JP3241073B2 - Distribution system controller - Google Patents

Distribution system controller

Info

Publication number
JP3241073B2
JP3241073B2 JP35275391A JP35275391A JP3241073B2 JP 3241073 B2 JP3241073 B2 JP 3241073B2 JP 35275391 A JP35275391 A JP 35275391A JP 35275391 A JP35275391 A JP 35275391A JP 3241073 B2 JP3241073 B2 JP 3241073B2
Authority
JP
Japan
Prior art keywords
accident
slave station
information
failure
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35275391A
Other languages
Japanese (ja)
Other versions
JPH05168147A (en
Inventor
方秀 須々田
一豊 成田
敬 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP35275391A priority Critical patent/JP3241073B2/en
Priority to US07/990,294 priority patent/US5341268A/en
Priority to EP92121394A priority patent/EP0554553B1/en
Priority to KR1019920024835A priority patent/KR970003187B1/en
Priority to TW081110370A priority patent/TW210408B/zh
Publication of JPH05168147A publication Critical patent/JPH05168147A/en
Application granted granted Critical
Publication of JP3241073B2 publication Critical patent/JP3241073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は配電線における事故区間
の切離しを行なう配電系統制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distribution system control apparatus for separating an accident section in a distribution line.

【0002】[0002]

【従来の技術】図4は時限式事故捜査方式を採用した従
来の事故区間切離方式を説明する図で、図4(a) は配電
系統図、図4(b) は開閉器切離しのタイミングを示すタ
イミングチャートである。図4(a) に示すように、配電
線用変電所からはしゃ断器(FCB)1と各開閉器2a,
2b,2c,2dとによって配電線が複数区間に分割された形
態にて構成される。そして各開閉器は常時励磁無電圧開
放方式の自動操作形開閉器が用いられており、又、3a,
3b,3c,3dは各開閉器位置に設けた事故捜査器である。
上記構成の配電線において、開閉器2bと2c間の区間で事
故が発生した場合を考える。この場合は事故発生により
変電所の保護リレー(図面上では省略)が先ず動作し、
しゃ断器1がトリップする。したがって当該配電線は停
電となり、各開閉器2a,2b,2c,2dが無電圧開放する。
その後、事故区間検出を目的として変電所の再閉路リレ
ー(図面上では省略)が動作ししゃ断器1が投入される
と、電源側の充電を検出した事故捜査器3aが投入時限
(X時限)を刻時後、開閉器2aを投入する。次に同様な
動作を事故捜査器3bが行ない、開閉器2bが投入される。
開閉器2bの投入は事故区間の荷電であるため、再びしゃ
断器1がトリップする。この際、開閉器2bに対して投入
指令を発した事故捜査器3bは、検出時限(荷電してから
トリップするまでの時間)を刻時し、その時間が所定時
間(Y時限)以内であると、この区間が事故区間である
と判定する。したがって再々送電時には当該開閉器(事
故区間を検出した開閉器)に対して投入信号を与えず、
開放状態を保持する。
2. Description of the Related Art FIG. 4 is a diagram for explaining a conventional accident section separation system employing a timed accident investigation system. FIG. 4 (a) is a power distribution system diagram, and FIG. 4 (b) is the timing of switch disconnection. FIG. As shown in Fig. 4 (a), the circuit breaker (FCB) 1 and each switch 2a,
The distribution line is divided into a plurality of sections by 2b, 2c, and 2d. Each switch uses an automatic operation type switch with a constant excitation and no voltage release method.
3b, 3c and 3d are accident detectors installed at each switch position.
Consider a case where an accident occurs in the section between the switches 2b and 2c in the distribution line having the above configuration. In this case, the substation protection relay (omitted in the drawing) will be activated first due to the accident,
Circuit breaker 1 trips. Accordingly, the power distribution line is interrupted, and the switches 2a, 2b, 2c, 2d are released without voltage.
Thereafter, the reclosing relay (not shown in the drawing) of the substation is operated for the purpose of detecting an accident section, and the circuit breaker 1 is turned on. When the charge detector on the power supply side is detected, the accident detector 3a is turned on (X time period). After clocking, the switch 2a is turned on. Next, the same operation is performed by the accident detector 3b, and the switch 2b is turned on.
The closing of the switch 2b is a charge in the accident section, so the circuit breaker 1 trips again. At this time, the accident detector 3b that issues the closing command to the switch 2b clocks a detection time period (time from charging to tripping), and the time is within a predetermined time (Y time period). It is determined that this section is an accident section. Therefore, at the time of re-power transmission, the switch is not given an ON signal to the switch concerned (switch that detected the accident section),
Hold open.

【0003】[0003]

【発明が解決しようとする課題】上記した従来方式によ
れば、事故区間切離しのために事故発生検出時の初回停
電及び事故区間検出時の停電の2回である。即ち、事故
区間を切離すために、事故区間より電源側の健全区間の
停電を2回伴ない、又、事故区間より負荷側の健全区間
への逆送融通も事故区間切離しが終了してから行なうこ
とになるため、いずれにしても長時間の停電を伴なうこ
とになる。本発明は上記事情に鑑みてなされたものであ
り、停電時間の減少を可能とする配電系統制御装置を提
供することを目的としている。
According to the above-mentioned conventional system, there are two times of the first power failure at the time of detecting the occurrence of the accident and the power failure at the time of detecting the accident due to the separation of the accident section. In other words, in order to separate the accident section, there are two power outages in the sound section on the power supply side from the accident section, and the backhaul interchange from the accident section to the healthy section on the load side after the accident section separation is completed. In any case, a power outage for a long time is involved. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power distribution system control device capable of reducing a power outage time.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1に係る
配電系統制御装置は、配電線を区間分割する複数の開閉
器と、前記各開閉器に対応して設けた制御装置(子局)
と、前記各子局と親局との間を通信手段によって接続
し、親局から子局を遠方監視制御する配電系統制御装置
において、各子局では配電線故障を検出する故障検出部
と、前記故障検出部からの出力により当該故障情報を記
憶する記憶部と、前記故障発生後の親局からのポーリン
グ時に前記故障情報を親局に返送を可能とするための子
局内電源として設けられたバッテリとを備え、親局が前
記配電線故障を子局の故障検出情報をポーリングにより
収集し、この収集した情報から配電線故障を有する事故
区間を分離する制御手順を作成する手段と、変電所の再
閉路時に前記事故区間を区分する開閉器を投入しないよ
う制御する手段を備えた。本発明の請求項2に係る配電
系統制御装置は、請求項1において、前記子局は前記開
閉器の電源側と負荷側の電圧有無を検出する電圧検出部
と、前記配電線の停電により前記電圧検出部により電圧
有りから電圧無しに変化した後、親局から各子局をポー
リングするだけの時間より長い時間を設定し、前記バッ
テリを子局内制御電源として使用する信号を出力する第
1の遅延手段と、前記故障検出部により事故が検出され
た場合、事故検出情報を記憶すると共に親局へ事故検出
情報を出力する記憶手段と、前記電圧検出部により配電
線の電圧が回復した条件と前記事故検出情報の出力条件
とが共に満たされた際、所定時間後に前記記憶手段の情
報をリセットする信号を出力する第2の遅延手段とから
なる子局論理部を備えた。
According to a first aspect of the present invention, there is provided a distribution system control device comprising: a plurality of switches for dividing a distribution line into sections; and a control device (slave station) provided for each of the switches. )
In the distribution system control device that connects between each of the slave stations and the master station by communication means, and remotely monitors and controls the slave station from the master station, a fault detection unit that detects a distribution line fault in each slave station, A storage unit for storing the failure information based on an output from the failure detection unit, and a slave station power supply for enabling the failure information to be returned to the master station during polling from the master station after the occurrence of the malfunction. A substation that includes a battery, wherein the master station collects fault detection information of the slave station by polling for the fault of the distribution line, and creates a control procedure for separating an accident section having the fault in the distribution line from the collected information. Means for controlling not to open a switch for dividing the accident section at the time of re-closing. The distribution system control device according to claim 2 of the present invention is the power distribution system control device according to claim 1, wherein the slave station detects the presence or absence of a voltage on the power supply side and the load side of the switch, and After changing from a voltage being present to a no voltage by the voltage detector, a time longer than the time required for polling each slave station from the master station is set, and a signal for using the battery as a control power supply in the slave station is output. A delay unit, a storage unit that stores the accident detection information and outputs the accident detection information to the master station when the accident is detected by the failure detection unit, and a condition that the voltage of the distribution line is restored by the voltage detection unit. A second delay unit configured to output a signal for resetting the information in the storage unit after a predetermined time when both of the output conditions of the accident detection information are satisfied.

【作用】上記構成において、配電線上で事故が発生する
と子局の故障検出部でこれを検出し、自己の検出した事
故情報を伝送路を介して親局に伝送する。この時変電所
のしゃ断器がトリップして配電線が停電していた場合で
あっても、子局にバッテリを備えているため、子局で検
出した事故情報は連続して親局へ伝送できる。親局では
各子局からの情報を基に事故区間の検出を行ない、変電
所のしゃ断器が再投入した後、事故区間に接する開閉器
以外の開閉器へ投入指令を出す。
In the above configuration, when an accident occurs on the distribution line, the failure detection unit of the slave station detects this and transmits the accident information detected by itself to the master station via the transmission line. At this time, even if the circuit breaker of the substation trips and the distribution line goes out of power, the slave station has a battery, so the accident information detected by the slave station can be continuously transmitted to the master station. . The master station detects the fault section based on information from each slave station, and after the breaker of the substation is turned on again, issues a closing command to switches other than the switch in contact with the fault section.

【0005】[0005]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による配電系統制御装置の一実施例の構成図で
ある。図1において、1は変電所のフィーダしゃ断器、
2(2a,2b,2c,2dを総称)は常時励磁無電圧開放形の
開閉器、6は事故電流検出CT(開閉器2a,2c,2dにつ
いては省略)、7a,7bは柱上トランス(開閉器2a,2c,
2dについては省略)、3(3a,3b,3c,3dを総称)は各
々の開閉器を制御するための子局で、開閉器を制御する
インターフェース部3-5 ,事故電流検出CT6の出力か
ら配電線負荷側事故を検出する故障検出部3-4 、開閉器
の電源側,負荷側の電圧有無を検出する電圧検出部3-3
、柱上トランス7a,7b(2a,2c,2d開閉器部は省略)
から子局内制御電源を作るためのAC/DC電源部3-1
、バッテリ(常時充電式)3-2 、各種情報の入,出力
を判断するための子局論理部3-6 、親局との信号を送受
信する子局伝送部3-7 、配電線停電時に子局論理部3-6
で判断し、バッテリ3-2 を開放する接点Laを開閉する
補助リレー3-8 からなっている。又、4は各子局の情報
伝送用の伝送路、5は親局で、子局との信号を送受信す
る伝送部5-2 、子局の情報と変電所のしゃ断器の情報を
基に事故区間を判断し、変電所のしゃ断器が投入したら
事故区間へ接する開閉器以外の開閉器へ投入指令を出す
判断を行なう論理部5-1 からなっている。
An embodiment will be described below with reference to the drawings. FIG.
1 is a configuration diagram of an embodiment of a distribution system control device according to the present invention. In FIG. 1, 1 is a feeder breaker of a substation,
2 (collectively 2a, 2b, 2c, 2d) is a normally-excited, no-voltage open-type switch, 6 is a fault current detection CT (omitted for switches 2a, 2c, 2d), and 7a, 7b is a pole transformer ( Switches 2a, 2c,
2d is omitted), 3 (collectively 3a, 3b, 3c, 3d) is a slave station for controlling each switch, which is based on the interface section 3-5 for controlling the switch, and the output of the fault current detection CT6. Failure detection unit 3-4 that detects an accident on the load side of the distribution line, and voltage detection unit 3-3 that detects the presence or absence of voltage on the power supply side and load side of the switch
, Pole transformers 7a, 7b (2a, 2c, 2d switch section is omitted)
AC / DC power supply unit 3-1 for creating a control power supply in a child station
, Battery (always rechargeable) 3-2, slave station logic section 3-6 for judging input / output of various information, slave station transmission section 3-7 for transmitting / receiving signals to / from the master station Slave logic section 3-6
And an auxiliary relay 3-8 for opening and closing a contact La for opening the battery 3-2. 4 is a transmission line for information transmission of each slave station, 5 is a master station, a transmission section 5-2 for transmitting and receiving signals to and from the slave station, based on information of the slave station and information of a circuit breaker at a substation. It consists of a logic unit 5-1 that determines the accident section and, when the breaker of the substation is turned on, issues a turn-on command to switches other than the switch that contacts the accident section.

【0006】図2は親局へ伝送する事故検出情報の判断
とバッテリの制御を判断する子局論理部の論理回路例で
ある。図2においてT1 はオフディレィ・タイマ、3-8
は図1で説明した補助リレー3-8 で、図1の電圧検出部
3-3 の出力VD が配電線電圧有の時にVD 有となって励
磁され、配電線停電時はVD 無となって一定時限後励磁
が解かれるものである。T1 の時限は配電線の停電でV
D 有からVD 無に変化した後、親局から全子局をポーリ
ングするだけの時間より長い整定としておくものであ
る。又、図2のANDはアンド回路、FFはSへの入力
でセット,Rへの入力でリセットする記憶回路、T2
オンディレィ・タイマで親局へ伝送する事故検出情報の
判断は、図1の故障検出部3-4 の出力F(配電線事故検
出にてF検出)で行なわれ記憶回路FFをセットする。
故障検出後、変電所のしゃ断器がトリップしても記憶回
路FFはセットを継続し、そのまま親局へ事故検出情報
として伝送する。記憶回路FFのリセットは、記憶回路
FFの出力と子局への入力電源が回復した条件VD 有の
アンドで、オンディレィ・タイマT2 時限後行なわれ
る。オンディレィ・タイマT2 の時限は事故発生後変電
所側のしゃ断器がトリップし、子局の電圧検出部3-3 が
入力電源無し(VD 無)と判断するまでの時間より長い
整定としておくものである。これは、事故発生時に確実
に親局へ情報を伝送すると同時に、しゃ断器がトリップ
する前に事故が復旧した場合(例えば瞬間地絡等)に
は、自動的に事故検出情報の記憶回路をリセットするよ
うにしている。
FIG. 2 shows an example of a logic circuit of a slave station logic unit for judging accident detection information transmitted to the master station and determining battery control. T 1 is Off delay timer 2, 3-8
Is the auxiliary relay 3-8 described with reference to FIG.
The output V D 3-3 is excited becomes V D Yes when the distribution line voltage Yes, during distribution line power failure are those certain time period after the excitation is solved becomes V D no. Timed T 1 is V in the power failure of the distribution line
After changes to V D No from D Yes, but to keep the longer settling than enough time to poll all slave stations from the master station. Further, the AND of FIG. 2 AND circuit, FF storage circuit for resetting the input to the set, R at the input to the S, T 2 is determined in the fault detection information to be transmitted to the master station in On delay timer, Fig. 1 This is performed by the output F of the failure detection unit 3-4 (detection of F in distribution line fault detection) and sets the storage circuit FF.
After the failure is detected, the storage circuit FF continues to set even if the circuit breaker of the substation trips, and transmits the fault detection information to the master station as it is. Reset memory circuit FF, the input power to the output and slave station memory circuit FF is an AND condition V D Yes who recover is performed after On delay timer T 2 units of instruction. On delay-timed timer T 2 are then breaker trip after the accident occurrence substation side, keep the longer settling than the time for the voltage detection unit 3-3 of the slave station is determined that there is no input power (without V D) Things. This means that the information is reliably transmitted to the master station in the event of an accident, and if the accident is recovered before the circuit breaker trips (for example, momentary ground fault), the storage circuit for the accident detection information is automatically reset. I am trying to do it.

【0007】図3は親局論理部5-1 の作用を説明するシ
ステム動作フローチャートである。次に上述のように構
成した本発明の実施例の作用について以下に説明する。
常時親局5は論理部5-1 ,伝送部5-2 ,伝送路4を介し
て、多数の子局情報をポーリングにより収集し、開閉器
の状態,事故検出情報を監視しており、又、しゃ断器の
状態も監視している。このような状態において、今、配
電線のF点てに事故が発生すると、子局3a,3bの故障検
出部3-4 が事故電流検出CT6を介して事故を検出しF
検出を出力する。子局論理部3-6 では図2の如くF検出
入力で事故検出情報を記憶すると同時に、子局伝送部3-
7 を介し親局5からポーリングがきた時に事故検出情報
を伝送する。この事故検出情報伝送は変電所のしゃ断器
1が保護リレー(図面上省略)の動作でトリップし配電
線が停電となった場合でも、バッテリ3-2 の電源が一定
時間(図2のT1 )対応し子局内で図2の如く事故を記
憶しているため、確実に子局から親局へ事故検出情報の
伝送が行なわれる。又、一定時間(図2のT1 )で補助
リレー3-8 が復帰することで接点La が開路となり、バ
ッテリの負荷が切られるため、バッテリが過放電するこ
とはない。親局5では伝送部5-2 で取込んだ子局の情報
を論理部5-1 で判断する。
FIG. 3 is a system operation flowchart for explaining the operation of the master station logic section 5-1. Next, the operation of the embodiment of the present invention configured as described above will be described below.
The master station 5 constantly collects a large number of slave station information by polling via the logic section 5-1, the transmission section 5-2, and the transmission line 4, and monitors the state of the switch and the accident detection information. The condition of the circuit breaker is also monitored. In such a state, if an accident occurs at the point F of the distribution line, the failure detection units 3-4 of the slave stations 3a and 3b detect the accident via the accident current detection CT6 and
Output detection. The slave station logic unit 3-6 stores the accident detection information by the F detection input as shown in FIG.
When the polling is received from the master station 5 via 7, the accident detection information is transmitted. This accident detection information transmission is performed even if the circuit breaker 1 of the substation trips due to the operation of the protection relay (omitted in the drawing) and the power distribution line is interrupted, and the power of the battery 3-2 is maintained for a certain time (T 1 in FIG. 2) Since the accident is stored in the slave station as shown in FIG. 2, the accident detection information is reliably transmitted from the slave station to the master station. Further, the contact La becomes open by the auxiliary relay 3-8 is restored in a predetermined time (T 1 in FIG. 2), the load on the battery is turned off, the battery will not be over-discharged. In the master station 5, the information of the slave station fetched by the transmission section 5-2 is judged by the logic section 5-1.

【0008】論理部5-1 では図3のステップS31 でしゃ
断器1のトリップ情報(CBトリップ)を基に事故処理
の判断を開始する。ステップS32 では先に伝送部5-2 ,
伝送路4を介して常時ポーリングして各子局情報を収集
しているが、しゃ断器トリップ後の各子局の情報を収集
する。ステップS33 ではしゃ断器トリップ後のポーリン
グによる各子局の情報を基に、事故区間の判断を行な
う。例えば、図1のF点で事故が発生した時は、子局3
a,3bでは故障検出部3-4 で事故を検出し、子局論理部3
-6 にて図2のロジックの如く作用する。この事故検出
情報を親局からのポーリングがきた時に子局電源が無く
なっていても、子局伝送部3-7 ,伝送路4を介し親局へ
返送する。子局3c,3dは事故点Fの負荷側故、事故検出
していない情報を親局からのポーリング時に返送する。
これらの情報を基にステップS33 では、開閉器2bと2cの
間に事故点があると判断し事故区間を判定する。ステッ
プS34ではしゃ断器1が再閉路リレー(図面上省略)動
作で再投入(CB投入)したかどうかの情報を判断し、
その後の処理の準備を行なう。ステップS35 ではしゃ断
器1が再投入したことを条件にステップS33 で判定した
配電線の事故区間よりひとつ手前の健全区間まで送電を
行なうべく、子局3aに対し開閉器2aへの投入指令を送信
し開閉器2aを投入する。又、しゃ断器1が投入されるこ
とで子局3aへの入力電源が生きるため、子局3aの子局論
理部3-6 で記憶している図2の事故検出情報は、VD
条件でT2 時限後リセットされ、通常の運用状態に戻
る。開閉器2aの投入で子局3bも同様な動きを行なう。
又、事故点より負荷側に他系統のループ点がある場合
は、ループ点と2dの開閉器に対し親局の論理部5-1 から
投入指令を出すような判断を行なうことも当然可能であ
る。
The logic unit 5-1 starts the judgment of the accident processing based on the trip information (CB trip) of the circuit breaker 1 in step S31 of FIG. In step S32, the transmission unit 5-2 first,
Although polling is always performed via the transmission line 4 to collect information on each slave station, information on each slave station after tripping the circuit breaker is collected. In step S33, an accident section is determined based on information of each slave station by polling after the circuit breaker trip. For example, when an accident occurs at point F in FIG.
In a and 3b, the fault detection unit 3-4 detects an accident, and the
-6 acts like the logic in FIG. Even if the power of the slave station is lost when polling is received from the master station, the accident detection information is returned to the master station via the slave station transmission section 3-7 and the transmission path 4. The slave stations 3c and 3d return information on which the fault is not detected due to the load side of the fault point F at the time of polling from the master station.
In step S33 based on these information, it is determined that there is an accident point between the switches 2b and 2c, and an accident section is determined. At step S34, it is determined whether or not the circuit breaker 1 has been turned on again (CB turned on) by a reclosing relay (omitted in the drawing) operation.
Preparation for the subsequent processing is performed. In step S35, on the condition that the circuit breaker 1 is turned on again, a command to turn on the switch 2a is sent to the slave station 3a in order to transmit power to a healthy section immediately before the fault section of the distribution line determined in step S33. Then switch 2a is turned on. Further, since the live input power to the child station 3a by the circuit breaker 1 is turned on, the fault detection information in FIG. 2 which is stored in the slave station logic unit 3-6 of the slave station 3a, V D Yes Condition in it is reset after T 2 teaching units, return to a normal operating state. When the switch 2a is turned on, the slave station 3b performs the same operation.
Also, if there is a loop point of another system on the load side from the accident point, it is of course possible to make a decision to issue a closing command from the logic unit 5-1 of the master station to the loop point and the 2d switch. is there.

【0009】図2に示す事故記憶のロジックは一例であ
り、記憶リセットに使われているVD の条件の代りに親
局よりリセット信号を送信してリセットすることも可能
である。図3の区間判定スタート条件にCBトリップ入
力情報を使っているが、これをフィーダ事故検出情報に
代えてもよい。又、前記では健全区間への送電のため、
親局より子局へ投入指令を出しているが子局の機能とし
て事故捜査機能を内蔵ししゃ断器再投入後、子局の事故
捜査機能で自動投入する構成とし親局で事故区間判定し
た時は事故区間に接する開閉器用子局の事故捜査機能を
ロックとする指令を出すことにしてもよい。更に、図3
ではしゃ断器が再閉路リレー動作で再投入(CB投入)
した後、開閉器投入処理するようにしているが、しゃ断
器の再閉路リレー動作による再投入の代りに親局で事故
区間判定後、親局から再閉路指令を出すようにしてもよ
い。この場合、親局よりしゃ断器をコントロールするこ
とで再閉路時間を大幅に短縮できるものである。なお、
バッテリは常時充電式で説明しているが、非充電式で構
成することも容易に可能である。
[0009] Logic of the accident memory shown in FIG. 2 is an example, it is possible to reset by sending a reset signal from the master station, in place of the condition of V D being used for the storage reset. Although the CB trip input information is used as the section determination start condition in FIG. 3, this may be replaced with feeder accident detection information. In the above, for power transmission to healthy sections,
When the master station issues an injection command to the slave station, it has a built-in accident detection function as a function of the slave station, and after restarting the circuit breaker, it automatically turns on with the accident detection function of the slave station. May issue a command to lock the accident investigation function of the switch slave station in contact with the accident section. Further, FIG.
Then, the circuit breaker is turned on again by the reclosing relay operation (CB turning on)
After that, the switch closing process is performed. However, instead of re-closing by the reclosing relay operation of the circuit breaker, a re-closing command may be issued from the master station after determining the accident section in the master station. In this case, by controlling the circuit breaker from the master station, the re-closing time can be greatly reduced. In addition,
Although the battery is described as being always charged, it is easily possible to configure it as a non-rechargeable battery.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば子
局へバッテリを備えたことにより、事故が発生し変電所
側のしゃ断器がトリップした状態であっても子局の情報
を親局で監視できるため、しゃ断器が再投入するまでの
間に親局側で事故区間を判定できる。このため、しゃ断
器の投入に続いて、健全区間への送電が親局からの信号
で子局を駆動することにより行なうことができる。従っ
て、配電線の停電は1回で済むことになり、格段の電力
供給信頼度向上が図れる。
As described above, according to the present invention, the provision of the battery in the slave station allows the information of the slave station to be mastered even when an accident occurs and the circuit breaker on the substation side trips. Since monitoring can be performed by the station, the master station can determine the accident section before the circuit breaker is turned on again. For this reason, after turning on the circuit breaker, power transmission to the healthy section can be performed by driving the slave station with a signal from the master station. Therefore, only one power outage of the distribution line is required, and the power supply reliability can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による配電系統制御装置の一実施例図。FIG. 1 is a diagram showing an embodiment of a distribution system control device according to the present invention.

【図2】事故検出情報伝送及びバッテリ制御を判断する
論理回路例図。
FIG. 2 is an example of a logic circuit for judging transmission of accident detection information and battery control.

【図3】システム動作のフローチャート。FIG. 3 is a flowchart of a system operation.

【図4】従来方式を説明する図。FIG. 4 is a diagram illustrating a conventional method.

【符号の説明】[Explanation of symbols]

1 しゃ断器 2 開閉器 3 制御装置(子局) 3-1 AC/DC電源部 3-2 バッテリ 3-3 電圧検出部 3-4 故障検出部 3-5 インターフェース部 3-6 子局論理部 3-7 子局伝送部 3-8 補助リレー 4 伝送路 5 親局 5-1 論理部 5-2 伝送部 6 CT 7 柱上トランス DESCRIPTION OF SYMBOLS 1 Breaker 2 Switch 3 Control device (slave station) 3-1 AC / DC power supply section 3-2 Battery 3-3 Voltage detection section 3-4 Failure detection section 3-5 Interface section 3-6 Slave station logic section 3 -7 Slave station transmission unit 3-8 Auxiliary relay 4 Transmission line 5 Master station 5-1 Logic unit 5-2 Transmission unit 6 CT 7 Pole transformer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−206097(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02H 7/26 H02J 13/00 301 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-206097 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02H 7/26 H02J 13/00 301

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配電線を区間分割する複数の開閉器と、
前記各開閉器に対応して設けた制御装置(子局)と、前
記各子局と親局の間を通信手段によって接続し、親局
から子局を遠方監視制御する配電系統制御装置におい
て、各子局では配電線故障を検出する故障検出部と、前
記故障検出部からの出力により当該故障情報を記憶する
記憶部と、前記故障発生後の親局からのポーリング時に
前記故障情報を親局に返送を可能とするための子局内電
源として設けられたバッテリとを備え、親局が前記配電
線故障を子局の故障検出情報をポーリングにより収集
し、この収集した情報から配電線故障を有する事故区間
を分離する制御手順を作成する手段と、変電所の再閉路
時に前記事故区間を区分する開閉器を投入しないよう制
御する手段を備えたことを特徴とする配電系統制御装
置。
1. A plurality of switches for dividing a distribution line into sections,
Wherein a control device provided in correspondence with the respective switch (slave station), said thus connected to the communication means between each slave station and the master station, distribution system controller for remote monitor control master station to in, the slave station and the failure detecting section detecting a failure distribution line, before
The failure information is stored by an output from the failure detection unit.
The storage unit, at the time of polling from the master station after the occurrence of the failure
A telephone in the slave station for enabling the failure information to be returned to the master station.
A battery provided as a power source, and
Collect line faults by polling slave station fault detection information
Based on the collected information, the accident section with the distribution line failure
Means to create control procedures to isolate power and reclose substations
At times, the switch that separates the accident section should not be closed.
A control system for a distribution system, comprising a control unit.
【請求項2】 請求項1記載の配電系統制御装置におい
て、前記子局は前記開閉器の電源側と負荷側の電圧有無
を検出する電圧検出部と、前記配電線の停電により前記
電圧検出部により電圧有りから電圧無しに変化した後、
親局から各子局をポーリングするだけの時間より長い時
間を設定し、前記バッテリを子局内制御電源として使用
する信号を出力する第1の遅延手段と、前記故障検出部
により事故が検出された場合、事故検出情報を記憶する
と共に親局へ事故検出情報を出力する記憶手段と、前記
電圧検出部により配電線の電圧が回復した条件と前記事
故検出情報の出力条件が共に満たされた際、所定時間
後に前記記憶手段の情報をリセットする信号を出力する
第2の遅延手段とからなる子局論理部を備えたことを特
徴とする配電系統制御装置。
2. The distribution system control device according to claim 1,
Thus, the slave station is a voltage detection unit that detects the presence or absence of a voltage on the power supply side and the load side of the switch, and after a voltage outage of the distribution line, the voltage detection unit changes from the presence of a voltage to the absence of a voltage,
A first delay means for setting a time longer than a time for simply polling each slave station from the master station and outputting a signal for using the battery as a control power supply in the slave station, and an accident detected by the failure detection unit. In the case, the storage means for storing the accident detection information and outputting the accident detection information to the master station, and when both the condition that the voltage of the distribution line is recovered by the voltage detection unit and the output condition of the accident detection information are satisfied. And a second delay means for outputting a signal for resetting the information in the storage means after a predetermined time, a slave station logic unit, comprising:
JP35275391A 1991-09-17 1991-12-16 Distribution system controller Expired - Fee Related JP3241073B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35275391A JP3241073B2 (en) 1991-12-16 1991-12-16 Distribution system controller
US07/990,294 US5341268A (en) 1991-12-16 1992-12-14 Method of and system for disconnecting faulty distribution line section from power distribution line
EP92121394A EP0554553B1 (en) 1991-12-16 1992-12-16 Method of and system for disconnecting faulty distribution line section from power distribution line
KR1019920024835A KR970003187B1 (en) 1991-12-16 1992-12-16 Method and system for disconnecting faulty distribution line section from power distribution line
TW081110370A TW210408B (en) 1991-09-17 1992-12-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35275391A JP3241073B2 (en) 1991-12-16 1991-12-16 Distribution system controller

Publications (2)

Publication Number Publication Date
JPH05168147A JPH05168147A (en) 1993-07-02
JP3241073B2 true JP3241073B2 (en) 2001-12-25

Family

ID=18426209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35275391A Expired - Fee Related JP3241073B2 (en) 1991-09-17 1991-12-16 Distribution system controller

Country Status (1)

Country Link
JP (1) JP3241073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333362A (en) * 1999-05-19 2000-11-30 Mitsubishi Electric Corp Distribution controller
CN106908690A (en) * 2017-02-20 2017-06-30 积成电子股份有限公司 Distributed intelligence warning system and its method for diagnosing faults between boss station

Also Published As

Publication number Publication date
JPH05168147A (en) 1993-07-02

Similar Documents

Publication Publication Date Title
US6539287B1 (en) Distribution control system capable of isolating fault section without using time limited sequential shift function
JPH11313438A (en) Fault protection device for power distribution system
JP3241073B2 (en) Distribution system controller
JP3169976B2 (en) Distribution line ground fault protection system
JP2956601B2 (en) Fault segmentation device for distribution system
JP3141807B2 (en) Automatic distribution line switchgear
JP3255450B2 (en) Distribution line accident section separation method
JP3075740B2 (en) Accident point separation device
JPH1080057A (en) Distribution automating system
JPH0787665A (en) Isolating device for distribution-line fault section
JP3400864B2 (en) Power distribution equipment
JP2814793B2 (en) Remote monitoring and control system for distribution line protection equipment
CN116365484A (en) Distributed feeder automation fault processing method and system
JPH07318607A (en) Method for detection of point of short circuit accident of distribution line
JP3175958B2 (en) Distribution line accident section separation method
JPH0260422A (en) Faulty section detector/controller
JPH0655013B2 (en) Distribution system automation equipment
JPH0246131A (en) Distribution system controller
JP3041632B2 (en) Distribution line accident section separation method
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JPS6156689B2 (en)
JPH04190645A (en) Automation device for distribution line
JPH07222353A (en) Switchgear for distribution system
JPH10201081A (en) Automatic section switch for distribution line
JP2001145255A (en) Switch-controlling device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees