carrier supporting the above alumina was immersed in this, and the γ-alumina carrier was sufficiently impregnated with phosphoric acid. Next, the alumina-supported carrier was separated from the aqueous phosphoric acid solution, and after removing the excess aqueous solution attached to the surface, the carrier was dried at 100 ° C. for 12 hours.
It was calcined at 0 ° C. to obtain a catalyst (A-1) in which phosphoric acid was supported on γ-alumina at a supporting amount of 2.0% by weight.

【0037】調製例2 塩化ニッケル(NiCl3 )2.10gをイオン交換水に
溶解させ、液量を30mLとした水溶液を調製した。以
下、調製例1と同様にして、γ−アルミナに塩化ニッケ
ルをニッケルとして2.0重量%の担持量で担持させてな
る触媒(A−2)を得た。
Preparation Example 2 2.10 g of nickel chloride (NiCl 3 ) was dissolved in ion-exchanged water to prepare an aqueous solution having a volume of 30 mL. Hereinafter, in the same manner as in Preparation Example 1, a catalyst (A-2) obtained by loading nickel chloride on γ-alumina at a loading of 2.0% by weight as nickel was obtained.

【0038】調製例3 硫酸ニッケル(NiSO4 ・ 6H2 O)4.33gをイオ
ン交換水に溶解させ、液量を30mLとした水溶液を調
製した。以下、調製例1と同様にして、γ−アルミナに
硫酸ニッケルをニッケルとして2.0重量%の担持量で担
持させてなる触媒(A−3)を得た。
[0038] Preparation Example 3 was dissolved nickel sulfate (NiSO 4 · 6H 2 O) 4.33g of ion-exchanged water to prepare an aqueous solution to a liquid volume of a 30 mL. Hereinafter, in the same manner as in Preparation Example 1, a catalyst (A-3) in which nickel sulfate was supported on γ-alumina in the amount of 2.0% by weight as nickel was obtained.

【0039】調製例4 硫酸ニッケル(NiSO4 ・ 6H2 O)10.83gをイ
オン交換水に溶解させ、液量を30mLとした水溶液を
調製した。以下、調製例1と同様にして、γ−アルミナ
に硫酸ニッケルをニッケルとして5.0重量%の担持量で
担持させてなる触媒(A−4)を得た。
Preparation Example 4 Nickel sulfate (NiSO 4 .6H 2 O) (1.083 g) was dissolved in ion-exchanged water to prepare an aqueous solution having a volume of 30 mL. Hereinafter, in the same manner as in Preparation Example 1, a catalyst (A-4) obtained by loading nickel sulfate on γ-alumina at a loading of 5.0% by weight as nickel was obtained.

【0040】調製例5 硫酸ニッケル(NiSO4 ・ 6H2 O)0.43gをイオ
ン交換水に溶解させ、液量を30mLとした水溶液を調
製した。以下、調製例1と同様にして、γ−アルミナに
硫酸ニッケルをニッケルとして0.2重量%の担持量で担
持させてなる触媒(A−5)を得た。
[0040] Preparation Example 5 was dissolved nickel sulfate (NiSO 4 · 6H 2 O) 0.43g of ion-exchanged water to prepare an aqueous solution to a liquid volume of a 30 mL. Hereinafter, in the same manner as in Preparation Example 1, a catalyst (A-5) obtained by loading nickel sulfate on γ-alumina at a loading of 0.2% by weight as nickel was obtained.

【0041】調製例6 硫酸マンガン(MnSO4 ・ 5H2 O)4.24gをイオ
ン交換水に溶解させ、液量を30mLとした水溶液を調
製した。以下、調製例1と同様にして、γ−アルミナに
硫酸マンガンをマンガンとして2.0重量%の担持量で担
持させてなる触媒(A−6)を得た。
Preparation Example 6 4.24 g of manganese sulfate (MnSO 4 .5H 2 O) was dissolved in ion-exchanged water to prepare an aqueous solution having a volume of 30 mL. Hereinafter, in the same manner as in Preparation Example 1, a catalyst (A-6) in which manganese sulfate was supported as manganese on γ-alumina at a supporting amount of 2.0% by weight was obtained.

【0042】調製例7 硝酸銀(AgNO3 )1.52gをイオン交換水に溶解さ
せ、液量を30mLとした水溶液を調製した。以下、調
製例1と同様にして、γ−アルミナに硝酸銀を銀として
2.0重量%の担持量で担持させた。この後、この触媒を
1重量%濃度の塩酸に浸漬して、硝酸銀を塩化銀とし、
塩化銀を銀として2.0重量%の担持量で担持させてなる
触媒(A−7)を得た。
Preparation Example 7 1.52 g of silver nitrate (AgNO 3 ) was dissolved in ion-exchanged water to prepare an aqueous solution having a volume of 30 mL. Hereinafter, in the same manner as in Preparation Example 1, silver nitrate is used as silver in γ-alumina.
It was loaded at a loading of 2.0% by weight. Thereafter, the catalyst was immersed in 1% by weight hydrochloric acid to convert silver nitrate into silver chloride.
There was obtained a catalyst (A-7) in which silver chloride was supported as silver in a supporting amount of 2.0% by weight.

【0043】調製例8 リン酸銀(Ag3 PO4 )3.06gを10重量%濃度の
リン酸水溶液に溶解させ、液量を30mLとした。調製
例1と同じアルミナを担持させたコージェライト担体を
上記リン酸銀を含むリン酸水溶液に浸漬して、γ−アル
ミナ担持担体にリン酸銀を十分に含浸させた。次いで、
上記アルミナ担持担体をリン酸銀水溶液から分離し、表
面に付着した過剰の水溶液を除去した後、100℃で1
2時間乾燥させ、更に、空気中、500℃で焼成して、
γ−アルミナにリン酸銀を銀として2.0重量%の担持量
で担持させてなる触媒(A−8)を得た。
Preparation Example 8 3.06 g of silver phosphate (Ag 3 PO 4 ) was dissolved in a 10% by weight aqueous phosphoric acid solution to make the volume 30 mL. The cordierite carrier supporting the same alumina as in Preparation Example 1 was immersed in the aqueous solution of phosphoric acid containing silver phosphate to sufficiently impregnate the γ-alumina carrier with silver phosphate. Then
The alumina-supported carrier was separated from the aqueous silver phosphate solution, and excess aqueous solution attached to the surface was removed.
Dried for 2 hours, and further fired in air at 500 ° C.
A catalyst (A-8) was obtained in which silver phosphate was supported on γ-alumina in a loading amount of 2.0% by weight as silver.

【0044】(2)第2の触媒の調製 調製例9 硝酸アルミニウム(Al(NO3 3 ・9H2 O)8.6
9g、硝酸銀1.58g及び水和アルミナ(水澤化学工業
(株)製)100gを適当量の水と混和して、ペースト
状物を調製した。これを加熱式混練機を用いて混練乾燥
させた後、500℃で3時間加熱焼成して、担持量2.5
重量%にて銀を担持させてなるアルミナ粉末触媒を得
た。
[0044] (2) a second catalyst Preparation Example 9 of aluminum nitrate (Al (NO 3) 3 · 9H 2 O) 8.6
9 g, 1.58 g of silver nitrate and 100 g of hydrated alumina (manufactured by Mizusawa Chemical Industry Co., Ltd.) were mixed with an appropriate amount of water to prepare a paste. This was kneaded and dried using a heating kneader, and then heated and calcined at 500 ° C. for 3 hours to obtain a supported amount of 2.5.
An alumina powder catalyst supporting silver by weight was obtained.

【0045】このアルミナ粉末触媒60gとシリカゾル
(日産化学工業(株)製スノーテックスN)6gとを適
当量の水と混和し、これをジルコニアボール100gを
粉砕媒体として遊星ミルで5分間湿式粉砕して、ウオッ
シュ・コート用スラリーを調製した。このスラリーをセ
ル数200セル/平方インチのコージェライト基材に塗
布して、触媒を約150g/Lの割合で担持させた。こ
の触媒をB−1という。
60 g of this alumina powder catalyst and 6 g of silica sol (Snowtex N manufactured by Nissan Chemical Industries, Ltd.) are mixed with an appropriate amount of water, and wet-ground with a planetary mill for 5 minutes using 100 g of zirconia balls as a grinding medium. Thus, a wash coat slurry was prepared. The slurry was applied to a cordierite substrate having a cell number of 200 cells / square inch, and the catalyst was supported at a rate of about 150 g / L. This catalyst is called B-1.

【0046】調製例10 硝酸アルミニウム(Al(NO3 3 ・9H2 O)8.6
9g、硝酸銀3.94g及び水和アルミナ(水澤化学工業
(株)製)100gを適当量の水と混和して、ペースト
状物を調製した。これを加熱式混練機を用いて混練乾燥
させた後、水分10重量%を含む空気雰囲気下、800
℃で3時間加熱焼成して、銀重量換算にて担持量2.5重
量%にてアルミン酸銀を担持させてなるアルミナ粉末触
媒を得た。
Preparation Example 10 Aluminum nitrate (Al (NO 3 ) 3 .9H 2 O) 8.6
9 g, 3.94 g of silver nitrate and 100 g of hydrated alumina (manufactured by Mizusawa Chemical Industry Co., Ltd.) were mixed with an appropriate amount of water to prepare a paste. This was kneaded and dried using a heating kneader, and then dried under an air atmosphere containing 10% by weight of water.
C. for 3 hours to obtain an alumina powder catalyst having silver aluminate supported thereon at a loading of 2.5% by weight in terms of silver weight.

【0047】このアルミナ粉末触媒60gとシリカゾル
(日産化学工業(株)製スノーテックスN)6gとを適
当量の水と混和し、これをジルコニアボール100gを
粉砕媒体として遊星ミルで5分間湿式粉砕して、ウオッ
シュ・コート用スラリーを調製した。このスラリーをセ
ル数200セル/平方インチのコージェライト基材に塗
布して、触媒を約150g/Lの割合で担持させた。こ
の触媒をB−2という。
60 g of this alumina powder catalyst and 6 g of silica sol (Snowtex N manufactured by Nissan Chemical Industries, Ltd.) are mixed with an appropriate amount of water, and wet-ground with a planetary mill for 5 minutes using 100 g of zirconia balls as a grinding medium. Thus, a wash coat slurry was prepared. The slurry was applied to a cordierite substrate having a cell number of 200 cells / square inch, and the catalyst was supported at a rate of about 150 g / L. This catalyst is called B-2.

【0048】実施例1〜10(評価試験) 以上のようにして調製した第1の触媒(A−1〜8)を
第1段階に用いると共に、第2の触媒(B−1〜2)を
第2段階に用いて、下記の試験条件にて、窒素酸化物含
有ガスの窒素酸化物接触還元を行ない、窒素酸化物の除
去率をケミカルルミネッセンス法にて求めた。結果を表
1及び表2に示す。
Examples 1 to 10 (Evaluation Test) The first catalyst (A-1 to 8) prepared as described above was used in the first stage, and the second catalyst (B-1 to 2) was used. In the second step, the nitrogen oxide-containing gas was subjected to nitrogen oxide catalytic reduction under the following test conditions, and the removal rate of nitrogen oxide was determined by a chemical luminescence method. The results are shown in Tables 1 and 2.

【0049】 (試験条件) (1)ガス組成 NO 300ppm CO 1000ppm H2 1000ppm 炭化水素 500ppm O2 10容量% SO2 200ppm 水 6容量% 窒素 残部 (2)空間速度 第1段階 50000(hr-1) 第2段階 50000(hr-1) (3)反応温度 300℃、350℃、400℃、450℃又は500℃(Test Conditions) (1) Gas Composition NO 300 ppm CO 1000 ppm H 2 1000 ppm Hydrocarbon 500 ppm O 2 10 vol% SO 2 200 ppm Water 6 vol% Nitrogen balance (2) Space velocity First stage 50000 (hr −1 ) Second stage 50000 (hr -1 ) (3) Reaction temperature 300 ° C, 350 ° C, 400 ° C, 450 ° C or 500 ° C

【0050】比較例1及び2(評価試験) 触媒として第1の触媒又は第2の触媒のいずれか一方の
みを用いた以外は、実施例と同様にして、窒素酸化物含
有ガスの窒素酸化物接触還元を行ない、窒素酸化物の除
去率をケミカルルミネッセンス法にて求めた。結果を表
1に示す。第1の触媒のみを用いた場合、窒素酸化物の
除去率が非常に低い。第2の触媒のみを用いた場合も、
本発明の方法に比べて、反応温度域全般において、窒素
酸化物の除去率が低い。
Comparative Examples 1 and 2 (Evaluation Test) In the same manner as in Example except that only one of the first catalyst and the second catalyst was used as the catalyst, Catalytic reduction was performed, and the removal rate of nitrogen oxides was determined by a chemical luminescence method. Table 1 shows the results. When only the first catalyst is used, the nitrogen oxide removal rate is very low. When only the second catalyst is used,
Compared with the method of the present invention, the nitrogen oxide removal rate is low over the entire reaction temperature range.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】表1及び表2に示す結果から明らかなよう
に、本発明の方法によれば、従来の方法に比べて、酸素
や硫黄酸化物や水分の共存下においても、窒素酸化物に
対する還元剤の使用比率(モル比)を小さくして、排ガ
ス中の窒素酸化物を安定して且つ高い除去率にて還元除
去することができる。
As is clear from the results shown in Tables 1 and 2, according to the method of the present invention, compared with the conventional method, the reduction of nitrogen oxides even in the coexistence of oxygen, sulfur oxides and moisture. By reducing the use ratio (molar ratio) of the agent, nitrogen oxides in exhaust gas can be reduced and removed stably at a high removal rate.

【0054】[0054]

【発明の効果】以上のように、本発明の方法によれば、
酸素や硫黄酸化物や水分の共存下においても、多量の還
元剤を用いることなく、排ガス中の窒素酸化物を安定し
て且つ効率よく接触還元することができる。
As described above, according to the method of the present invention,
Even in the coexistence of oxygen, sulfur oxides and moisture, the nitrogen oxides in the exhaust gas can be stably and efficiently reduced catalytically without using a large amount of reducing agent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/36 102H (72)発明者 田畑 啓一 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 (72)発明者 植田 計幸 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01D 53/36 102H (72) Inventor Keiichi Tabata 5-1-1 Ebisushimacho, Sakai-shi, Osaka Sakai Chemical Industry Co., Ltd. (72 ) Inventor Noriyuki Ueda 5-1-1 Ebisshima-cho, Sakai City, Osaka Sakai Chemical Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】排ガスに含まれる窒素酸化物を触媒の存在
下に還元剤を用いて接触還元する方法において、第1段
階として、炭化水素からなる還元剤と窒素酸化物とを含
む排ガスを担体にリン酸、周期律表第Ib、VIIa及びVIII
族元素のリン酸塩、塩化物及び硫酸塩から選ばれる少な
くとも1種を担持させてなる第1の触媒に接触させ、第
2段階として、銀、酸化銀及びアルミン酸銀から選ばれ
る第2の触媒に接触させることを特徴とする窒素酸化物
接の触還元方法。
In a method for catalytically reducing nitrogen oxides contained in an exhaust gas using a reducing agent in the presence of a catalyst, as a first step, an exhaust gas containing a reducing agent composed of a hydrocarbon and nitrogen oxides is used as a carrier. Phosphoric acid, Periodic Table Ib, VIIa and VIII
Contact with a first catalyst supporting at least one selected from the group consisting of phosphates, chlorides and sulfates of a group element, and as a second step, a second catalyst selected from silver, silver oxide and silver aluminate A catalytic reduction method for contacting nitrogen oxides, which comprises contacting the catalyst with a catalyst.
【請求項2】第1触媒において、リン酸、周期律表第I
b、VIIa及びVIII族元素のリン酸塩、塩化物及び硫酸塩
から選ばれる少なくとも1種の担持量が0.05〜5重量
%の範囲であり、第1触媒において、銀又は酸化銀の担
持量が0.1〜5重量%の範囲であり、アルミン酸銀の担
持量が0.01〜10重量%の範囲である請求項1に記載
の窒素酸化物接の触還元方法。
2. The method according to claim 1, wherein the first catalyst comprises phosphoric acid,
b, the amount of at least one selected from the group consisting of phosphates, chlorides and sulfates of Group VIIa and VIII elements is in the range of 0.05 to 5% by weight; 2. The method according to claim 1, wherein the amount is in the range of 0.1 to 5% by weight and the supported amount of silver aluminate is in the range of 0.01 to 10% by weight.
【請求項3】還元剤が軽油を主成分とするものである請
求項1に記載の方法。
3. The method according to claim 1, wherein the reducing agent is based on light oil.
【請求項4】第1段階及び第2段階において、150〜
600℃の範囲の温度で排ガスを触媒に接触させる請求
項1から3のいずれかに記載の方法。
4. The method according to claim 1, wherein in the first and second stages,
4. The method according to claim 1, wherein the exhaust gas is contacted with the catalyst at a temperature in the range of 600.degree.
JP01150897A 1996-02-08 1997-01-24 Method for catalytic reduction of nitrogen oxides Expired - Fee Related JP3924341B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01150897A JP3924341B2 (en) 1997-01-24 1997-01-24 Method for catalytic reduction of nitrogen oxides
EP97300816A EP0788829B1 (en) 1996-02-08 1997-02-07 Catalyst and method for catalytic reduction of nitrogen oxides
DE69730764T DE69730764T2 (en) 1996-02-08 1997-02-07 Catalyst and process for the catalytic reduction of nitrogen oxides
US08/796,884 US6045765A (en) 1996-02-08 1997-02-07 Catalyst and method for catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01150897A JP3924341B2 (en) 1997-01-24 1997-01-24 Method for catalytic reduction of nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH10202064A true JPH10202064A (en) 1998-08-04
JP3924341B2 JP3924341B2 (en) 2007-06-06

Family

ID=11779970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01150897A Expired - Fee Related JP3924341B2 (en) 1996-02-08 1997-01-24 Method for catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
JP (1) JP3924341B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081084A1 (en) * 2006-01-11 2007-07-19 Sk Energy Co., Ltd. Catalyst for the removal of nitrogen oxides with reducing agent and its preparation method
WO2015151920A1 (en) * 2014-04-03 2015-10-08 トヨタ自動車株式会社 Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081084A1 (en) * 2006-01-11 2007-07-19 Sk Energy Co., Ltd. Catalyst for the removal of nitrogen oxides with reducing agent and its preparation method
KR101096196B1 (en) 2006-01-11 2011-12-22 에스케이이노베이션 주식회사 Catalyst for the removal of nitrogen oxides with reducing agent and its preparation method
WO2015151920A1 (en) * 2014-04-03 2015-10-08 トヨタ自動車株式会社 Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method
JP2015199061A (en) * 2014-04-03 2015-11-12 株式会社豊田中央研究所 Exhaust gas purification catalyst, and exhaust gas purification filter and process using the same
RU2652113C1 (en) * 2014-04-03 2018-04-25 Тойота Дзидося Кабусики Кайся Exhaust gas purification catalyst, as well as filter and method of purifying exhaust gases using it

Also Published As

Publication number Publication date
JP3924341B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
EP0788829B1 (en) Catalyst and method for catalytic reduction of nitrogen oxides
JP3430422B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP3791968B2 (en) Method for catalytic reduction of nitrogen oxides
JP3924341B2 (en) Method for catalytic reduction of nitrogen oxides
JP3453239B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH1199319A (en) Waste gas purifying method
JP3781830B2 (en) Method for catalytic reduction of nitrogen oxides
JPH11169669A (en) Exhaust gas cleaning method
JPH09206559A (en) Contact reducing method of nitrogen oxides
JP2609983B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JP3930607B2 (en) Nitrogen oxide catalytic reduction catalyst
JP3872858B2 (en) Method for producing nitrogen oxide reduction catalyst
JPH09201515A (en) Catalytic reduction method of nitrogen oxides
JP2558589B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JP3495832B2 (en) Method for catalytic reduction of nitrogen oxides
JPH1157411A (en) Cleaning method for exhaust gas
JPH11253759A (en) Cleaning method for exhaust gas
JP3745988B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH11114420A (en) Catalyst for cleaning exhaust gas and method
JP2618316B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH1094718A (en) Catalytic reelection of nitrogen oxide
JPH11207182A (en) Catalyst for catalytic reduction of nitrogen oxide
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JP3872848B2 (en) Nitrogen oxide catalytic reduction catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees