JP3791968B2 - Method for catalytic reduction of nitrogen oxides - Google Patents

Method for catalytic reduction of nitrogen oxides Download PDF

Info

Publication number
JP3791968B2
JP3791968B2 JP14399796A JP14399796A JP3791968B2 JP 3791968 B2 JP3791968 B2 JP 3791968B2 JP 14399796 A JP14399796 A JP 14399796A JP 14399796 A JP14399796 A JP 14399796A JP 3791968 B2 JP3791968 B2 JP 3791968B2
Authority
JP
Japan
Prior art keywords
nitrogen
catalyst
exhaust gas
oxide
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14399796A
Other languages
Japanese (ja)
Other versions
JPH09323039A (en
Inventor
忠夫 仲辻
律 安川
啓一 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP14399796A priority Critical patent/JP3791968B2/en
Publication of JPH09323039A publication Critical patent/JPH09323039A/en
Application granted granted Critical
Publication of JP3791968B2 publication Critical patent/JP3791968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素を還元剤として用いる窒素酸化物の接触還元方法に関し、詳しくは、工場、自動車等から排出される排ガスの中に含まれる有害な窒素酸化物を安定して高い除去率にて還元除去することができる窒素酸化物の接触還元方法に関する。
【0002】
【従来の技術】
従来、排ガス中に含まれる窒素酸化物は、窒素酸化物を酸化した後、アルカリに吸収させる方法や、アンモニア、水素、一酸化炭素、炭化水素等の還元剤を用いて、窒素に変換する方法等によって除去されている。
【0003】
しかしながら、前者の方法によれば、生成するアルカリ廃液を処理して、公害の発生を防止する方策が必要である。他方、後者の方法によれば、還元剤としてアンモニアを用いるときは、これが排ガス中の硫黄酸化物と反応して塩類を生成し、その結果、触媒の還元活性が低下する問題がある。また、水素、一酸化炭素、炭化水素等を還元剤として用いる場合でも、これらが低濃度に存在する窒素酸化物よりも高濃度に存在する酸素と反応するので、窒素酸化物を低減するためには、多量の還元剤を必要とするという問題がある。
【0004】
このため、最近では、還元剤の不存在下に窒素酸化物を触媒にて直接分解する方法も提案されているが、しかし、従来、知られているそのような触媒は、窒素酸化物の分解活性が低いために、実用に供し難いという問題がある。
【0005】
また、炭化水素や含酸素化合物を還元剤として用いる新たな窒素酸化物接触還元用触媒として、H型ゼオライトやCuイオン交換ZSM−5等が提案されており、なかでも、H型ZSM−5(SiO2 /Al2 3 モル比=30〜40)が最適であるとされている。しかしながら、このようなH型ZSM−5でも、未だ十分な還元活性を有するものとはいい難く、特に、ガス中に水分が含まれるとき、ゼオライト構造体中のアルミニウムが脱アルミニウムして、性能が急激に低下するので、一層高い還元活性を有し、更に、ガスが水分を含有する場合にも、すぐれた耐久性を有する窒素酸化物接触還元用触媒が要望されている。
【0006】
【発明が解決しようとする課題】
そこで、銀又は銀酸化物を無機酸化物に担持させてなる触媒も提案されているが、そのような触媒は、酸化活性が高く、窒素酸化物に対する選択反応性が低いために、窒素酸化物の除去率が低い。また、触媒が窒素酸化物の分解活性を有する温度域が高いので、排ガス中の窒素酸化物を有効に分解するには、排ガスを予め加熱することが必要であって、実用化には問題がある。更に、銀又は銀酸化物を無機酸化物に担持させてなる触媒は、硫黄酸化物の共存下での触媒活性の劣化が著しいという問題もある(特開平5−317647号公報)。そのうえ、従来の窒素酸化物接触還元用触媒は、一般に、耐熱性が十分ではなく、用途によっては、一層の耐熱性が強く要望されている。
【0007】
そこで、本発明者らは、既に、固体酸担体にアルミン酸銀を担持させてなる窒素酸化物接触還元用触媒を提案しており(特願平7−306070号)、この触媒は、上記問題点を改善しているものの、窒素酸化物の還元率の点で、尚、十分とはいえない。
【0008】
本発明は、上述したような事情に鑑みてなされたものであって、その目的とするところは、炭化水素を還元剤として用いる窒素酸化物の接触還元方法であって、酸素や硫黄酸化物や水分の共存下においても、多量の還元剤を用いることなく、低温において排ガス中の窒素酸化物を安定して且つ効率よく接触還元することができる窒素酸化物の接触還元方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、排ガスに含まれる窒素酸化物を触媒の存在下に還元剤として炭化水素を用いて接触還元する方法において、第1段階として、排ガスを窒素酸化物酸化触媒(以下、酸化触媒又は第1触媒ということがある。)に接触させて、排ガスに含まれる一酸化窒素(NO)を二酸化窒素(NO2 )に酸化し、次いで、このような排ガスに炭化水素を加え、第2段階として、この排ガスをロジウム金属及びロジウム酸化物から選ばれる窒素酸化物還元触媒(以下、還元触媒又は第2触媒ということがある。)に接触させて、窒素酸化物を窒素に還元することを特徴とする。
【0010】
【発明の実施の形態】
本発明の方法によれば、第1段階として、排ガスを窒素酸化物酸化触媒に接触させて、排ガスに含まれる一酸化窒素(NO)を二酸化窒素(NO2 )に酸化する。一酸化窒素に比べて、二酸化窒素は、後述する還元触媒による還元反応において、還元剤である炭化水素との選択反応性によりすぐれるので、第2段階における窒素酸化物の接触還元に先立って、このように、第1段階において、予め一酸化窒素を二酸化窒素に酸化することによって、排ガスに含まれる窒素酸化物の除去率を高めることができる。
【0011】
上記酸化触媒、即ち、第1触媒としては、特に、限定されるものではないが、好ましくは、白金、マンガン、パラジウム、イリジウム、ルテニウム及び銅から選ばれる金属又はその酸化物からなる触媒が用いられる。これら金属又はその酸化物は、通常、比表面積の大きい酸化物、例えば、アルミナ、シリカ、シリカ−アルミナ、ジルコニア、チタニア、ゼオライト等の固体酸担体に担持されて用いられる。上記金属又はその酸化物をこのような担体に担持させるには、従来より知られているイオン交換法や含浸法等、適宜の方法によればよい。
【0012】
上記金属又はその酸化物の担体への担持量、即ち、上記金属又はその酸化物と担体の重量に対する上記金属又はその酸化物の割合は、用いる金属種や触媒が置かれる反応条件にもよるが、また、必ずしも限定されるものではないが、通常、金属換算にて、0.001〜10重量%の範囲であり、好ましくは、0.1〜5重量%の範囲である。上記金属又はその酸化物の担体への担持量が0.001重量%よりも少ないときは、上述したような一酸化窒素を二酸化窒素に酸化する能力が不十分である。しかし、担持量が10重量%を越えても、一酸化窒素を二酸化窒素に酸化する能力がそれに見合って増大するものでもなく、経済性の点からも不利である。
【0013】
第1段階において、一酸化窒素を含む排ガスをこのような第1触媒に接触させる際の空間速度は、酸化率の観点からは、低ければ低いほどよいが、しかし、一酸化窒素を実用的に効率よく酸化する観点からは、通常、50000〜500000hr-1の範囲である。
【0014】
本発明の方法によれば、このように、排ガスを第1触媒に接触させて、排ガスに含まれる一酸化窒素を二酸化窒素とした後、このような排ガスに還元剤である炭化水素を加え、これを第2触媒に接触させることによって、上記二酸化窒素を効率よく窒素に還元することができ、延いては、排ガス中の窒素酸化物の除去率を高めることができる。
【0015】
上記炭化水素からなる還元剤としては、例えば、気体状のものとして、メタン、エタン、プロパン、プロピレン、ブチレン等の炭化水素ガス、液体状のものとして、ペンタン、ヘキサン、オクタン、ヘプタン、ベンゼン、トルエン、キシレン等の単一成分系の炭化水素、ガソリン、灯油、軽油、重油等の鉱油系炭化水素等を用いることができる。特に、本発明においては、上記したなかでも、エチレン、プロピレン、イソブチレン、1−ブテン、2−ブテン等の低級アルケン、プロパン、ブタン等の低級アルカン、軽油等が還元剤として好ましく用いられる。これら炭化水素は、単独で用いてもよく、又は必要に応じて二種以上併用してもよい。
【0016】
上記還元剤としての炭化水素は、用いる具体的な炭化水素によって異なるが、通常、排ガス中の窒素酸化物(実質的に、一酸化窒素と二酸化窒素とからなる。)に対するモル比にて、0.1〜2程度の範囲にて用いられる。炭化水素の使用量が窒素酸化物に対するモル比にて、0.1未満であるときは、窒素酸化物に対して十分な還元活性を得ることができず、他方、モル比が2を越えるときは、未反応の炭化水素の排出量が多くなるために、窒素酸化物の接触還元処理の後に、これを回収するための後処理が必要となる。
【0017】
尚、排ガス中に存在する燃料等の未燃焼物乃至不完全燃焼生成物、即ち、炭化水素類やパティキュレート類等も還元剤として有効であり、これらも本発明における炭化水素に含まれる。このことから、見方を変えれば、本発明の方法は、排ガス中の炭化水素類やパティキュレート類等を減少させ、又は除去する方法としても有用であるということができる。
【0018】
第2触媒は、ロジウム金属及びロジウム酸化物から選ばれる。これらは、通常、比表面積の大きい酸化物、例えば、アルミナ、シリカ、シリカ−アルミナ、ジルコニア、チタニア、ゼオライト等の固体酸担体に担持されて用いられる。ロジウム金属やロジウム酸化物をこのような担体に担持させるには、第1触媒の場合と同様に、従来より知られているイオン交換法や含浸法等、適宜の方法によればよい。
【0019】
本発明においては、担体としては、上記したなかでは、特に、耐熱性にすぐれると共に、担持効果にすぐれるアルミナが好ましく用いられる。アルミナのなかでも、特開平7−171347号公報に記載されているように、アルカリ金属及びアルカリ土類金属の含有量が0.5重量%以下であり、径60オングストローム以下の細孔から形成される細孔容積が0.06cm3 /g以上、径80オングストローム以下の細孔から形成される細孔容積が0.1cm3 /g以上であるアルミナが特に好ましく用いられる。このような細孔容積を有する多孔質のアルミナは、還元剤の適度な酸化を促進し、これに担持されているロジウム金属又はロジウム酸化物と協同して、窒素酸化物を効果的に接触還元することができる。
【0020】
このように、ロジウム金属又はロジウム酸化物からなる第2触媒は、従来、知られている成形方法によって、それ自体にて、又は担体に担持させた後、ハニカム状、球状等の種々の形状に成形することができる。この成形の際に、成形助剤、成形体補強体、無機繊維、有機バインダー等を適宜配合してもよい。また、第2触媒は、予め成形された不活性な基材上にウオッシュ・コート法等によって被覆担持させることもできる。上記基材としては、例えば、コージェライトのような粘土からなるハニカム構造体に担持させることができる。更に、必要に応じて、従来、知られているその他の触媒の任意の調製法によることもできる。
【0021】
ロジウム金属又はロジウム酸化物の担体への担持量は、0.01〜1重量%の範囲であることが好ましい。担持量が0.01重量%よりも少ないときは、窒素酸化物の還元活性が十分でなく、他方、1重量%よりも多いときは、酸化活性が高すぎて、選択性に劣ることとなる。本発明によれば、ロジウム金属又はロジウム酸化物の担体への担持量は、特に、0.05〜0.5重量%の範囲が好ましい。
【0022】
第2段階において、主として二酸化窒素からなる窒素酸化物と共に炭化水素を含む排ガスをこのような第2触媒に接触させる際の空間速度は、通常、5000〜50000hr-1の範囲である。第2段階における触媒は、第1段階における触媒に比べて、酸化活性が小さく、窒素酸化物との選択性にすぐれるので、高い脱硝率を得るには、空間速度は小さいことが好ましいが、通常、実用上、上記の範囲の空間速度が採用される。 本発明の方法によれば、第1段階及び第2段階における反応温度は、150〜450℃の範囲である。必要に応じて、第1段階及び第2段階において、反応温度を変えてもよい。
【0023】
本発明によれば、上述したように、第1段階において、排ガスを酸化触媒に接触させて、排ガスに含まれる一酸化窒素を二酸化窒素に酸化し、次いで、このような排ガスに炭化水素を加え、第2段階として、この排ガスをロジウム金属及びロジウム酸化物から選ばれる窒素酸化物還元触媒に接触させて、二酸化窒素を窒素に還元するので、低い温度域においても、窒素酸化物を安定して且つ効率よく還元分解することができる。
【0024】
【実施例】
以下に各段階のための触媒の調製例と共に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0025】
(1)第1触媒の調製
調製例1
塩化白金酸(H2 PtCl6 ・6H2 O)5.31gをイオン交換水100mLに溶解させた。予め120℃にて24時間乾燥させた平均粒径3mmのγ−アルミナ(住友化学工業(株)製KHA−24)100mLを上記塩化白金酸水溶液に投入し、30分間攪拌して、アルミナの細孔内に塩化白金酸水溶液を十分に含浸させた。
【0026】
次いで、γ−アルミナを塩化白金酸水溶液から分離し、表面に付着した過剰の水溶液を除去した後、100℃で12時間乾燥させ、更に、空気中、500℃で焼成して、白金をγ−アルミナに1重量%の担持量で担持させた触媒(A−1)を得た。
【0027】
調製例2
塩化白金酸に代えて、硝酸マンガン2.87g用いた以外は、調製例1と同様にして、二酸化マンガンをγ−アルミナに1重量%の担持量で担持させた触媒(A−2)を得た。
【0028】
調製例3
塩化白金酸に代えて、塩化パラジウム(PdCl2 )3.3gを用いた以外は、調製例1と同様にして、パラジウムをγ−アルミナに1重量%の担持量で担持させた触媒(A−3)を得た。
【0029】
調製例4
塩化白金酸に代えて、塩化イリジウム(IrCl4 )17.4gを用いた以外は、調製例1と同様にして、イリジウムをγ−アルミナに5重量%の担持量で担持させた触媒(A−4)を得た。
【0030】
調製例5
塩化白金酸に代えて、塩化ルテニウム(RuCl3 )4.1gを用いた以外は、調製例1と同様にして、ルテニウムをγ−アルミナに1重量%の担持量で担持させた触媒(A−5)を得た。
【0031】
調製例6
塩化白金酸に代えて、硝酸銅(Cu(NO3 2 ・3H2 O)2.42gを用いた以外は、調製例1と同様にして、酸化第二銅をγ−アルミナに1重量%の担持量で担持させた触媒(A−6)を得た。
【0032】
(2)第2触媒の調製
調製例7
硝酸ロジウム(Rh(NO3 2 ・2H2 O)0.64gをイオン交換水100mLに溶解させた。予め120℃で24時間乾燥させた平均粒径3mmのγ−アルミナ(住友化学工業(株)製KHA−24)100mLを上記硝酸ロジウム水溶液に投入し、30分間攪拌して、アルミナの細孔内に硝酸ロジウム水溶液を十分に含浸させた。
【0033】
次いで、γ−アルミナを硝酸ロジウム水溶液から分離し、表面に付着した過剰の水溶液を除去した後、100℃で12時間乾燥させ、更に、空気中、500℃で焼成して、ロジウムをγ−アルミナに0.1重量%の担持量で担持させた触媒(B−1)を得た。
【0034】
調製例8
調製例7において、硝酸ロジウム0.06gを用いた以外は、調製例8と同様にして、ロジウムをγ−アルミナに0.01重量%の担持量で担持させた触媒(B−2)を得た。
【0035】
調製例9
調製例7において、硝酸ロジウム3.20gを用いた以外は、調製例8と同様にして、ロジウムをγ−アルミナに0.5重量%の担持量で担持させた触媒(B−3)を得た。
【0036】
調製例10
調製例7において、硝酸ロジウム6.40gを用いた以外は、調製例8と同様にして、ロジウムをγ−アルミナに1.0重量%の担持量で担持させた触媒(B−4)を得た。
【0037】
実施例1〜11(評価試験)
下記の組成を有するガスを第1段階にて第1触媒(A−1〜6)にて処理した後、このガスに還元剤(炭化水素)を加え、第2段階にて第2触媒(B−1〜4)にて処理して、窒素酸化物含有ガスの窒素酸化物接触還元を行ない、第1段階において、一酸化窒素の二酸化窒素への転化率と、第2段階の後の窒素酸化物の除去率とをそれぞれケミカルルミネッセンス法にて求めた。結果を表1及び表2に示す。
【0038】
(試験条件)
(1)ガス組成(第1段階)
NO 500ppm
2 10容量%
水 6容量%
窒素 残部
(2)ガス組成(第2段階)
第1段階で処理したガスに還元剤(炭化水素)を500ppm加えた。還元剤として軽油を用いた場合、軽油はC換算でC12とした。)
(3)空間速度
第1段階 50000、100000又は200000(hr-1
第2段階 20000又は50000(hr-1
(4)反応温度 250℃、300℃、350℃、400℃又は450℃
【0039】
比較例1〜4(評価試験)
窒素酸化物含有ガスを第1段階(窒素酸化物含有ガスに還元剤を加えた後、酸化触媒でのみ処理する。)か、又は第2段階(窒素酸化物含有ガスに還元剤を加えた後、還元触媒でのみ処理する。)のいずれか一方のみで処理した以外は、実施例と同様にして、窒素酸化物含有ガスの窒素酸化物接触還元を行ない、窒素酸化物含有ガスを第1段階のみで処理した場合には、一酸化窒素への二酸化窒素への転化率を、また、窒素酸化物含有ガスを第2段階のみで処理した場合には、窒素酸化物の除去率をそれぞれケミカルルミネッセンス法にて求めた。結果を表1及び表2に示す。
【0040】
【表1】

Figure 0003791968
【0041】
【表2】
Figure 0003791968
【0042】
【発明の効果】
表1及び表2に示す結果から明らかなように、本発明の方法によれば、酸素や硫黄酸化物や水分の共存下においても、多量の還元剤を用いることなく、低い温度域において、排ガス中の窒素酸化物を安定して且つ効率よく接触還元することができる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for catalytic reduction of nitrogen oxides using hydrocarbons as a reducing agent. More specifically, harmful nitrogen oxides contained in exhaust gas discharged from factories, automobiles, etc. are stably removed at a high rate. The present invention relates to a catalytic reduction method of nitrogen oxides that can be reduced and removed.
[0002]
[Prior art]
Conventionally, nitrogen oxides contained in exhaust gas are oxidized by nitrogen oxides and absorbed by alkali, or converted to nitrogen using a reducing agent such as ammonia, hydrogen, carbon monoxide, hydrocarbons, etc. Etc. have been removed.
[0003]
However, according to the former method, a measure for treating the generated alkaline waste liquid to prevent the occurrence of pollution is necessary. On the other hand, according to the latter method, when ammonia is used as a reducing agent, it reacts with sulfur oxides in the exhaust gas to generate salts, resulting in a problem that the reduction activity of the catalyst is lowered. In addition, even when hydrogen, carbon monoxide, hydrocarbons, etc. are used as reducing agents, these react with oxygen present at a higher concentration than nitrogen oxide present at a lower concentration. Has the problem of requiring a large amount of reducing agent.
[0004]
For this reason, recently, a method of directly decomposing nitrogen oxides with a catalyst in the absence of a reducing agent has also been proposed. However, conventionally known such catalysts are not capable of decomposing nitrogen oxides. Since the activity is low, there is a problem that it is difficult to put to practical use.
[0005]
Further, H-type zeolite, Cu ion exchange ZSM-5, and the like have been proposed as new nitrogen oxide catalytic reduction catalysts using hydrocarbons or oxygen-containing compounds as reducing agents. Among them, H-type ZSM-5 ( The SiO 2 / Al 2 O 3 molar ratio = 30 to 40) is said to be optimal. However, even with such H-type ZSM-5, it is difficult to say that it still has sufficient reduction activity. In particular, when the gas contains moisture, the aluminum in the zeolite structure is dealuminated and the performance is reduced. There is a need for a catalyst for catalytic reduction of nitrogen oxides that has a higher reduction activity because it rapidly decreases, and also has excellent durability even when the gas contains moisture.
[0006]
[Problems to be solved by the invention]
Therefore, a catalyst in which silver or silver oxide is supported on an inorganic oxide has also been proposed. However, such a catalyst has high oxidation activity and low selective reactivity with respect to nitrogen oxide. The removal rate is low. In addition, since the temperature range in which the catalyst has a nitrogen oxide decomposition activity is high, it is necessary to heat the exhaust gas in advance in order to effectively decompose the nitrogen oxide in the exhaust gas. is there. Furthermore, a catalyst in which silver or silver oxide is supported on an inorganic oxide also has a problem that the catalytic activity is significantly deteriorated in the presence of sulfur oxide (Japanese Patent Laid-Open No. 5-317647). In addition, conventional nitrogen oxide catalytic reduction catalysts generally do not have sufficient heat resistance, and there is a strong demand for further heat resistance depending on the application.
[0007]
Therefore, the present inventors have already proposed a catalyst for catalytic reduction of nitrogen oxide in which silver aluminate is supported on a solid acid support (Japanese Patent Application No. 7-306070), and this catalyst has the above problem. Although the point has been improved, it is still not sufficient in terms of the reduction rate of nitrogen oxides.
[0008]
The present invention has been made in view of the circumstances as described above, and the object thereof is a method for catalytic reduction of nitrogen oxides using hydrocarbons as a reducing agent, wherein oxygen, sulfur oxides, An object of the present invention is to provide a nitrogen oxide catalytic reduction method capable of stably and efficiently catalytically reducing nitrogen oxides in exhaust gas at low temperatures without using a large amount of reducing agent even in the presence of moisture. .
[0009]
[Means for Solving the Problems]
The present invention relates to a method for catalytically reducing nitrogen oxides contained in exhaust gas using a hydrocarbon as a reducing agent in the presence of a catalyst, and as a first step, the exhaust gas is treated with a nitrogen oxide oxidation catalyst (hereinafter referred to as oxidation catalyst or second catalyst). 1 catalyst)) to oxidize nitric oxide (NO) contained in the exhaust gas to nitrogen dioxide (NO 2 ), and then add hydrocarbons to such exhaust gas as a second stage The exhaust gas is brought into contact with a nitrogen oxide reduction catalyst selected from rhodium metal and rhodium oxide (hereinafter sometimes referred to as a reduction catalyst or a second catalyst), and the nitrogen oxide is reduced to nitrogen. To do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the method of the present invention, as a first step, exhaust gas is brought into contact with a nitrogen oxide oxidation catalyst to oxidize nitrogen monoxide (NO) contained in the exhaust gas to nitrogen dioxide (NO 2 ). Compared to nitrogen monoxide, nitrogen dioxide is superior in selective reaction with hydrocarbon as a reducing agent in the reduction reaction by a reduction catalyst described later, so prior to the catalytic reduction of nitrogen oxides in the second stage, As described above, in the first stage, the removal rate of nitrogen oxides contained in the exhaust gas can be increased by previously oxidizing nitrogen monoxide to nitrogen dioxide.
[0011]
The oxidation catalyst, that is, the first catalyst is not particularly limited, but a catalyst made of a metal selected from platinum, manganese, palladium, iridium, ruthenium and copper or an oxide thereof is preferably used. . These metals or oxides thereof are usually used by being supported on an oxide having a large specific surface area, for example, a solid acid carrier such as alumina, silica, silica-alumina, zirconia, titania and zeolite. In order to support the metal or oxide thereof on such a carrier, an appropriate method such as a conventionally known ion exchange method or impregnation method may be used.
[0012]
The amount of the metal or its oxide supported on the carrier, that is, the ratio of the metal or its oxide to the weight of the metal or its oxide and the carrier depends on the reaction conditions under which the metal species and catalyst used are placed. Although not necessarily limited, it is usually in the range of 0.001 to 10% by weight and preferably in the range of 0.1 to 5% by weight in terms of metal. When the amount of the metal or oxide thereof supported on the support is less than 0.001% by weight, the ability to oxidize nitric oxide to nitrogen dioxide as described above is insufficient. However, even if the loading amount exceeds 10% by weight, the ability to oxidize nitric oxide to nitrogen dioxide does not increase correspondingly, which is disadvantageous from the viewpoint of economy.
[0013]
In the first stage, the space velocity when the exhaust gas containing nitric oxide is brought into contact with such a first catalyst is preferably as low as possible from the viewpoint of the oxidation rate. However, nitrogen monoxide is practically used. From the viewpoint of efficient oxidation, it is usually in the range of 50,000 to 500,000 hr −1 .
[0014]
According to the method of the present invention, after the exhaust gas is brought into contact with the first catalyst and nitrogen monoxide contained in the exhaust gas is changed to nitrogen dioxide, a hydrocarbon as a reducing agent is added to such exhaust gas, By bringing this into contact with the second catalyst, the nitrogen dioxide can be efficiently reduced to nitrogen, and thus the removal rate of nitrogen oxides in the exhaust gas can be increased.
[0015]
Examples of the reducing agent composed of the hydrocarbon include, for example, gaseous gases, hydrocarbon gases such as methane, ethane, propane, propylene, and butylene, and liquid substances such as pentane, hexane, octane, heptane, benzene, and toluene. Single component hydrocarbons such as xylene, mineral oil hydrocarbons such as gasoline, kerosene, light oil, and heavy oil can be used. In particular, in the present invention, among the above, lower alkenes such as ethylene, propylene, isobutylene, 1-butene, and 2-butene, lower alkanes such as propane and butane, light oil, and the like are preferably used as the reducing agent. These hydrocarbons may be used alone or in combination of two or more as required.
[0016]
The hydrocarbon as the reducing agent varies depending on the specific hydrocarbon used, but is usually 0 by molar ratio to the nitrogen oxide (substantially composed of nitrogen monoxide and nitrogen dioxide) in the exhaust gas. Used in the range of about 1-2. When the amount of hydrocarbon used is less than 0.1 in terms of molar ratio to nitrogen oxides, sufficient reduction activity cannot be obtained for nitrogen oxides, while when the molar ratio exceeds 2. Since the discharge amount of unreacted hydrocarbons increases, after the nitrogen oxide catalytic reduction treatment, a post-treatment for recovering it is necessary.
[0017]
Note that unburned or incompletely burned products such as fuel present in the exhaust gas, that is, hydrocarbons and particulates are also effective as the reducing agent, and these are also included in the hydrocarbon in the present invention. From this point of view, it can be said that the method of the present invention is useful as a method for reducing or removing hydrocarbons, particulates, and the like in exhaust gas.
[0018]
The second catalyst is selected from rhodium metal and rhodium oxide. These are usually used by being supported on a solid acid carrier such as an oxide having a large specific surface area, for example, alumina, silica, silica-alumina, zirconia, titania, zeolite and the like. In order to support rhodium metal or rhodium oxide on such a carrier, an appropriate method such as an ion exchange method or an impregnation method known in the art may be used, as in the case of the first catalyst.
[0019]
In the present invention, among the above-mentioned carriers, alumina is particularly preferably used as the carrier because it has excellent heat resistance and excellent loading effect. Among alumina, as described in JP-A-7-171347, the content of alkali metal and alkaline earth metal is 0.5% by weight or less, and it is formed from pores having a diameter of 60 angstroms or less. that a pore volume of 0.06 cm 3 / g or more, a pore volume formed from the following pore diameters 80 Å are particularly preferably used alumina is 0.1 cm 3 / g or more. Porous alumina having such a pore volume promotes moderate oxidation of the reducing agent, and in combination with the rhodium metal or rhodium oxide supported thereon, the nitrogen oxide is effectively catalytically reduced. can do.
[0020]
As described above, the second catalyst made of rhodium metal or rhodium oxide can be formed into various shapes such as a honeycomb shape and a spherical shape by itself or by supporting the second catalyst by a known forming method. Can be molded. In the molding, a molding aid, a molded body reinforcing body, inorganic fibers, an organic binder, and the like may be appropriately blended. The second catalyst can also be coated and supported by a wash coat method or the like on a previously formed inert base material. For example, the base material can be supported on a honeycomb structure made of clay such as cordierite. Furthermore, if necessary, it may be based on any conventionally known method for preparing other catalysts.
[0021]
The amount of rhodium metal or rhodium oxide supported on the carrier is preferably in the range of 0.01 to 1% by weight. When the supported amount is less than 0.01% by weight, the reduction activity of nitrogen oxides is not sufficient, while when it is more than 1% by weight, the oxidation activity is too high and the selectivity is poor. . According to the present invention, the amount of rhodium metal or rhodium oxide supported on the carrier is particularly preferably in the range of 0.05 to 0.5% by weight.
[0022]
In the second stage, the space velocity when the exhaust gas containing hydrocarbons together with nitrogen oxides mainly composed of nitrogen dioxide is brought into contact with such a second catalyst is usually in the range of 5000 to 50000 hr −1 . The catalyst in the second stage has lower oxidation activity than the catalyst in the first stage and is excellent in selectivity with nitrogen oxides. Therefore, in order to obtain a high denitration rate, the space velocity is preferably small. Usually, a space velocity in the above range is employed in practice. According to the method of the present invention, the reaction temperature in the first stage and the second stage is in the range of 150 to 450 ° C. If necessary, the reaction temperature may be changed in the first stage and the second stage.
[0023]
According to the present invention, as described above, in the first stage, the exhaust gas is brought into contact with the oxidation catalyst to oxidize nitrogen monoxide contained in the exhaust gas to nitrogen dioxide, and then hydrocarbons are added to such exhaust gas. As a second step, the exhaust gas is brought into contact with a nitrogen oxide reduction catalyst selected from rhodium metal and rhodium oxide to reduce nitrogen dioxide to nitrogen, so that nitrogen oxide can be stably stabilized even in a low temperature range. And it can reduce and decompose efficiently.
[0024]
【Example】
EXAMPLES The present invention will be described below with examples together with preparation examples of catalysts for each step, but the present invention is not limited to these examples.
[0025]
(1) Preparation Example 1 of First Catalyst
Chloroplatinic acid (H 2 PtCl 6 .6H 2 O) (5.31 g) was dissolved in ion-exchanged water (100 mL). 100 mL of γ-alumina (KHA-24 manufactured by Sumitomo Chemical Co., Ltd.) having an average particle diameter of 3 mm, which was previously dried at 120 ° C. for 24 hours, was added to the chloroplatinic acid aqueous solution and stirred for 30 minutes. The pores were sufficiently impregnated with a chloroplatinic acid aqueous solution.
[0026]
Next, γ-alumina is separated from the aqueous solution of chloroplatinic acid, and after removing the excess aqueous solution adhering to the surface, it is dried at 100 ° C. for 12 hours, and further calcined in air at 500 ° C. A catalyst (A-1) supported on alumina in a supported amount of 1% by weight was obtained.
[0027]
Preparation Example 2
A catalyst (A-2) in which manganese dioxide was supported on γ-alumina at a supported amount of 1% by weight was obtained in the same manner as in Preparation Example 1, except that 2.87 g of manganese nitrate was used instead of chloroplatinic acid. It was.
[0028]
Preparation Example 3
In the same manner as in Preparation Example 1, except that 3.3 g of palladium chloride (PdCl 2 ) was used instead of chloroplatinic acid, a catalyst (A- 3) was obtained.
[0029]
Preparation Example 4
In the same manner as in Preparation Example 1, except that 17.4 g of iridium chloride (IrCl 4 ) was used instead of chloroplatinic acid, a catalyst (A- 4) was obtained.
[0030]
Preparation Example 5
In the same manner as in Preparation Example 1, except that 4.1 g of ruthenium chloride (RuCl 3 ) was used in place of chloroplatinic acid, a catalyst (A- 5) was obtained.
[0031]
Preparation Example 6
1% by weight of cupric oxide in γ-alumina in the same manner as in Preparation Example 1, except that 2.42 g of copper nitrate (Cu (NO 3 ) 2 .3H 2 O) was used instead of chloroplatinic acid. A catalyst (A-6) supported in a supported amount was obtained.
[0032]
(2) Preparation Example 7 of Second Catalyst
0.64 g of rhodium nitrate (Rh (NO 3 ) 2 .2H 2 O) was dissolved in 100 mL of ion-exchanged water. 100 mL of γ-alumina (KHA-24 manufactured by Sumitomo Chemical Co., Ltd.) having an average particle diameter of 3 mm, which was previously dried at 120 ° C. for 24 hours, was added to the aqueous rhodium nitrate solution and stirred for 30 minutes. Was sufficiently impregnated with an aqueous rhodium nitrate solution.
[0033]
Next, γ-alumina is separated from the aqueous rhodium nitrate solution, and after removing the excess aqueous solution adhering to the surface, it is dried at 100 ° C. for 12 hours, and further calcined in air at 500 ° C., thereby converting rhodium into γ-alumina. A catalyst (B-1) supported at 0.1% by weight was obtained.
[0034]
Preparation Example 8
In Preparation Example 7, except that 0.06 g of rhodium nitrate was used, a catalyst (B-2) in which rhodium was supported on γ-alumina at a supported amount of 0.01% by weight was obtained in the same manner as in Preparation Example 8. It was.
[0035]
Preparation Example 9
In Preparation Example 7, except that 3.20 g of rhodium nitrate was used, a catalyst (B-3) in which rhodium was supported on γ-alumina at a supported amount of 0.5% by weight was obtained in the same manner as in Preparation Example 8. It was.
[0036]
Preparation Example 10
In Preparation Example 7, except that 6.40 g of rhodium nitrate was used, a catalyst (B-4) in which rhodium was supported on γ-alumina at a supported amount of 1.0% by weight was obtained in the same manner as in Preparation Example 8. It was.
[0037]
Examples 1 to 11 (evaluation test)
After the gas having the following composition is treated with the first catalyst (A-1 to 6) in the first stage, a reducing agent (hydrocarbon) is added to the gas, and the second catalyst (B -1 to 4) to perform nitrogen oxide catalytic reduction of the nitrogen oxide-containing gas. In the first stage, the conversion rate of nitrogen monoxide to nitrogen dioxide and the nitrogen oxidation after the second stage The removal rate of the object was determined by the chemical luminescence method. The results are shown in Tables 1 and 2.
[0038]
(Test conditions)
(1) Gas composition (first stage)
NO 500ppm
O 2 10% by volume
6% water
Nitrogen balance (2) Gas composition (second stage)
500 ppm of reducing agent (hydrocarbon) was added to the gas treated in the first stage. When light oil was used as the reducing agent, the light oil was C12 in terms of C. )
(3) Space velocity first stage 50000, 100,000 or 200000 (hr −1 )
Second stage 20000 or 50000 (hr -1 )
(4) Reaction temperature 250 ° C, 300 ° C, 350 ° C, 400 ° C or 450 ° C
[0039]
Comparative Examples 1 to 4 (Evaluation Test)
Either the nitrogen oxide-containing gas is in the first stage (after adding the reducing agent to the nitrogen oxide-containing gas and then treated only with an oxidation catalyst) or the second stage (after adding the reducing agent to the nitrogen oxide-containing gas) In the same manner as in the examples, the nitrogen oxide-containing gas was subjected to nitrogen oxide catalytic reduction, and the nitrogen oxide-containing gas was treated in the first stage. In the case of treatment only with nitrogen, the conversion rate of nitrogen oxide to nitrogen monoxide, and in the case where the nitrogen oxide-containing gas is treated only in the second stage, the removal rate of nitrogen oxide is indicated by chemical luminescence. Obtained by law. The results are shown in Tables 1 and 2.
[0040]
[Table 1]
Figure 0003791968
[0041]
[Table 2]
Figure 0003791968
[0042]
【The invention's effect】
As is apparent from the results shown in Tables 1 and 2, according to the method of the present invention, even in the coexistence of oxygen, sulfur oxides, and moisture, exhaust gas can be used in a low temperature range without using a large amount of reducing agent. The nitrogen oxides therein can be stably and efficiently catalytically reduced.

Claims (4)

排ガスに含まれる窒素酸化物を触媒の存在下に還元剤として炭化水素を用いて接触還元する方法において、第1段階として、排ガスを窒素酸化物酸化触媒に接触させて、排ガスに含まれる一酸化窒素(NO)を二酸化窒素(NO2)に酸化し、次いで、このような排ガスに炭化水素を加え、第2段階として、この排ガスをロジウム金属又はロジウム酸化物をアルミナに担持させてなる窒素酸化物還元触媒に接触させて、窒素酸化物を窒素に還元することを特徴とする窒素酸化物接触還元方法。In the method of catalytic reduction of nitrogen oxides contained in exhaust gas using hydrocarbons as a reducing agent in the presence of a catalyst, as a first step, the exhaust gas is brought into contact with a nitrogen oxide oxidation catalyst, and the monoxide contained in the exhaust gas Nitrogen (NO) is oxidized to nitrogen dioxide (NO 2 ), then hydrocarbons are added to such exhaust gas, and as a second stage, this exhaust gas is oxidized by supporting rhodium metal or rhodium oxide on alumina. in contact with an object reduction catalyst, catalytic reduction method of nitrogen oxides to nitrogen oxides which comprises reducing the nitrogen. 窒素酸化物酸化触媒が白金、マンガン、パラジウム、イリジウム、ルテニウム及び銅から選ばれる金属又はその酸化物からなる触媒である請求項1に記載の方法。The method according to claim 1, wherein the nitrogen oxide oxidation catalyst is a catalyst comprising a metal selected from platinum, manganese, palladium, iridium, ruthenium and copper or an oxide thereof. 炭化水素が軽油である請求項1に記載の方法。The process of claim 1 wherein the hydrocarbon is light oil. 第1段階及び第2段階において、150〜450℃の範囲の温度で排ガスを触媒に接触させる請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein in the first stage and the second stage, the exhaust gas is contacted with the catalyst at a temperature in the range of 150 to 450 ° C.
JP14399796A 1996-06-06 1996-06-06 Method for catalytic reduction of nitrogen oxides Expired - Fee Related JP3791968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14399796A JP3791968B2 (en) 1996-06-06 1996-06-06 Method for catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14399796A JP3791968B2 (en) 1996-06-06 1996-06-06 Method for catalytic reduction of nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH09323039A JPH09323039A (en) 1997-12-16
JP3791968B2 true JP3791968B2 (en) 2006-06-28

Family

ID=15351918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14399796A Expired - Fee Related JP3791968B2 (en) 1996-06-06 1996-06-06 Method for catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
JP (1) JP3791968B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262863A (en) * 1999-03-17 2000-09-26 Jisedai Haigas Shokubai Kenkyusho:Kk Exhaust gas cleaning catalyst combination device
JP4075292B2 (en) * 2000-07-24 2008-04-16 トヨタ自動車株式会社 Particulate purification catalyst
TWI449572B (en) * 2006-11-29 2014-08-21 Umicore Shokubai Japan Co Ltd Oxidation catalyst and the oxidation catalyst using an exhaust gas purification system
JP4412615B2 (en) 2006-12-05 2010-02-10 Tanakaホールディングス株式会社 Exhaust gas purification catalyst and method for producing the same
DE102009006404B3 (en) * 2009-01-28 2010-08-26 Süd-Chemie AG Diesel oxidation catalyst with good low temperature activity
JP5581884B2 (en) * 2010-08-06 2014-09-03 株式会社Gsユアサ Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell

Also Published As

Publication number Publication date
JPH09323039A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JP3430422B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
EP0781592B1 (en) Exhaust gas purification method by reduction of nitrogen oxides
JPH11207190A (en) Catalyst for purification of exhaust gas and its production
JP3791968B2 (en) Method for catalytic reduction of nitrogen oxides
JPH07108136A (en) Denitrification method for methane-containing exhaust gas
JPH06126134A (en) Method for purification of nitrogen oxide in exhaust gas
JPH06315635A (en) Catalytic structure for nitrogen oxide catalytic reduction
JP2609983B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JPH09206559A (en) Contact reducing method of nitrogen oxides
JP2618316B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP3732124B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JP3781830B2 (en) Method for catalytic reduction of nitrogen oxides
JP3495832B2 (en) Method for catalytic reduction of nitrogen oxides
JP3745988B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP3924341B2 (en) Method for catalytic reduction of nitrogen oxides
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
JPH11114420A (en) Catalyst for cleaning exhaust gas and method
JP2007136329A (en) Method for catalytic reduction of nitrogen oxide in exhaust gas
JPH09201515A (en) Catalytic reduction method of nitrogen oxides
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JP3315039B2 (en) Reduction and purification method of exhaust gas containing nitrogen oxides
JP3391569B2 (en) Exhaust gas purification method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19960610

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 19971104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees