JPH10201082A - Automatic section switch for distribution line - Google Patents

Automatic section switch for distribution line

Info

Publication number
JPH10201082A
JPH10201082A JP9014571A JP1457197A JPH10201082A JP H10201082 A JPH10201082 A JP H10201082A JP 9014571 A JP9014571 A JP 9014571A JP 1457197 A JP1457197 A JP 1457197A JP H10201082 A JPH10201082 A JP H10201082A
Authority
JP
Japan
Prior art keywords
section
overcurrent
phase
distribution line
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9014571A
Other languages
Japanese (ja)
Other versions
JP3141806B2 (en
Inventor
Toshiro Kajima
俊郎 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP09014571A priority Critical patent/JP3141806B2/en
Publication of JPH10201082A publication Critical patent/JPH10201082A/en
Application granted granted Critical
Publication of JP3141806B2 publication Critical patent/JP3141806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Abstract

PROBLEM TO BE SOLVED: To disconnect the faulty section of a grounded loop system distribution line automatically by making a decision that its own section is faulty when the absolute value of phase difference of overcurrent generating phase between its own section and an adjacent section on the load side exceeds a specified value thereby opening a section switch before the distribution line is recovered. SOLUTION: When a distribution line 13 is interrupted through a control processing section 34, serial interface 40 and a communication modem 42, overcurrent information and phase difference information is received from a memory 35 in the following section on the load side through communication with a switch controller 22 in that section when the overcurrent information is present in its own section and occurrence of overcurrent is detected, the control processing section 34 determines the absolute value of difference between a phase difference of overcurrent generating phase of its own section and a phase difference of overcurrent generating phase of the following section on the load side stored in the memory 35 and makes a decision that its own section is faulty when the absolute value exceeds 90 deg.. Consequently, a section switch 20 is opened before the distribution line is recharged and recovered along with a control output circuit 38 and an open coil 29.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上流側及び下流側
から給電される常閉ループの直接接地系統或いは低抵抗
接地系統の配電線の区分に好適な配電線自動区分開閉装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic distribution line switchgear suitable for dividing distribution lines of a normally closed loop direct grounding system or a low resistance grounding system supplied with power from upstream and downstream sides.

【0002】[0002]

【従来の技術】従来、中性点が直接接地或いは低抵抗接
地された接地系統は非ループ(樹枝状)に形成され、こ
の場合、図21に示すように変電所1の配電トランス2
の2次側に遮断器3を介して3相の配電線4が接続され
る。
2. Description of the Related Art Conventionally, a grounding system in which a neutral point is directly grounded or low-resistance grounded is formed in a non-loop (dendritic). In this case, as shown in FIG.
Is connected to a three-phase distribution line 4 via a circuit breaker 3.

【0003】この配電線4は複数の配電線自動区分開閉
装置5の区分開閉器6により、上流側(変電所側)から
順の複数の区間#0,#1,#2,#3,…に区分され
る。
The distribution line 4 is divided into a plurality of sections # 0, # 1, # 2, # 3,... From the upstream side (substation side) by a section switch 6 of a plurality of distribution line automatic section switchgears 5. It is divided into

【0004】そして、各自動区分開閉装置5は、区分開
閉器6と,この開閉器6を開閉制御する開閉器制御装置
7とからなり、この開閉器制御装置7の開閉制御により
各区分開閉器6の負荷側のそれぞれの自区間#1,#
2,#3,…が接離自在に系統に接続される。
Each automatic section switch 5 includes a section switch 6 and a switch controller 7 for controlling the opening and closing of the switch 6. Each section switch is controlled by the switch control of the switch controller 7. 6 own sections # 1 and # on the load side
2, # 3,... Are connected to the system so that they can be freely separated.

【0005】この系統のいずれかの区間に地絡,短絡の
事故等が発生して変電所1の遮断器3が開放され、配電
線4が停電すると、従来、つぎに説明する試送電により
変電所の遮断器を再々閉路して事故区間より上流側の健
全区間を復旧することが一般に行われる。
[0005] When an accident such as a ground fault or a short circuit occurs in any section of this system, the circuit breaker 3 of the substation 1 is opened, and the power distribution line 4 is cut off, the substation is conventionally transformed by test transmission described below. It is common practice to reclose the circuit breaker at the site and restore a healthy section upstream of the accident section.

【0006】例えば図22に示すように、区間#2の事
故点P1 で地絡又は短絡の事故が発生すると、過電流通
電に基づき、遮断器3が直ちに開放されて配電線4が事
故停電になる。また、各区分開閉器6は上流側の電圧消
失に基づいて開放される。
[0006] For example, as shown in FIG. 22, when the land絡又an accident point P 1 of the section # 2 accident short circuit occurs, on the basis of the overcurrent conduction, distribution lines 4 accident blackout breaker 3 is immediately released become. In addition, each of the segment switches 6 is opened based on the disappearance of the voltage on the upstream side.

【0007】そして、事故停電の発生から一定時間が経
過すると、遮断器3が再閉路し、この再閉路後、各区分
開閉器6がそれぞれの上流側の復電に基づいて最上流の
区分開閉器6から順に時限投入される。
[0007] When a certain period of time has passed since the occurrence of the accidental power failure, the circuit breaker 3 is reclosed. It is timed sequentially from the vessel 6.

【0008】この時限投入により区間#2の区分開閉器
6が再閉路すると、遮断器3が再び開放されて配電線4
が停電する。
When the section switch 6 of the section # 2 is reclosed by this timed closing, the circuit breaker 3 is opened again and the distribution line 4
Power outage.

【0009】このとき、区間#2の区分開閉器6は、そ
の上流側の復電から事故検出時限内に開放されて開放状
態にロックされる。
At this time, the section switch 6 in the section # 2 is opened and locked in the open state within the time period for detecting an accident from the power recovery on the upstream side.

【0010】そして、停電から一定時間後に遮断器3が
再々閉路し、この再々閉路に基づき、再閉路時と同様、
区間#1の区分開閉器6が最初に時限投入され、その負
荷側の区間#1が復電する。
The circuit breaker 3 is reclosed after a certain period of time from the power failure, and based on the reclosed circuit, the circuit breaker 3 is operated in the same manner as when the circuit is closed again.
The section switch 6 in the section # 1 is first turned on for a time period, and the section # 1 on the load side is restored.

【0011】さらに、区間#1の復電から投入時限が経
過しても、このとき、事故区間#2の区分開閉器6が開
放状態にロックされているため、この区分開閉器6は投
入されず、事故区間#2が系統から切離される。
Further, even if the closing time elapses after the restoration of power in section # 1, since the sectional switch 6 in the accident section # 2 is locked in the open state at this time, the sectional switch 6 is closed. Accident section # 2 is disconnected from the system.

【0012】この事故区間#2の切離しにより、その上
流側の健全区間#0,#1が復電し、試送電による健全
区間の復旧が完了する。
As a result of the separation of the accident section # 2, the sound sections # 0 and # 1 on the upstream side are restored, and the restoration of the sound section by test transmission is completed.

【0013】また、従来は電力会社の営業所や配電系統
制御センタ等のいわゆる遠方監視制御の基地局設備によ
り、事故区間を特定して事故対策等を施すため、各開閉
器制御装置7が通信線9を介して例えば配電系統制御セ
ンタ10の通信装置11に接続され、この通信装置11
にセンタ10の監視制御装置12が接続される。
Conventionally, in order to identify an accident section and take measures against the accident by means of base station equipment for so-called distant monitoring and control such as a sales office of a power company or a distribution system control center, each switch control device 7 communicates. For example, the communication device 11 of the distribution system control center 10 is connected via the line 9 to the communication device 11.
Is connected to the monitoring control device 12 of the center 10.

【0014】そして、この監視制御装置12と各開閉器
制御装置7とが、監視制御装置12を基地局(親局),
各開閉器制御装置7を子局として、ポーリング通信によ
り情報をやりとりし、この情報のやりとりにより監視制
御装置12は各開閉器制御装置7の3相変流器等のセン
サ8による計測結果等の記憶情報を事故情報として収集
し、この収集の結果に基づき、事故区間を判別して判別
結果のモニタ表示等を行う。
The monitoring control device 12 and each switch control device 7 connect the monitoring control device 12 to a base station (master station),
Using each switch control device 7 as a slave station, information is exchanged by polling communication, and by exchanging this information, the monitoring control device 12 obtains the measurement results and the like by the sensors 8 such as the three-phase current transformer of each switch control device 7. The stored information is collected as accident information, the accident section is determined based on the result of the collection, and a monitor display of the determination result is performed.

【0015】ところで、前記試送電により遮断器3を再
々閉路して事故区間#2を切離し、健全区間#0,#1
を復旧する場合、事故停電後直ちに健全区間#0,#1
を復旧することができず、しかも、健全区間#0,#1
が事故停電後の試送電によっても停電し、復旧までに停
電がくり返し発生する。
By the way, the circuit breaker 3 is closed again by the test power transmission to separate the accident section # 2, and the sound sections # 0, # 1
To restore the normal sections # 0 and # 1 immediately after the power failure
Cannot be restored, and healthy sections # 0 and # 1
However, a power outage also occurs due to test transmission after an accidental power outage, and power outages occur repeatedly before recovery.

【0016】とくに、直接接地系統或いは低抵抗接地系
統においては、線間短絡よりもはるかに発生頻度の高い
一線地絡事故でも大きな事故電流が流れるため、前述の
様に事故区間の区分開閉器を投入して事故点を検出する
試充電方式では、区分開閉器の負担が大きくなる。
Particularly, in a direct grounding system or a low-resistance grounding system, a large fault current flows even in a single-line ground fault, which occurs much more frequently than a short circuit between lines. In the trial charging method in which the accident point is detected by being inserted, the load on the sectional switch becomes large.

【0017】したがって、区分開閉器の開閉回数を少な
くし、事故区間の区分開閉器を投入しなくてよい方式が
望まれる。
Therefore, it is desired to have a system in which the number of times of opening and closing of the sectional switches is reduced, and the sectional switches in the accident section need not be turned on.

【0018】そこで、つぎに説明するように事故停電後
遮断器3が再閉路するまでに、配電系統制御センタ10
等の遠方監視制御により事故区間#2の区分開閉器6を
開放し、試送電を行わずに健全区間#0,#1を復旧す
ることも考案されている。
Therefore, as described below, the distribution system control center 10 is required until the circuit breaker 3 is closed again after the power failure.
It is also proposed to open the sectional switch 6 in the accident section # 2 by remote monitoring control such as the above and restore the healthy sections # 0 and # 1 without performing test power transmission.

【0019】すなわち、各開閉器制御装置7に電池電源
等の系統停電時のバックアップ電源を備え、例えば図2
2の事故点P1 で事故が発生すると、同図に示すよう
に、配電線4の事故停電中に各開閉器制御装置7から通
信線9を介して監視制御装置12にそれぞれの記憶情報
(#1の情報,#2の情報,…)を伝送する。
That is, each switch control device 7 is provided with a backup power source such as a battery power source at the time of a system power failure.
When an accident occurs at the accident point P 1 in FIG. 2, as shown in FIG. 2, during the accidental power failure of the distribution line 4, each switch controller 7 sends the stored information to the monitoring controller 12 via the communication line 9. # 1 information, # 2 information,...) Are transmitted.

【0020】さらに、この伝送に基づき監視制御装置1
2により事故区間#2を特定し、図23に示すように、
事故停電中に監視制御装置12から通信線9を介して事
故区間#2の開閉器制御装置7に開放制御を指令し、こ
の指令に基づいて事故区間#2の区分開閉器6を開放状
態にロックする。
Further, based on this transmission, the monitoring control device 1
2 to identify accident section # 2, as shown in FIG.
During the power failure of the accident, the supervisory control device 12 instructs the switch control device 7 in the accident section # 2 to perform opening control via the communication line 9, and based on this command, the section switch 6 in the accident section # 2 is opened. Lock.

【0021】そして、遮断器3が再閉路すると、図24
に示すように、健全区間#0,#1を復旧する。
When the circuit breaker 3 is closed again, FIG.
As shown in (1), the healthy sections # 0 and # 1 are restored.

【0022】なお、図21〜図24において、配電線4
等の太線は充電状態にあることを示す。
In FIGS. 21 to 24, the distribution line 4
A bold line indicates that the battery is in a charged state.

【0023】[0023]

【発明が解決しようとする課題】前記配電線4等の接地
系統の配電線は、その上流側及び下流側から同時に給電
する同一バンク又は異バンクのループ系統に形成するこ
とができず、ほとんどの場合、前述のいわゆる1電源の
非ループ系統に形成される。
The distribution line of the grounding system such as the distribution line 4 cannot be formed in a loop system of the same bank or a different bank which simultaneously supplies power from the upstream side and the downstream side. In this case, it is formed in the so-called one-power-supply non-loop system described above.

【0024】これは、ループ系統に形成すると、前記の
試送電による事故区間の切離しができず、また、事故区
間の負荷側も過電流が流れるため、各区間の開閉器制御
装置の記憶情報から事故区間を特定することも困難であ
り、事故区間を自動的に切離すことができないからであ
る。
This is because if the faulty section is formed in a loop system, the faulty section cannot be separated by the test power transmission, and an overcurrent also flows on the load side of the faulty section. It is also difficult to identify the accident section, and the accident section cannot be automatically separated.

【0025】ところで、前記従来の直接接地系統或い
は、低抵抗接地系統の非ループ系統においても、前記の
配電系統制御センタ10等の基地局設備の遠方監視制御
により健全区間を復旧する場合は、この復旧に事故区間
の自動判定機能等を有するコンピュータ構成の大規模な
監視制御装置12を備えた基地局設備を要する不都合が
ある。
By the way, even in the conventional direct grounding system or the non-loop system of the low resistance grounding system, when a healthy section is restored by remote monitoring control of base station equipment such as the distribution system control center 10 described above, There is an inconvenience that the recovery requires a base station facility including a large-scale monitoring and control device 12 having a computer configuration having an automatic determination function of an accident section and the like.

【0026】しかも、例えば国内においては、前記基地
局設備を各都道府県に数個所設置するのが一般的であ
り、この場合、配電線4のような配電線網が変電所を中
心にして都市部では半径5〜10Km,郡部では半径50
Km程度の規模に形成されるため、基地局設備と配電線網
との距離が50Km〜100Kmをこえるケースも多々生
じ、基地局設備と配電線網とを結ぶ長い通信路を要し、
通信線9が極めて長くなり、通信設備の多大な工事等を
要するとともに、通信電力として大電力が必要になる。
In addition, for example, in Japan, it is general that several base station facilities are installed in each prefecture. In this case, a distribution network such as the distribution line 4 is mainly located in suburban areas. 5-10km radius in the district, 50 radius in the county
Because it is formed on a scale of about Km, there are many cases where the distance between the base station equipment and the distribution network exceeds 50 km to 100 km, and a long communication path connecting the base station equipment and the distribution network is required.
The communication line 9 becomes extremely long, requiring a great deal of construction of communication equipment and the like, and also requires large power as communication power.

【0027】なお、通信線9による有線通信の代わりに
無線通信を採用したとしても、配電系統制御センタ10
等の基地局設備には基地局用の大電力の通信設備が必要
である。
It should be noted that even if wireless communication is adopted in place of the wired communication by the communication line 9, the distribution system control center 10
Such base station equipment requires high power communication equipment for the base station.

【0028】また、通信線9を省くため、配電線4を利
用した配電線搬送方式で通信を行うと、そのために必要
な通信電力は数メガワットのもの大電力になる。
Further, if communication is performed by a distribution line transport system using the distribution line 4 in order to omit the communication line 9, the communication power required for that will be as large as several megawatts.

【0029】本発明は、前記従来の遠方監視制御の基地
局設備を設けたり、試送電を行うことなく、直接接地系
統或いは、低抵抗接地系統のループ系統の配電線の事故
区間を自動的に切離し、事故区間より上流の健全区間を
迅速に復旧し得る配電線自動区分開閉装置を提供し、直
接接地系統或いは、低抵抗接地系統のループ系統の自動
区分による事故区間の切離しを実現することを課題とす
る。
According to the present invention, an accidental section of a distribution line of a direct grounding system or a loop system of a low-resistance grounding system can be automatically performed without providing the conventional base station equipment for remote monitoring and control or performing test power transmission. To provide an automatic distribution line switchgear capable of separating and quickly restoring a healthy section upstream of the accident section and realizing separation of the accident section by automatic classification of a direct grounding system or a loop system of a low resistance grounding system. Make it an issue.

【0030】[0030]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の配電線自動区分開閉装置においては、開
閉器制御装置に、配電線の停電中の動作電源を形成する
バックアップ電源と、区分開閉器の負荷側の自区間の各
相電流を計測する手段と、地絡又は短絡の事故により各
相電流のいずれかの計測結果が設定値より大きくなった
ときに過電流の発生を検出して各相の過電流の情報を記
憶する手段と、事故の発生前の配電線の所定の2相の線
間電圧と過電流の発生を検出したときの過電流発生相の
相電流との位相差の情報を記憶する手段と、過電流の発
生の検出に基づき,配電線が停電する間に自区間の負荷
側の隣りの区間の開閉器制御装置と通信して負荷側の隣
りの区間の過電流の情報及び位相差の情報を受信する手
段と、自区間の過電流発生相の位相差の記憶値と負荷側
の隣りの区間の当該相の位相差の記憶値との差の絶対値
が90°より大きくなるときに自区間事故と判定する手
段と、自区間事故の判定により配電線が復電する前に区
分開閉器を開放する手段とを備える。
In order to solve the above-mentioned problems, in an automatic distribution line switchgear of the present invention, a switch control device includes a backup power supply for forming an operation power supply during a power failure of a distribution line. Means for measuring each phase current in its own section on the load side of the classifying switch, and the occurrence of overcurrent when the measurement result of each phase current exceeds the set value due to ground fault or short circuit accident Means for detecting and storing information of overcurrent of each phase, and the phase current of the overcurrent generation phase when the occurrence of overcurrent and the predetermined two-phase line voltage of the distribution line before the occurrence of the accident is detected. Means for storing information on the phase difference between the power supply and the switch control device in the section adjacent to the load side of the section during the power failure of the distribution line based on the detection of the occurrence of the overcurrent. Means for receiving information on the overcurrent of the section and information on the phase difference; Means for judging the own section fault when the absolute value of the difference between the stored value of the phase difference of the flow generation phase and the stored value of the phase difference of the phase in the adjacent section on the load side is greater than 90 °; Means for opening the sectional switch before the distribution line is restored by the judgment of the accident.

【0031】したがって、直接接地系統或いは、低抵抗
接地系統のループ系統の配電線のいずれかの区間に地絡
又は短絡の事故が発生し、配電線の事故相が過電流にな
ると、開閉器制御装置は過電流の発生を検出して各相の
過電流の情報及び所定の2相の線間電圧を基準にしたこ
の電圧と過電流相の相電流の位相との位相差の情報を記
憶する。
Therefore, if a ground fault or short circuit occurs in any section of the distribution line of the direct grounding system or the loop system of the low resistance grounding system and the fault phase of the distribution line becomes an overcurrent, the switch control is performed. The device detects the occurrence of overcurrent and stores the information of the overcurrent of each phase and the information of the phase difference between this voltage and the phase current of the overcurrent phase based on a predetermined two-phase line voltage. .

【0032】このとき、過電流は、事故区間及びその上
流の区間では下流側(負荷側)に流れ、事故区間より負
荷側の区間では上流側に流れ、事故直前の配電線の所定
の2相の線間電圧を基準にしたこの電圧と過電流の位相
との位相差は、事故区間及びその上流の区間と,事故区
間より負荷側の区間とで向きがほぼ正反対となることか
ら、180゜近く異なることとなる。
At this time, the overcurrent flows to the downstream side (load side) in the fault section and the section upstream thereof, flows to the upstream side in the section on the load side from the fault section, and the predetermined two-phase current of the distribution line immediately before the fault. The phase difference between this voltage and the phase of the overcurrent based on the line voltage is 180 ° because the directions are almost opposite between the fault section and the section upstream thereof and the section on the load side of the fault section. It will be different soon.

【0033】そして、配電線の事故停電中に、負荷側の
隣りの区間の開閉器制御装置との通信により、負荷側の
隣りの区間の過電流の情報及びその線間電圧との位相差
の情報を受信し、同じ相(過電流相)の自区間の位相差
の記憶値と負荷側の隣りの区間の位相差の記憶値との差
の絶対値を求めると、自区間で事故が発生したときの
み、その差の絶対値が90°より大きくなり、このこと
から、自区間事故か否かが正確に判定される。
Then, during an accidental power outage of the distribution line, the communication with the switch control device in the adjacent section on the load side provides information on overcurrent in the adjacent section on the load side and the phase difference between the information and the line voltage. When the information is received and the absolute value of the difference between the stored value of the phase difference of the own section of the same phase (overcurrent phase) and the stored value of the phase difference of the adjacent section on the load side is found, an accident occurs in the own section. Only when this occurs, the absolute value of the difference becomes larger than 90 °, and from this, it is accurately determined whether or not the own section accident has occurred.

【0034】さらに、自区間事故であれば配電線が復電
する前に、自区間の区分開閉器を開放するため、事故停
電後、変電所の遮断器が再閉路されて配電線が復電する
までに、事故区間の区分開閉器が開放されて事故区間が
自動的に上流側から切離され、配電線の復電と同時に、
事故区間より上流側の健全区間が復旧する。
Further, in the case of a local section accident, before the distribution line is restored, the sectional switchgear of the own section is opened, so that after a power failure, the circuit breaker of the substation is closed again and the distribution line is restored. By then, the section switch of the accident section is opened and the accident section is automatically disconnected from the upstream side,
A healthy section upstream of the accident section will be restored.

【0035】この場合、配電線の事故停電後、従来の試
送電等を行うことなく、迅速に上流の健全区間が復旧
し、しかも、負荷側の隣りの区間の開閉器制御装置と通
信するのみであるため、従来の遠方監視制御の大規模な
基地局設備やその通信設備は不要である。
In this case, after an accidental power outage of the distribution line, the upstream healthy section is quickly restored without performing conventional test power transmission and the like, and only communicates with the switch control device in the adjacent section on the load side. Therefore, the conventional large-scale base station equipment for remote monitoring control and its communication equipment are unnecessary.

【0036】そのため、従来の試送電等を行うことな
く、遠方監視制御の大規模な基地局設備及びその通信設
備等を備えることもなく、隣りの区間の開閉器制御装置
との通信のみにより、従来は行えなかった接地されたル
ープ系統の配電線の事故区間の自動的な切離しが行え、
この切離しにより上流の健全区間を迅速に復旧すること
ができる。
Therefore, without performing conventional test power transmission and the like, without providing a large-scale base station facility for remote monitoring control and its communication facility, etc., only communication with the switch control device in an adjacent section is performed. Automatic disconnection of the accident section of the distribution line of the grounded loop system, which could not be done conventionally,
By this separation, the upstream healthy section can be quickly restored.

【0037】[0037]

【発明の実施の形態】本発明の実施の1形態につき、図
1ないし図20を参照して説明する。まず、本形態の接
地されたループ系統は図6に示すように構成され、3相
の配電線13は上流側の端部が変電所14の遮断器15
に接続され、下流側の端部が変電所16の遮断器17に
接続され、変電所14の配電トランス18の2次側の系
統電源が遮断器15を介して給電され、同時に、変電所
16の配電トランス19の2次側の系統電源が遮断器1
7を介して給電される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. First, the grounded loop system of the present embodiment is configured as shown in FIG. 6, and the three-phase distribution line 13 has a circuit breaker 15 of the substation 14 at the upstream end.
The downstream end is connected to the circuit breaker 17 of the substation 16, and the secondary system power of the distribution transformer 18 of the substation 14 is supplied with power through the circuit breaker 15. System power supply on the secondary side of the power distribution transformer 19 is
7.

【0038】なお、変電所14,16は同一又は異なる
バンクの変電所であり、配電トランス18,19は同一
又は異なる上流系統から給電される。
The substations 14 and 16 are substations of the same or different banks, and the power distribution transformers 18 and 19 are supplied with power from the same or different upstream systems.

【0039】そして、配電線13は複数の配電線自動区
分開閉装置20の区分開閉器21により、例えば5区間
#0,#1,#2,#3,#4に区分され、各区分開閉
器21の負荷側の区間#1〜#4が各開閉装置20の自
区間になる。
The distribution line 13 is divided into, for example, five sections # 0, # 1, # 2, # 3, and # 4 by the division switch 21 of the automatic distribution line switchgear 20. The sections # 1 to # 4 on the load side of 21 are the own sections of each switching device 20.

【0040】さらに、各区分開閉器21は各自動区分開
閉装置20の開閉器制御装置22により開閉制御され、
各開閉器制御装置22は通信線23を介して負荷側の隣
りの区間#2〜#4の開閉器制御装置22と通信する。
Further, each section switch 21 is controlled to open and close by a switch controller 22 of each automatic section switch 20.
Each switch control device 22 communicates via the communication line 23 with the switch control devices 22 in the adjacent sections # 2 to # 4 on the load side.

【0041】また、各区分開閉器21の負荷側近傍に、
それぞれの負荷側自区間#1〜#4の系統電流を相毎に
計測する3相変流器構成の電流センサ24が設けられ、
このセンサ24の計測信号は各自動区分開閉装置20の
開閉器制御装置22に供給される。
Further, in the vicinity of the load side of each section switch 21,
A current sensor 24 having a three-phase current transformer configuration for measuring the system current of each of the load-side own sections # 1 to # 4 for each phase is provided.
The measurement signal of this sensor 24 is supplied to the switch control device 22 of each automatic section switchgear 20.

【0042】そして、本形態の接地系統の場合、各区分
開閉器21の開閉制御に図20の配電系統制御センタ1
0等の遠方監視制御の基地局設備を用いないため、同図
の配電系統制御センタ10は省かれ、このセンタ10と
自動区分開閉装置5との間の通信路に相当する通信路は
設けられていない。
In the case of the grounding system according to the present embodiment, the distribution system control center 1 shown in FIG.
Since the base station equipment for remote monitoring control such as 0 is not used, the distribution system control center 10 in the figure is omitted, and a communication path corresponding to the communication path between the center 10 and the automatic section switchgear 5 is provided. Not.

【0043】つぎに、各自動区分開閉装置20の区分開
閉器21,開閉器制御装置22及び電流センサ24は、
区間#2の配電線自動区分開閉装置20を示した図1の
ように構成される。
Next, the segment switch 21, the switch controller 22 and the current sensor 24 of each automatic segment switch 20 are
The distribution line automatic section switchgear 20 in section # 2 is configured as shown in FIG.

【0044】そして、区分開閉器21は、配電線13の
A,B,Cの各相毎の連動する主回路接点25a,25
b,25cと、これらの接点25a〜25cに連動する
表示用補助接点26と、各接点25a〜25c,26の
投入コイル27,開放コイル28とを備える。
The sectional switch 21 is connected to the main circuit contacts 25a, 25 that are linked to each other for each of the phases A, B, and C of the distribution line 13.
b, 25c, an auxiliary display contact 26 interlocked with these contacts 25a to 25c, and a closing coil 27 and an open coil 28 of each of the contacts 25a to 25c, 26.

【0045】また、開閉器制御装置22は、配電線13
の所定の2相,例えばA,C相の線間電圧が制御用トラ
ンス29により単相の駆動電源(制御電源)に加工され
て電源入力回路30に供給され、この電源入力回路30
から装置内各部に電源が供給されて動作する。
The switch control device 22 is connected to the distribution line 13.
Are processed into a single-phase drive power supply (control power supply) by a control transformer 29 and supplied to a power supply input circuit 30.
Power is supplied to each part in the device from the device to operate.

【0046】さらに、電源入力回路30にバックアップ
電源31の停電バックアップ回路32が接続され、配電
線13の系統電源が健全な通常は、制御用トランス30
から電源入力回路30,停電バックアップ回路32を介
してバックアップ電源31の2次電池33が充電され、
配電線13が地絡事故等で停電すると、2次電池33か
ら停電バックアップ回路32,電源入力回路30を介し
て装置内各部に電源が給電され、この給電により開閉器
制御装置22は配電線13の停電中にも動作する。
Further, a power failure backup circuit 32 of a backup power supply 31 is connected to the power supply input circuit 30, and the control transformer 30
, The secondary battery 33 of the backup power supply 31 is charged via the power input circuit 30 and the power failure backup circuit 32,
When a power failure occurs in the distribution line 13 due to a ground fault or the like, power is supplied from the secondary battery 33 to each unit in the device via the power failure backup circuit 32 and the power supply input circuit 30. Also works during a power outage.

【0047】そして、開閉器制御装置22はマイクロコ
ンピュータ構成の制御処理部34にメモリ35,電流計
測回路36,電圧計測回路37,制御出力回路38,表
示入力回路39及び通信用のシリアルインタフェイス4
0等がバス結合され、制御処理部34により図2,図
3,図4の事故監視制御処理を実行する。
The switch control device 22 includes a memory 35, a current measurement circuit 36, a voltage measurement circuit 37, a control output circuit 38, a display input circuit 39, and a communication serial interface 4 in a control processing section 34 having a microcomputer configuration.
0 and the like are connected by a bus, and the control processing unit 34 executes the accident monitoring control processing shown in FIGS.

【0048】このとき、電流センサ24のA,B,C各
相の変流器41a,41b,41cは自区間#1〜#4
の各相電流を計測し、電流計測回路36は変流器41a
〜41cの各相の時々刻々の計測結果の情報を制御処理
部34に供給し、制御処理部34は自区間#1〜#4の
各相電流を監視する。
At this time, the current transformers 41a, 41b, 41c of the respective phases A, B, C of the current sensor 24 are connected to their own sections # 1 to # 4.
Current measurement circuit 36 measures the current of each current
The information of the instantaneous measurement result of each phase of to 41c is supplied to the control processing unit 34, and the control processing unit 34 monitors each phase current of the own section # 1 to # 4.

【0049】また、電圧計測回路37は制御トランス2
9を介したA,C相の線間電圧を計測してその情報を制
御処理部34に供給し、制御処理部34はA,C相の線
間電圧を監視する。
The voltage measuring circuit 37 is connected to the control transformer 2
9 and supplies the information to the control processing unit 34. The control processing unit 34 monitors the line voltages of the A and C phases.

【0050】そして、制御処理部34は各相電流と過流
検出の設定値とを比較し、地絡又は短絡の事故が発生し
ていずれかの相の電流(相電流)が設定値より大きくな
ると、過電流の発生を検出してメモリ35に過電流発生
相及びその相電流の位相角等の過電流の情報を記憶す
る。
Then, the control processing section 34 compares each phase current with the set value for overcurrent detection, and when a ground fault or short circuit occurs, the current (phase current) of one of the phases becomes larger than the set value. Then, the occurrence of the overcurrent is detected, and information of the overcurrent such as the overcurrent occurrence phase and the phase angle of the phase current is stored in the memory 35.

【0051】また、A,C相の線間電圧の位相角の情報
を例えば最新の数サイクルにわたって内部のレジスタ等
に保持して記憶し、事故が発生して過電流の発生を検出
すると、前記レジスタ等に保持した数サイクル前(事故
直前)の線間電圧の情報を読出し、この線間電圧を基準
したベクトル演算により、この電圧の位相角と過電流発
生相の過電流状態の相電流の位相角との位相差を求め、
この位相差の情報もメモリ35に記憶する。
Further, information on the phase angles of the line voltages of the A and C phases is stored and stored in an internal register or the like over the latest several cycles, for example. The information of the line voltage several cycles before (immediately before the accident) held in a register or the like is read, and the vector angle based on the line voltage is used to calculate the phase angle of this voltage and the phase current in the overcurrent state of the overcurrent generation phase. Find the phase difference with the phase angle,
This phase difference information is also stored in the memory 35.

【0052】なお、線間電圧の位相角の情報,各相電流
の大きさ及び位相角の情報は、例えば周知のデジタル波
形処理により、線間電圧,各相電流をそれぞれサンプリ
ングしてフーリエ積分し、それぞれの波形をフーリエ解
析して得られる。
The phase angle information of the line voltage, the magnitude and the phase angle of each phase current are sampled by the well-known digital waveform processing, and the line voltage and each phase current are sampled and Fourier-integrated. , Can be obtained by Fourier analysis of the respective waveforms.

【0053】つぎに、制御出力回路38は制御処理部3
4の制御により、区分開閉器21の投入コイル27,開
放コイル28を駆動して区分開閉器21を投入,開放す
る。
Next, the control output circuit 38 controls the control processing unit 3
Under the control of 4, the closing coil 27 and the opening coil 28 of the section switch 21 are driven to turn on and open the section switch 21.

【0054】また、表示入力回路39に表示用補助接点
26の接点信号が供給され、この接点信号により制御処
理部34は区分開閉器21の開閉状態を把握する。
Further, a contact signal of the auxiliary display contact 26 is supplied to the display input circuit 39, and the control processing section 34 grasps the open / close state of the sectional switch 21 based on the contact signal.

【0055】さらに、シリアルインタフェース40は通
信モデム42を介して通信線23に接続され、各区間#
1〜#4の開閉器制御装置22が通信線23を介してそ
れぞれの負荷側の隣りの区間(以下負荷側次区間とい
う)#2,#3,#4の開閉器制御装置22と通信す
る。
Further, the serial interface 40 is connected to the communication line 23 via the communication modem 42, and each section #
The switch control devices 22 of # 1 to # 4 communicate with the switch control devices 22 of adjacent sections (hereinafter referred to as load-side next sections) # 2, # 3, and # 4 via respective communication lines 23. .

【0056】そして、制御処理部34,シリアルインタ
フェース40,通信モデム42により配電線13が停電
したときに負荷側次区間の開閉器制御装置22と通信し
て負荷側次区間のメモリ35過電流の情報及び位相差の
情報を受信する手段が形成される。
Then, when the power distribution line 13 is cut off by the control processing unit 34, the serial interface 40, and the communication modem 42, the control unit 34 communicates with the switch control device 22 in the next section on the load side to store the overcurrent in the memory 35 in the next section on the load side. Means are provided for receiving the information and the phase difference information.

【0057】さらに、制御処理部34は、自区間が過電
流の情報の記憶有りになり、過電流の発生を検出したと
きに、メモリ35の自区間の発生相の位相差の記憶値と
負荷側次区間の当該相の位相差の記憶値との差の絶対値
を求めて、この絶対値が90°より大きくなるときに自
区間事故と判定する手段を形成し、制御出力回路38,
開放コイル29とともに、自区間事故の判定により配電
線4が再充電されて復電する前に区分開閉器20を開放
する手段を形成する。
Further, the control processing section 34 stores the information of the overcurrent in the own section, and when the occurrence of the overcurrent is detected, the storage value of the phase difference of the generated phase of the own section in the memory 35 and the load Means for determining the absolute value of the difference between the phase difference of the relevant phase and the stored value of the phase in the secondary section and determining that the own section has an accident when the absolute value is greater than 90 ° is formed.
Together with the open coil 29, a means for opening the sectional switch 20 before the distribution line 4 is recharged and restored by the judgment of the own section accident is formed.

【0058】つぎに、制御処理部34の事故監視制御処
理について説明する。まず、図2のステップS1 の初期
設定でメモリ35をリセット等した後、ステップにより
自区間#1〜#4のA,C相間の線間電圧を保持し、ス
テップS3 〜ステップS9 により地絡又は短絡の事故に
よる過電流の発生を監視する。
Next, the accident monitoring control processing of the control processing section 34 will be described. First, the memory 35 is reset or the like in the initial setting of Step S 1 of FIG. 2, the self segment # 1 to # 4 of A by step, holding the line voltage of the C phase, the steps S 3 ~ Step S 9 Monitor the occurrence of overcurrent due to ground fault or short circuit accident.

【0059】そして、いずれかの区間,例えば図7に示
すように区間#2の事故点P2 で事故が発生し、A,
B,Cの各相のいずれか1相でもその相電流が過電流に
なって設定値より大きくなると、ステップS4 ,S6
8 によりその過電流を検出してステップS10a ,S
11a ,S12a に移行し、発生相及びその電流ベクトル等
の過電流の情報をメモリ35に書込む。
[0059] Then, one of the section, the accident occurs for example in an accident point P 2 of the section # 2, as shown in FIG. 7, A,
In any one of the phases B and C, if the phase current becomes overcurrent and becomes larger than the set value, steps S 4 , S 6 ,
Step S 10a detects the overcurrent by S 8, S
The process proceeds to steps 11a and S12a , and the information of the overcurrent such as the generated phase and its current vector is written in the memory 35.

【0060】また、瞬時的な事故等の際に系統の復電に
伴う過電流の消滅を検出してメモリ28の記憶消去を行
うため、ステップS10b,S11b,S12bにより各相のリ
セットカウントメモリに消滅検出時間Na ,Nb ,Nc
の初期値(設定値)をセットする。
[0060] Further and stores data erasure of the memory 28 by detecting the disappearance of overcurrent due to the power recovery system during such momentary accident, step S 10b, S 11b, the S 12b each phase reset count memory to extinction detection time N a, N b, N c
Set the initial value (setting value) of.

【0061】そして、ステップS9 により系統電圧有り
と検出されてステップS4 ,S6 ,S8 により過電流の
消失が検出されると、ステップS10c,S11c,S12c
より各、リセットカウントメモリの各相それぞれの時間
a ,Nb ,Nc を1ずつカウントダウンし、時間
a ,Nb ,Nc が0になると、メモリ35の該当する
相の記憶値を消去する。
[0061] When the disappearance of the overcurrent is detected in step S 4, S 6, S 8 is detected that there is the system voltage by the step S 9, step S 10c, S 11c, each by S 12c, reset count each time each phase memory N a, counts down N b, the N c by 1, the time N a, N b, the N c is 0, clear the stored value of the corresponding phase of the memory 35.

【0062】なお、ステップS10c,S11c,S12cは、
具体的には図3の(a),(b),(c)に示すように
構成されている。
Steps S 10c , S 11c and S 12c are as follows:
Specifically, it is configured as shown in FIGS. 3 (a), 3 (b) and 3 (c).

【0063】一方、事故が継続して変電所14,16の
遮断器15,17が開放し、配電線13が停電すれば、
その系統電圧が消失してステップS9 からステップS13
に移行する。
On the other hand, if the accidents continue and the circuit breakers 15 and 17 of the substations 14 and 16 are opened and the distribution line 13 is cut off,
Step S 13 from step S 9 that system voltage disappears
Move to

【0064】そして、事故発生直前(一定サイクル前)
に保持した系統正常時の線間電圧の位相角とメモリ35
に記憶した事故発生時の過電流相の相電流の位相角との
位相差を求め、その情報をメモリ35に記憶した後、図
4のステップS14に移行する。
Then, immediately before the occurrence of the accident (before a certain cycle)
Phase angle of the line voltage when the system is normal and the memory 35
Obtains a phase difference between the phase angle of the phase current of the stored accident during overcurrent phase, after storing the information in memory 35, the process proceeds to step S 14 in FIG.

【0065】さらに、ステップS14により過電流の発生
の検出を確認すると、ステップS15に移行し、最も負荷
側の区間#4の制御処理部34を除く各制御処理部34
が内蔵のタイマを起動し、それぞれの各荷側次区間#2
〜#4の呼出し待機時間Ni(=N1 ,N2 ,N3
(秒)を計測する。
[0065] Further, the step confirms the detection of overcurrent by S 14, the process proceeds to step S 15, the most load side of the section # each control processing unit 34 except for the control processing unit 34 of the 4
Starts the built-in timer, and each cargo side next section # 2
Call waiting time ~ # 4 Ni (= N 1 , N 2, N 3)
(Seconds).

【0066】この待機時間Niは各開閉器制御装置22
が負荷側次区間の開閉器制御装置22を呼出して情報を
受信する時間をずらし、通信線23の共有による情報の
衝突を防止するために設定され、本実施の形態において
は、最上流の区間#1の開閉器制御装置22から順に呼
出しを行うため、N1 <N2 <N3 に設定されている。
This standby time Ni is determined by each switch control device 22.
Is set in order to shift the time for calling the switch control device 22 in the load-side next section to receive the information and to prevent information collision due to sharing of the communication line 23, and in the present embodiment, the most upstream section N 1 <N 2 <N 3 is set in order to call sequentially from the switch control device 22 of # 1.

【0067】そして、ステップS16により系統電圧の消
失の有,無を判定し、停電の継続を確認すると、ステッ
プS17,S18を介してステップS16に戻るループにより
呼出し待機時間Niが経過するまで上流側の隣りの区間
(以下上流側次区間という)の開閉器制御装置22から
の呼出しを監視する。
[0067] Then, organic loss of the system voltage by the step S 16, to determine non confirms the continuation of the power failure, the elapsed call waiting time Ni by a loop back to step S 16 through step S 17, S 18 Until the call is monitored from the switch control device 22 in an adjacent section on the upstream side (hereinafter referred to as an upstream next section).

【0068】この監視中に上流側次区間の開閉器制御装
置22から呼出されると、ステップS19によりメモリ3
5の記憶情報を読出し、この記憶情報に基づく応答信号
(返信信号)を上流側次区間の開閉器制御装置22に伝
送する。
[0068] When invoked from the switch controller 22 of the upstream-side next interval during the monitoring, the memory 3 in step S 19
5 is read, and a response signal (reply signal) based on the stored information is transmitted to the switch control device 22 in the next section on the upstream side.

【0069】さらに、呼出し待機時間Niが経過する
と、ステップS18からステップS20に移行して負荷側次
区間の開閉器制御装置22に過電流の情報及び位相差の
情報の呼出しを送出(伝送)し、この呼出しに基づく負
荷側次区間の開閉器制御装置22からの応答信号を受信
すると、ステップS21を介してステップS22に移行す
る。
[0069] In addition, call the waiting time Ni has elapsed, sends a call information of the information and the phase difference of the overcurrent from step S 18 to step S 20 switch controller 22 proceeds to load the next interval (the transmission ) and receives the response signal from the switch controller 22 on the load side following sections based on this call, the process proceeds to step S 22 through step S 21.

【0070】そして、同一の過電流相につき、メモリ3
5の自区間#1〜#3の位相差の記憶値と,受信した負
荷側次区間#2〜#4の位相差の記憶値との差の絶対値
を求める。
Then, for the same overcurrent phase, the memory 3
The absolute value of the difference between the stored value of the phase difference of the own section # 1 to # 3 and the stored value of the received phase difference of the next load side sections # 2 to # 4 is determined.

【0071】このとき、図7の過電流通過の方向を示す
矢印線からも明らかなように、事故区間#2及びその上
流の区間#0,#1の過電流は負荷側に流れ、事故区間
#2より負荷側の区間#3,#4の過電流は上流側に流
れ、事故区間#2の過電流とその負荷側次区間#3の過
電流とは、図9に示すように位相差がほぼ180°ず
れ、それ以外の区間#1,#3の過電流とその負荷側次
区間#2,#4の過電流とは、図8,図10に示すよう
に位相差がほぼ同じになる。
At this time, as is clear from the arrow line indicating the direction of the overcurrent passage in FIG. 7, the overcurrent in the fault section # 2 and the sections # 0 and # 1 upstream thereof flows to the load side, and The overcurrent in the sections # 3 and # 4 on the load side from # 2 flows upstream, and the overcurrent in the accident section # 2 and the overcurrent in the next section # 3 on the load side have a phase difference as shown in FIG. And the overcurrents in the other sections # 1 and # 3 and the overcurrents in the load-side next sections # 2 and # 4 have substantially the same phase difference as shown in FIGS. Become.

【0072】なお、図8,図9,図10のθ(#1),
θ(#2),θ(#3),θ(#4)は、A,C相の線
間電圧を基準にした区間#1,#2,#3,#4の過電
流相の位相差を示す。
It should be noted that θ (# 1) in FIGS. 8, 9, and 10
θ (# 2), θ (# 3), θ (# 4) are the phase differences of the overcurrent phases in sections # 1, # 2, # 3, and # 4 based on the line voltages of the A and C phases. Is shown.

【0073】したがって、90°をしきい値として前記
位相差の差の絶対値が90°より大きいか否かを識別
し、その結果から自区間事故か否かを判定する。
Therefore, it is determined whether or not the absolute value of the difference between the phase differences is greater than 90 ° by using 90 ° as a threshold value, and it is determined from the result whether or not the own section accident has occurred.

【0074】この判定により従来は不可能であった常閉
ループの接地系統の配電線13の事故区間の特定が行
え、自区間で事故が発生して前記位相差の差の絶対値が
90°より大きくなると、自区間事故の判定に基づき、
図4のステップS22からステップS23に移行し、開放コ
イル28を通電駆動して自区間の区分開閉器21を開放
状態にロックする。
By this determination, the fault section of the distribution line 13 of the normally closed loop grounding system, which was impossible in the past, can be specified, and the fault occurs in the own section, and the absolute value of the phase difference difference becomes larger than 90 °. When it gets bigger, based on the judgment of the own section accident,
The process proceeds from step S 22 of FIG. 4 in step S 23, the opening coil 28 energized driven to lock the section switch 21 of its own section in the open state.

【0075】さらに、ステップS22で自区間事故と判定
したときは、ステップS23からステップS24に移行し、
ステップS22で他区間事故と判定したときは、このステ
ップS22からステップS24に移行する。
[0075] Further, when it is determined that the own section accident in step S 22, the process proceeds from step S 23 to step S 24,
When it is determined that the other section accident in step S 22, the program proceeds from step S 22 to step S 24.

【0076】そして、ステップS24により停電継続を確
認すると、変電所14,16の遮断器18,19の再閉
路等で配電線13の系統電源が復旧するまで、ステップ
25〜S27のループにより上流側次区間の開閉器制御装
置22からの呼出しを検出して応答信号を送し、系統電
圧が復旧すればステップS27から図2のステップS1
戻る。
[0076] When confirming the power failure continues with step S 24, in re-closing of the circuit breaker 18, 19 of the substation 14, 16 etc. until the system power supply distribution lines 13 is restored, the loop of steps S 25 to S 27 the to send a response signal by detecting a call from the switch controller 22 of the upstream-side next interval, the system voltage returns from step S 27 if the recovery step S 1 of FIG.

【0077】なお、ステップS16,S24により配電線1
3の系統電源の復旧が検出されたときにも、図2のステ
ップS1 に戻る。
Note that the distribution line 1 is determined in steps S 16 and S 24.
Also when the restoration of the system power supply of No. 3 is detected, the process returns to step S1 in FIG.

【0078】したがって、配電線13が事故停電する
と、この停電中に事故区間#2の区分開閉器21が開放
状態にロックされ、配電線13が復電したときに、事故
区間#2が上流側から自動的に切離され、事故区間#2
より上流の健全区間#0,#1が復旧する。
Therefore, if the distribution line 13 fails due to an accident, the section switch 21 of the accident section # 2 is locked in the open state during the interruption, and when the power of the distribution line 13 is restored, the accident section # 2 moves to the upstream side. Is automatically disconnected from the accident section # 2
The sound sections # 0 and # 1 located further upstream are restored.

【0079】つぎに、図6の配電系統において、図7の
区間#2に地絡事故が発生した場合の系統全体の動作に
ついて、図5のタイミングチャートを参照して説明す
る。
Next, the operation of the entire power distribution system of FIG. 6 when a ground fault occurs in section # 2 of FIG. 7 will be described with reference to the timing chart of FIG.

【0080】まず、t1 に区間#2の事故点P2 で地絡
又は短絡の事故が発生し、変電所14,16の遮断器1
5,17が適当な時限動作でt2 に開放し、図5の
(a)に示すように、配電線13の系統電圧(配電線電
圧)が消失して電圧有りの状態から電圧無しの状態,す
なわち停電になると、t1 の過電流通電により、各区間
#1〜#4の開閉器制御装置22は図5の(b),
(f),(j),(n)に示すように過電流通電を検出
してメモリ35に過電流の情報を記憶し、同時に電圧と
の位相差の情報もメモリ35に記憶する。
First, at t 1 , a ground fault or a short circuit occurs at the fault point P 2 in the section # 2, and the breakers 1 of the substations 14 and 16 are turned off.
5 and 17 are opened at t 2 by an appropriate timed operation, and as shown in FIG. 5A, the system voltage (distribution line voltage) of the distribution line 13 disappears, and the state where there is no voltage changes to the state where there is no voltage. , that is, becomes a power failure, overcurrent energization of t 1, switch controller 22 of each section # 1 to # 4 of FIG. 5 (b),
As shown in (f), (j) and (n), the overcurrent is detected and the information of the overcurrent is stored in the memory 35, and the information of the phase difference from the voltage is also stored in the memory 35 at the same time.

【0081】さらに、t2 の事故停電と同時に各開閉器
制御装置22のタイマが作動し、t2 から呼出し待機時
間N1 が経過すると、図5の(c)に示すように区間#
1の開閉器制御装置22が負荷側次区間#2の開閉器制
御装置22に呼出信号を送信し、同図の(h)に示すこ
の呼出信号の受信に基づき、区間#2の開閉器制御装置
22は同図の(g)に示すように、メモリ35の記憶情
報(#2の情報)を読出して応答信号を上流側次区間#
1の開閉器制御装置22に送信する。
[0081] Furthermore, the timer is actuated accident outage at the same time the switch controller 22 of t 2, after a lapse of the call waiting time N 1 from t 2, in section as shown in (c) of FIG. 5 #
The switch control device 22 transmits a call signal to the switch control device 22 in the load-side next section # 2, and based on the reception of the call signal shown in FIG. The device 22 reads the information stored in the memory 35 (the information of # 2) and converts the response signal into the upstream next section #, as shown in FIG.
1 to the switch control device 22.

【0082】そして、区間#1の開閉器制御装置22
は、メモリ35の自区間#1の過電流相の位相差と,図
5の(d)に示す受信した負荷側次区間#2の同じ過電
流相の位相差との差の絶対値が90°より大きいか否か
を識別する。
Then, the switch control device 22 of the section # 1
The absolute value of the difference between the phase difference of the overcurrent phase in the own section # 1 of the memory 35 and the received phase difference of the same overcurrent phase in the load-side next section # 2 shown in FIG. Identify if greater than °.

【0083】このとき、図8に示すように区間#1,#
2の位相差θ(#1),θ(#2)が共に約45°前,
後になり、その差の絶対値が90°より小さいため、区
間#1の開閉器制御装置22は、区間#1が事故区間で
ないことを識別し、他区間事故であると判定する。
At this time, as shown in FIG.
2, the phase differences θ (# 1) and θ (# 2) are both about 45 ° before,
Later, since the absolute value of the difference is smaller than 90 °, the switch control device 22 of the section # 1 identifies that the section # 1 is not an accident section, and determines that the other section is an accident.

【0084】そして、他区間事故の判定をしたときは、
開閉器制御装置22が区分開閉器21を開放状態にロッ
クしないため、区間#1の区分開閉器21は図5の
(e)に示すように投入状態に保たれる。
When the other section accident is determined,
Since the switch control device 22 does not lock the sectional switch 21 in the open state, the sectional switch 21 in the section # 1 is kept in the closed state as shown in FIG.

【0085】つぎに、t2 から呼出し待機時間N2 が経
過すると、図5の(g)に示すように、区間#2の開閉
器制御装置22が負荷側次区間#3の開閉器制御装置2
2に呼出信号を送信し、同図の(l)に示すこの呼出信
号の受信に基づき、区間#3の開閉器制御装置22が同
図の(k)に示すようにメモリ35の記憶情報(#3の
情報)を読出して応答信号を上流側次区間#2の開閉器
制御装置22に送信する。
Next, when the call waiting time N 2 has elapsed from t 2 , as shown in FIG. 5 (g), the switch control device 22 in the section # 2 is switched to the switch control device 22 in the load-side next section # 3. 2
2, and based on the reception of the calling signal shown in (l) of the figure, the switch control device 22 in the section # 3 stores the information stored in the memory 35 as shown in (k) of FIG. # 3) and sends a response signal to the switch control device 22 in the upstream next section # 2.

【0086】そして、区間#2の開閉器制御装置22
も、メモリ35の自区間#2の過電流相の位相差と図5
の(h)に示す受信した負荷側次区間#3の同じ過電流
相の位相差との差の絶対値が90°より大きいか否かを
識別し、このとき、図9に示すように区間#2,#3の
位相差θ(#2),θ(#3)が約45°,約225°
(−135°)になり、その差の絶対値が90°より大
きくなる。
Then, the switch control device 22 of the section # 2
FIG. 5 shows the phase difference between the overcurrent phases of the section # 2 of the memory 35 and
(H), it is determined whether the absolute value of the difference between the received load-side next section # 3 and the phase difference of the same overcurrent phase is greater than 90 °. At this time, as shown in FIG. The phase differences θ (# 2) and θ (# 3) of # 2 and # 3 are about 45 ° and about 225 °
(−135 °), and the absolute value of the difference is larger than 90 °.

【0087】そのため、区間#2の開閉器制御装置22
は、自区間#2が事故区間であることを識別し、自区間
事故であると判定する。
Therefore, the switch control device 22 in the section # 2
Identifies that the own section # 2 is an accident section and determines that the own section is an accident.

【0088】そして、自区間事故の判定に基づき、区間
#2の開閉器制御装置22は図5の(i)に示すように
自区間#2の区分開閉器21を開放状態にロックし、区
間#2を系統の上流側から自動的に切離す。
Then, based on the judgment of the own section accident, the switch control device 22 of the section # 2 locks the sectional switch 21 of the own section # 2 in an open state as shown in FIG. Automatically disconnect # 2 from the upstream side of the system.

【0089】つぎに、t2 から呼出し待機時間N3 が経
過すると、図5の(k)に示すように区間#3の開閉器
制御装置22が負荷側次区間#4の開閉器制御装置22
に呼出信号を送信して区間#1,#2の開閉器制御装置
22と同様に動作する。
Next, when the call waiting time N 3 elapses from t 2 , as shown in FIG. 5 (k), the switch control device 22 in the section # 3 is switched to the switch control device 22 in the load-side next section # 4.
And operates in the same manner as the switch control device 22 in the sections # 1 and # 2.

【0090】このとき、図10に示すように区間#3,
#4の位相差θ(#3),θ(#4)が共に約225°
(−135°)前,後になり、その差の絶対値が90°
より小さくなるため、区間#3の開閉器制御装置22
は、区間#1の開閉器制御装置22と同様、他区間事故
であると判定し、その区分開閉器21を図5の(m)に
示すように投入状態に保つ。
At this time, as shown in FIG.
The phase difference θ (# 3) and θ (# 4) of # 4 are both about 225 °
(-135 °) before and after, the absolute value of the difference is 90 °
Since it becomes smaller, the switch control device 22 of the section # 3
Determines that this is an accident in another section, as in the case of the switch control device 22 in the section # 1, and keeps the sectional switch 21 in the ON state as shown in FIG. 5 (m).

【0091】さらに、最も負荷側の区間#4の開閉器制
御装置22は、図5の(o)に示すように、区間#3に
応答信号を送信すると、その後同図の(p)に示すよう
に、応答信号を受信することがなく、自区間事故の有,
無の判定を行わず、そのため、同図の(q)に示すよう
に区分開閉器21を投入状態に保つ。
Further, as shown in FIG. 5 (o), the switch control device 22 in the section # 4 on the most load side transmits a response signal in the section # 3, and thereafter, as shown in FIG. 5 (p). As a result, no response signal was received,
No judgment is made, and therefore, as shown in (q) of FIG.

【0092】この結果、配電線13の事故停電中に、図
11に示すように事故区間#2の区分開閉器21が開放
状態にロックされ、事故区間#2が自動的に上流系統か
ら切離され、変電所14の遮断器15が再閉路し、配電
線13が再充電されて復電すると、従来の試送電の場合
のような再停電が発生せず、図12に示すように、事故
区間#2より上流の健全区間#0,#1が直ちに復旧す
る。
As a result, during the accidental power failure of the distribution line 13, the section switch 21 of the accident section # 2 is locked open as shown in FIG. 11, and the accident section # 2 is automatically disconnected from the upstream system. When the circuit breaker 15 of the substation 14 is reclosed and the distribution line 13 is recharged and the power is restored, a power outage does not occur as in the case of the conventional test power transmission, and as shown in FIG. Healthy sections # 0 and # 1 upstream of section # 2 are immediately restored.

【0093】つぎに、開閉器制御装置22間の通信信号
について説明する。開閉器制御装置22間の通信は、例
えば、各開閉器制御装置22にそれぞれアドレスを設定
し、つぎに説明する信号フォーマットで行われる。
Next, communication signals between the switch control devices 22 will be described. Communication between the switch control devices 22 is performed, for example, by setting an address for each switch control device 22 and using a signal format described below.

【0094】そして、前記の呼出信号及び応答信号は、
一般的なデジタル伝送の場合と同様、図13(a),
(b)に示すフレーム構成に形成され、呼出信号は同図
(a)に示すように先頭から順の同期信号SYNC,相
手先のアドレスAD1 ,送信元のアドレスAD2 ,情報
種別ID,情報(データ)DAT1 ,終了フラグEND
のエリアからなり、応答信号は同図(b)に示すよう
に、先頭から順の同期信号SYNC,相手先のアドレス
AD1 ,送信元のアドレスAD2 ,情報種別ID,情報
(データ)DAT2 〜DAT5 ,終了フラグENDのエ
リアからなる。
Then, the calling signal and the answer signal are
As in the case of general digital transmission, FIG.
The call signal is formed in the frame configuration shown in FIG. 3B, and the call signal is a synchronization signal SYNC, a destination address AD 1 , a transmission source address AD 2 , an information type ID, and information, as shown in FIG. (Data) DAT 1 , end flag END
As shown in FIG. 3B, the response signal includes a synchronization signal SYNC, a destination address AD 1 , a transmission source address AD 2 , an information type ID, and information (data) DAT 2, which are in order from the beginning. .. DAT 5 , an area of an end flag END.

【0095】さらに、各エリアは図14に示すようにそ
れぞれスタートビットst,データdata,ストップ
ビットsp,パリティビットptからなり、スタートビ
ットstは論理0,ストップビットspは論理1であ
る。
Further, as shown in FIG. 14, each area is composed of a start bit st, data data, a stop bit sp, and a parity bit pt. The start bit st is logic 0 and the stop bit sp is logic 1.

【0096】なお、データdataはDAT3 〜DAT
5 のエリアでは16ビットであり、それ以外のエリアで
は8ビットである。
The data data is DAT 3 to DAT.
The area of 5 has 16 bits, and the other areas have 8 bits.

【0097】そして、IDのエリアのデータdataの
8ビットは、呼出し(呼出信号),応答(応答信号)に
応じて図15に示すようになる。
The eight bits of the data data in the ID area are as shown in FIG. 15 according to the calling (calling signal) and the response (response signal).

【0098】また、呼出信号のDAT1 のエリアのデー
タdataの8ビットは、その内容に応じて図16に示
すようになる。
The eight bits of the data data in the area of DAT 1 of the call signal are as shown in FIG. 16 according to the contents.

【0099】さらに、応答信号のDAT2 のエリアのデ
ータdataの各ビットa0 ,a1,…, 7 は図17
に示すように、自区間の区分開閉器21の入切(開閉器
状態),系統電圧の有無(電圧有り),過電流情報の有
無(過電流有り),…,応答状態(応答良好)の表示に
割当てられ、ビットa0 は論理1,0が入,切に対応
し、ビットa1 は論理1,0が電圧の有,無に対応し、
ビットa2 は論理1,0が過電流情報の有,無に対応す
る。
Further, each bit a 0 , a 1 ,... , A 7 of the data DAT 2 area of the response signal is shown in FIG.
As shown in (1), ON / OFF of the sectional switch 21 in the own section (switch state), presence / absence of system voltage (with voltage), presence / absence of overcurrent information (with overcurrent), ..., response state (good response) Bit a 0 corresponds to logic 1, 0 on / off, bit a 1 corresponds to logic 1, 0 for presence or absence of voltage,
Bit a 2 is chromatic logical 1,0 overcurrent information, corresponding to the no.

【0100】つぎに、図18(a)に示す応答信号のD
AT3 ,DAT4 ,DAT5 はA,B,C相の過電流の
情報及び位相差の情報の伝送に割当てられ、それぞれの
16ビットb0 〜b15のデータdataは、先頭の2ビ
ットb0 ,b1 が同図(b)に示す相の表示に用いら
れ、つぎの1ビットが過電流の有無に用いられ、以降の
各ビットが0°〜360°の位相差の情報に用いられ
る。
Next, the response signal D shown in FIG.
AT 3 , DAT 4 , and DAT 5 are assigned to the transmission of the overcurrent information and the phase difference information of the A, B, and C phases, and each of the 16-bit b 0 to b 15 data data is the first two bits b. 0, b 1 is used to display the phase shown in FIG. (b), used in the presence of 1 bit following the overcurrent, used information of the phase difference of each bit 0 ° to 360 ° after .

【0101】そのため、前記の区間#1の開閉器制御装
置22から負荷側次区間#2の開閉器制御装置22への
呼出信号,この呼出信号に対する応答信号は図19の
(a),(b)に示すようになり、区間#2の開閉器制
御装置22から負荷側次区間#3の開閉器制御装置22
への呼出信号、この呼出信号に対する応答信号は図20
(a),(b)に示すようになる。
Therefore, a call signal from the switch control device 22 in the section # 1 to the switch control device 22 in the load-side next section # 2 and a response signal to the call signal are shown in FIGS. ), From the switch control device 22 in the section # 2 to the switch control device 22 in the load-side next section # 3.
FIG. 20 shows a calling signal to the telephone and a response signal to the calling signal.
(A) and (b) are obtained.

【0102】以上説明したように、通信線23を介した
区間#1〜#3の開閉器制御装置22とそれぞれの負荷
側次区間#2〜#4の開閉器制御装置22との間の通信
により、配電線13の事故停電中に事故区間#2の区分
開閉器21が開放状態にロックされて事故区間#2が系
統上流から自動的に切離され、従来の試送電を行う場合
のような停電のくり返しなく、配電線13の復電により
直ちに健全区間#0,#1が復旧するため、上流側及び
負荷側から給電される接地されたループ系の配電線13
の自動区分による事故区間の切離しが再停電等なく迅速
に行える。
As described above, the communication between the switch control devices 22 in the sections # 1 to # 3 and the switch control devices 22 in the load-side next sections # 2 to # 4 via the communication line 23, as described above. As a result, during the accidental power failure of the distribution line 13, the section switch 21 of the accident section # 2 is locked in the open state, and the accident section # 2 is automatically disconnected from the system upstream, as in the case of performing the conventional test power transmission. Since the healthy sections # 0 and # 1 are restored immediately upon the restoration of the distribution line 13 without repeated power failures, the grounded loop-type distribution line 13 supplied with power from the upstream side and the load side.
The accident section can be quickly separated by automatic classification without power failure.

【0103】そして、従来の図21の配電系統制御セン
タ10のような基地局設備が不要で同図の配電線4から
基地局設備までの通信線等を省いて健全区間#0,#1
を迅速に復電することができ、この場合、隣りの区間の
開閉器制御装置22との間の比較的短距離の通信でよい
ため、通信電力が前記基地局設備と通信する場合より著
しく少なくて済む利点もある。
The base stations such as the conventional power distribution system control center 10 shown in FIG. 21 are not required, and the communication lines from the distribution line 4 to the base station shown in FIG.
Can be quickly restored, and in this case, communication with the switch control device 22 in the adjacent section can be performed over a relatively short distance, so that communication power is significantly less than when communicating with the base station equipment. There is also an advantage that can be done.

【0104】なお、通信線23を省いて各開閉器制御装
置22に無線送受信機能を付加し、開閉器制御装置22
間の通信を無線通信にしてもよく、この場合、無線通信
の電力は数キロワットの小電力でよく、例えば、特定小
電力無線の小形のトランシーバ用モデムを用いて極めて
安価かつ小形に形成することができる。
The switch 23 is provided with a radio transmission / reception function by omitting the communication line 23.
The communication between the terminals may be wireless communication. In this case, the power of the wireless communication may be a small power of several kilowatts. For example, the wireless communication may be made extremely inexpensive and small by using a small transceiver modem of a specific low power wireless. Can be.

【0105】また、通信線23を省いて配電線搬送方式
で通信するようにしてもよく、この場合も必要な通信電
力は従来より大幅に少なくなる。
The communication line 23 may be omitted and communication may be performed by a distribution line transport system. In this case, the required communication power is significantly reduced as compared with the related art.

【0106】そして、国内の配電系統には勿論、海外の
配電系統にも適用することができる。
The present invention can be applied not only to a domestic distribution system but also to an overseas distribution system.

【0107】なお、開閉器制御装置22の内部構成や通
信フォーマット等は本実施の形態のものに限られるもの
ではない。
Note that the internal configuration and communication format of the switch control device 22 are not limited to those of the present embodiment.

【0108】また、所定の2相はA,C相以外であって
もよく、3相以外の多相の系統にも適用できるのは勿論
である。
The predetermined two phases may be other than the A and C phases, and it goes without saying that the present invention can be applied to a multi-phase system other than the three phases.

【0109】ところで、事故区間#2より負荷側の健全
区間#3,#4の復旧も同時に行う場合は、例えば、負
荷側次区間の呼出信号に図18(a)のDAT3 〜DA
5のエリアを付加して呼出しを行う開閉器制御装置2
2の区間の過電流の情報及び電圧との位相差の情報を負
荷側次区間の開閉器制御装置22に伝送し、この負荷側
次区間の開閉器制御装置22の制御処理部34により、
メモリ35の自区間の位相差の記憶値と受信した上流側
次区間の位相差の記憶値との差の絶対値が90°より大
きいか否かを判別し、90°より大きければ上流側次区
間が事故区間であると判定して自区間の区分開閉器21
を開放状態にロックすればよい。
[0109] Incidentally, fault section # 2 from the load side of the sound interval # 3, the case of simultaneously recovering # 4, for example, DAT 3 to DA shown in FIG. 18 (a) the calling signal on the load side following sections
By adding an area T 5 performs a call switch controller 2
The information of the overcurrent in the section 2 and the information of the phase difference with the voltage are transmitted to the switch control device 22 in the load-side next section, and the control processing unit 34 of the switch control device 22 in the load-side next section,
It is determined whether or not the absolute value of the difference between the stored value of the phase difference of the own section of the memory 35 and the received stored value of the phase difference of the next upstream section is greater than 90 °. The section is determined to be an accident section, and the section switch 21 of the own section is determined.
Can be locked in the open state.

【0110】この場合、例えば図4のステップS19,S
26のつぎに前記の判別及び区分開閉器21の開放制御の
ステップを付加すればよい。
In this case, for example, steps S 19 and S 19 in FIG.
Subsequent to 26 , a step of the above-described discrimination and the opening control of the sectional switch 21 may be added.

【0111】そして、事故区間#2及びその負荷側次区
間#3の区分開閉器21が開放ロックされ、事故区間#
2の上,下両側の区分開閉器21が開放状態になると、
配電線13の上流側からの復電により区間#0,#1が
復旧するとともに、配電線13の下流側からの復電によ
り区間#4,#3が復旧し、配電線13の全ての健全区
間が自動区分で迅速に復旧する。
Then, the sectional switches 21 of the accident section # 2 and the load-side next section # 3 are opened and locked, and the accident section #
2 When the upper and lower segmented switches 21 are open,
The sections # 0 and # 1 are restored by the power recovery from the upstream side of the distribution line 13, and the sections # 4 and # 3 are restored by the power recovery from the downstream side of the distribution line 13. The section recovers quickly with automatic classification.

【0112】なお、呼出信号に過電流の情報及び位相差
の情報を付加して負荷側次区間の開閉器制御装置22に
伝送する代わりに、自区間事故の判定をしたときに、自
区間の区分開閉器21を開放するとともに、通信線23
を介して負荷側次区間の開閉器制御装置22に開放指令
を伝送し、この指令に基づき、事故区間の負荷側次区間
の区分開閉器21を開放状態にロックしてもよい。
Instead of adding the overcurrent information and the phase difference information to the call signal and transmitting it to the switch control device 22 in the next section on the load side, instead of determining the accident in the own section, While opening the sectional switch 21, the communication line 23 is opened.
An open command may be transmitted to the switch control device 22 in the load-side next section via the control unit, and based on this command, the sectional switch 21 in the load-side next section in the accident section may be locked in the open state.

【0113】この場合は、例えば図4のステップS23
つぎに負荷側次区間の開閉器制御装置22への開放指令
の送信のステップを設け、同図のステップS17,S25
ステップS19,S26との間それぞれに、上流側次区間の
装置からの開放指令の受信か否かの判断のステップと、
この判断が開放指令の受信のときに区分開閉器の開放制
御を実行するステップを設ければよい。
[0113] In this case, for example, figure next fourth step S 23 is provided the steps of transmitting an open command to the switch controller 22 on the load side next section, step S 17 of FIG, S 25 and step S 19, respectively between the S 26, the step of receiving is determined whether the opening command from the device on the upstream side next section,
It is sufficient to provide a step of executing the opening control of the sectional switch when this determination is the reception of the opening command.

【0114】[0114]

【発明の効果】本発明は、以下に記載する効果を奏す
る。配電線13のいずれかの区間に地絡又は短絡が発生
して事故相が過電流になると、開閉器制御装置22が過
電流の発生を検出して各相の過電流の情報及び所定の2
相の線間電圧を基準にした過電流相の相電流の所定の線
間電圧との位相差の情報を記憶する。
The present invention has the following effects. If a ground fault or short circuit occurs in any section of the distribution line 13 and the fault phase becomes an overcurrent, the switch control device 22 detects the occurrence of the overcurrent and outputs the information of the overcurrent of each phase and a predetermined 2
Information on the phase difference between the phase current of the overcurrent phase and a predetermined line voltage based on the line voltage of the phase is stored.

【0115】そして、配電線13の事故停電中に、負荷
側の隣りの区間の開閉器制御装置22との通信により、
負荷側の隣りの区間の過電流の情報及び前記位相差の情
報を受信し、同じ相(過電流相)の自区間の位相差の記
憶値と負荷側の隣りの区間の位相差の記憶値との差の絶
対値を求め、このとき、自区間で事故が発生すれば、そ
の差の絶対値が90°より大きくなり、このことから、
自区間事故か否かを正確に判定することができる。
Then, during an accidental power outage of the distribution line 13, communication with the switch control device 22 in the adjacent section on the load side allows
Receives the information of the overcurrent in the adjacent section on the load side and the information of the phase difference, and stores the stored value of the phase difference in the own section of the same phase (overcurrent phase) and the stored value of the phase difference in the adjacent section on the load side The absolute value of the difference is calculated as follows. At this time, if an accident occurs in the own section, the absolute value of the difference becomes larger than 90 °.
It is possible to accurately determine whether or not the accident is in the own section.

【0116】さらに、自区間事故であれば配電線13が
復電する前に、自区間の区分開閉器21を開放するた
め、事故停電後、配電線が復電するまでに、事故区間の
区分開閉器21を開放して事故区間を自動的に上流側か
ら切離すことができ、配電線の復電と同時に事故区間よ
り上流側の健全区間を復旧することができる。
Furthermore, in the case of a local section accident, before the distribution line 13 is restored, the section switch 21 of the own section is opened. By opening the switch 21, the faulty section can be automatically separated from the upstream side, and a healthy section upstream from the faulty section can be restored simultaneously with the restoration of the distribution line.

【0117】この場合、配電線13の事故停電後、従来
の非ループ系統で行われている試送電等を行うことなく
迅速に上流の健全区間が復旧し、しかも、負荷側の隣り
の区間の開閉器制御装置22と通信するのみであるた
め、遠方監視制御の大規模な基地局設備やその通信設備
は不要である。
In this case, after an accidental power outage of the distribution line 13, the upstream healthy section can be quickly restored without performing test power transmission or the like performed in the conventional non-loop system, and the adjacent section on the load side can be restored. Since it only communicates with the switch control device 22, large-scale base station equipment for remote monitoring and control and its communication equipment are unnecessary.

【0118】そのため、試送電等を行うことなく、遠方
監視制御の大規模な基地局設備及びその通信設備等を備
えることもなく、隣りの区間の開閉器制御装置22との
通信のみにより、従来は行えなかった中性点が接地され
たループ系統の配電線13の事故区間の自動的な切離し
が実現し、この切離しにより上流の健全区間を迅速に復
旧することができる。
[0118] Therefore, the conventional power transmission system does not perform a test power transmission or the like, does not include a large-scale base station facility for remote monitoring and control, and does not include a communication facility therefor. The automatic disconnection of the fault section of the distribution line 13 of the loop system in which the neutral point is grounded, which could not be performed, is realized, and this disconnection can quickly restore the upstream healthy section.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の回路ブロック図であ
る。
FIG. 1 is a circuit block diagram of one embodiment of the present invention.

【図2】図1の動作説明用の第1のフローチャートであ
る。
FIG. 2 is a first flowchart for explaining the operation of FIG. 1;

【図3】(a),(b),(c)はそれぞれ図2の一部
の詳細なフローチャートである。
3 (a), (b), and (c) are each a detailed flowchart of a part of FIG.

【図4】図1の動作説明用の第2のフローチャートであ
る。
FIG. 4 is a second flowchart for explaining the operation of FIG. 1;

【図5】(a)〜(q)は図1の開閉器制御装置が設け
られた配電線に地絡事故が発生したときの動作説明用の
タイミングチャートである。
5 (a) to (q) are timing charts for explaining the operation when a ground fault occurs in a distribution line provided with the switch control device of FIG.

【図6】図1の開閉器制御装置が設けられた接地された
ループ系統の配電線の通電中の系統図である。
FIG. 6 is a system diagram showing a state in which a distribution line of a grounded loop system provided with the switch control device of FIG. 1 is energized.

【図7】図6の系統の事故停電時の系統図である。FIG. 7 is a system diagram of the system of FIG. 6 at the time of an accident power failure.

【図8】図7の区間#1の開閉器制御装置の事故区間判
定の説明図である。
FIG. 8 is an explanatory diagram of an accident section determination of the switch control device in the section # 1 of FIG. 7;

【図9】図7の区間#2の開閉器制御装置の事故区間判
定の説明図である。
FIG. 9 is an explanatory diagram of an accident section determination of the switch control device in the section # 2 of FIG. 7;

【図10】図7の区間#3の開閉器制御装置の事故区間
判定の説明図である。
10 is an explanatory diagram of an accident section determination of the switch control device in the section # 3 of FIG. 7;

【図11】図7の事故区間の切離し説明用の系統図であ
る。
11 is a system diagram for explaining separation of an accident section in FIG. 7;

【図12】図7の復電時の系統図である。FIG. 12 is a system diagram at the time of power restoration of FIG. 7;

【図13】(a),(b)は図1の開閉器制御装置の呼
出信号,応答信号の通信フォーマットの説明図である。
13 (a) and (b) are explanatory diagrams of communication formats of a call signal and a response signal of the switch control device of FIG.

【図14】図13の通信フォーマットの各エリアの構成
説明図である。
14 is an explanatory diagram of a configuration of each area of the communication format of FIG. 13;

【図15】図13の両信号の一部の情報内容の説明図で
ある。
15 is an explanatory diagram of a part of information content of both signals in FIG. 13;

【図16】図13の呼出信号の他の一部の情報内容の説
明図である。
16 is an explanatory diagram of another part of the information content of the call signal of FIG. 13;

【図17】図13の応答信号の他の一部の情報内容の説
明図である。
17 is an explanatory diagram of another part of the information content of the response signal of FIG. 13;

【図18】(a),(b)は図13の応答信号のさらに
他の一部の構成及び情報内容の説明図である。
18 (a) and (b) are explanatory diagrams of still another part of the configuration and information content of the response signal of FIG. 13.

【図19】(a),(b)は図6の区間#1の開閉器制
御装置の呼出信号,応答信号の説明図である。
19 (a) and (b) are explanatory diagrams of a call signal and a response signal of the switch control device in a section # 1 in FIG.

【図20】(a),(b)は図6の区間#2の開閉器制
御装置の呼出信号,応答信号の説明図である。
20 (a) and (b) are explanatory diagrams of a call signal and a response signal of the switch control device in a section # 2 of FIG.

【図21】基地局設備を有する従来の非ループ系統の配
電線の通電中の系統図である。
FIG. 21 is a system diagram of a conventional non-loop system distribution line having base station equipment during energization.

【図22】図21の従来系統の事故停電時の系統図であ
る。
22 is a system diagram of the conventional system of FIG. 21 at the time of an accident power failure.

【図23】図21の従来系統の事故区間の切離し説明用
の系統図である。
FIG. 23 is a system diagram for explaining separation of an accident section of the conventional system of FIG. 21;

【図24】図21の従来系統の復電時の系統図である。24 is a system diagram of the conventional system of FIG. 21 at the time of power restoration.

【符号の説明】[Explanation of symbols]

13 配電線 21 区分開閉器 22 開閉器制御装置 31 バックアップ電源 35 メモリ 36 電流計測回路 37 電圧計測回路 42 通信モデム DESCRIPTION OF SYMBOLS 13 Distribution line 21 Division switch 22 Switch control device 31 Backup power supply 35 Memory 36 Current measurement circuit 37 Voltage measurement circuit 42 Communication modem

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H02H 11/00 H02H 11/00 K ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // H02H 11/00 H02H 11/00 K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上流側及び負荷側から給電される,中性
点が直接接地或いは低抵抗接地されたループ系統の配電
線を区分する区分開閉器と、前記区分開閉器の開閉を制
御する開閉器制御装置とからなる配電線自動区分開閉装
置において、 前記開閉器制御装置に、 前記配電線の停電中の動作電源を形成するバックアップ
電源と、 前記区分開閉器の負荷側の自区間の各相電流を計測する
手段と、 地絡又は短絡の事故により前記各相電流のいずれかの計
測結果が設定値より大きくなったときに過電流の発生を
検出して各相の過電流の情報を記憶する手段と、 前記事故の発生前の前記配電線の所定の2相の線間電圧
と前記過電流の発生を検出したときの過電流発生相の相
電流との位相差の情報を記憶する手段と、 前記過電流の発生の検出に基づき,前記配電線が停電す
る間に前記自区間の負荷側の隣りの区間の前記開閉器制
御装置と通信して前記負荷側の隣りの区間の前記過電流
の情報及び前記位相差の情報を受信する手段と、 前記自区間の前記過電流発生相の位相差の記憶値と前記
負荷側の隣りの区間の当該相の前記位相差の記憶値との
差の絶対値が90°より大きくなるときに自区間事故と
判定する手段と、 前記自区間事故の判定により前記配電線が復電する前に
前記区分開閉器を開放する手段とを備えたことを特徴と
する配電線自動区分開閉装置。
1. A segment switch for dividing a distribution line of a loop system in which a neutral point is directly grounded or low-resistance ground, which is supplied with power from an upstream side and a load side, and a switch for controlling opening and closing of the segment switch. An automatic distribution line switchgear comprising a switchgear control device, wherein the switchgear control device includes: a backup power supply for forming an operation power supply during a power failure of the distribution line; Means for measuring current, and detecting the occurrence of overcurrent when any of the measurement results of the respective phase currents becomes larger than a set value due to a ground fault or short circuit accident, and storing information of overcurrent of each phase. Means for storing phase difference information between a predetermined two-phase line voltage of the distribution line before the occurrence of the accident and a phase current of an overcurrent generation phase when the occurrence of the overcurrent is detected. Based on the detection of the occurrence of the overcurrent, During the power outage of the distribution line, it communicates with the switch control device in the section adjacent to the load on the own section to receive the overcurrent information and the phase difference information in the section adjacent to the load. Means, when the absolute value of the difference between the stored value of the phase difference of the overcurrent generation phase in the own section and the stored value of the phase difference of the phase in the adjacent section on the load side is greater than 90 °. An automatic distribution line switchgear comprising: means for judging an own section accident; and means for opening the section switch before the distribution line is restored by the judgment of the own section accident.
JP09014571A 1997-01-09 1997-01-09 Automatic distribution line switchgear Expired - Fee Related JP3141806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09014571A JP3141806B2 (en) 1997-01-09 1997-01-09 Automatic distribution line switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09014571A JP3141806B2 (en) 1997-01-09 1997-01-09 Automatic distribution line switchgear

Publications (2)

Publication Number Publication Date
JPH10201082A true JPH10201082A (en) 1998-07-31
JP3141806B2 JP3141806B2 (en) 2001-03-07

Family

ID=11864857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09014571A Expired - Fee Related JP3141806B2 (en) 1997-01-09 1997-01-09 Automatic distribution line switchgear

Country Status (1)

Country Link
JP (1) JP3141806B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875139B1 (en) 2008-08-28 2008-12-23 한국방재기술 주식회사 Protecting apparatus for eletric surge
JP2011015517A (en) * 2009-07-01 2011-01-20 Mitsubishi Electric Corp Protection system of distribution line
JP2017208999A (en) * 2016-05-11 2017-11-24 ディーラボラトリー スウェーデン エービー Method and device for fault clearing in power network with ring-feed-loop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875139B1 (en) 2008-08-28 2008-12-23 한국방재기술 주식회사 Protecting apparatus for eletric surge
JP2011015517A (en) * 2009-07-01 2011-01-20 Mitsubishi Electric Corp Protection system of distribution line
JP2017208999A (en) * 2016-05-11 2017-11-24 ディーラボラトリー スウェーデン エービー Method and device for fault clearing in power network with ring-feed-loop

Also Published As

Publication number Publication date
JP3141806B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
CN101483337B (en) Failure automatic diagnosis and separation apparatus and method for power distribution network overhead line
EP0554553B1 (en) Method of and system for disconnecting faulty distribution line section from power distribution line
TW483210B (en) Power distribution control device
CN110460025B (en) Quick ring-opening method and device
JP3141806B2 (en) Automatic distribution line switchgear
JP3141807B2 (en) Automatic distribution line switchgear
JP3221342B2 (en) Automatic distribution line switchgear
JP2956596B2 (en) Fault detection device for distribution system
Roberts et al. Trip and restore distribution circuits at transmission speeds
JPH10201081A (en) Automatic section switch for distribution line
JP2005020873A (en) System for detecting disconnection of distribution line
JP2956601B2 (en) Fault segmentation device for distribution system
JPH1080057A (en) Distribution automating system
JPS63287321A (en) Fault section detecting/separating device for distribution line
JP3241073B2 (en) Distribution system controller
JP3400863B2 (en) Power distribution equipment
JPS598426Y2 (en) System monitoring display check device
CN116316467A (en) Spare power automatic switching method, system, equipment and readable storage medium
JP3041632B2 (en) Distribution line accident section separation method
JP3075740B2 (en) Accident point separation device
CN116365484A (en) Distributed feeder automation fault processing method and system
JPH0742993U (en) Power distribution equipment
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JPH05137279A (en) Remote monitor control system for distribution line protective equipment
JPH0771377B2 (en) Failure zone detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees