JPH10200505A - 受信装置及び受信方法、並びに無線システムの端末装置 - Google Patents

受信装置及び受信方法、並びに無線システムの端末装置

Info

Publication number
JPH10200505A
JPH10200505A JP9000394A JP39497A JPH10200505A JP H10200505 A JPH10200505 A JP H10200505A JP 9000394 A JP9000394 A JP 9000394A JP 39497 A JP39497 A JP 39497A JP H10200505 A JPH10200505 A JP H10200505A
Authority
JP
Japan
Prior art keywords
value
code
circuit
correlation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9000394A
Other languages
English (en)
Inventor
Tetsuya Naruse
哲也 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9000394A priority Critical patent/JPH10200505A/ja
Priority to US08/998,390 priority patent/US6075809A/en
Priority to KR1019970077168A priority patent/KR19980070261A/ko
Priority to EP98300035A priority patent/EP0852431A3/en
Priority to CN98105793A priority patent/CN1104115C/zh
Publication of JPH10200505A publication Critical patent/JPH10200505A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70755Setting of lock conditions, e.g. threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/712Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop

Abstract

(57)【要約】 【課題】 RAKE方式の受信機で、サーチ時に加算回
数に応じた閾値が設定でき、サーチ時間が高速化できる
と共に、フィンガへの最適なパスを確実に設定できるよ
うにする。 【解決手段】 PN符号の位相を所定のチップ毎に動か
しながら、受信符号との相関値を求めていく際に、逆拡
散出力を累積加算して、相関値を求めるようにしてい
る。このとき、閾値発生回路61からは、逆拡散出力の
累積加算数に応じた閾値を発生させる。すなわち、加算
回数が増加するのに応じて、その閾値を大きくしてい
る。または、加算回数を正規化して、閾値と比較する。
そして、累積加算数が所定の閾値に達してない場合に
は、相関が弱いとして、直ちに次の位相にシフトする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、CDMA(Code
Division Multiple Accesss)方式のセルラ電話システ
ムに用いて好適な受信装置及び受信方法並びに無線シス
テムの端末装置に関する。
【0002】
【従来の技術】近年、擬似ランダム符号を拡散符号とし
て用いて送信信号の搬送波をスペクトラム拡散して送信
し、拡散符号の符号系列のパターンや位相を異ならせる
ことにより、多次元接続を可能にしたCDMA方式のセ
ルラ電話システムが注目されている。
【0003】CDMA方式では、通信方式として、スペ
クトラム拡散方式が用いられている。スペクトラム拡散
方式では、送信時に、搬送波が送信データにより一次変
調され、更に、この一次変調された搬送波に対してPN
(Pseudorandom Noise)符号が乗じられ、搬送波がPN
符号により変調される。一次変調としては、例えば、平
衡QPSK変調が用いられる。PN符号はランダム符号
であるから、このように搬送波がPN符号により変調を
受けると、その周波数スペクトラムが広げられる。
【0004】そして、受信時には、送信側と同一のPN
符号が乗じられる。受信時に、送信時と同一のPN符号
で、その位相が合致していると、逆拡散が行われ、一次
変調出力が得られる。この一次変調出力を復調すること
により、受信データが得られる。
【0005】スペクトラム拡散方式では、受信時に信号
を逆拡散するためには、そのパターンのみならず、その
位相についても、送信側と同一のPN符号が必要があ
る。したがって、PN符号のパターンや位相を変えるこ
とにより、多次元接続が可能となる。このように、拡散
符号の符号系列のパターンや位相を異ならせることによ
り多次元接続を可能にしたものがCDMA方式と呼ばれ
ている。
【0006】セルラ電話システムとして、従来より、F
DMA(Frequency Division Multiple Accesss )方式
やTDMA(Time Division Multiple Accesss)方式が
用いられている。ところが、FDMA方式やTDMA方
式では、利用者数の急激な増大に対して対処することが
困難になってきている。
【0007】つまり、FDMA方式は、異なる周波数の
チャンネルを用いて多次元接続を行うものであり、アナ
ログ方式のセルラ電話システムでは、専ら、FDMA方
式が用いられている。
【0008】ところが、FDMA方式では、周波数利用
効率が悪く、利用者数の急激な増大に対して、チャンネ
ル数が不足しがちである。チャンネル数を増大するため
に、チャンネル間隔を狭くすると、隣接チャンネルの影
響が受けやすくなったり、音質の劣化が生じる。
【0009】TDMA方式は、送信データを時間圧縮す
ることより、利用時間を分割し、同一の周波数を共有す
るようにしたもので、TDMA方式は、ディジタル方式
のセルラ電話システムとして、現在、広く普及してい
る。TDMA方式は、FDAM方式だけの場合に比べ
て、周波数利用効率が改善されるものの、チャンネル数
には限界があり、利用者の急激な増大とともに、チャン
ネル数の不足が危惧されている。
【0010】これに対して、CDMA方式では、耐干渉
性が優れており、隣接チャンネルの影響を受けにくい。
このため、周波数利用効率が上がり、より多チャンネル
化が図れる。
【0011】また、FDAM方式やTDMA方式では、
マルチパスによるフェージングの影響を受けやすい。
【0012】つまり、図8に示すように、基地局201
から携帯端末202に届く信号には、基地局201から
の電波が携帯端末202に直接届くパスP1の他に、基
地局201からの電波がビル203Aを反射して携帯端
末202に届くパスP2や、基地局201からの電波が
ビル203Bを反射して携帯端末202に届くパスP3
等、複数のパスがある。
【0013】基地局201からの電波が携帯端末202
に直接届くパスP1に比べて、基地局201からの電波
がビル203Aや203Bを反射して携帯端末202に
届くパスP2及びP3は遅れが生じる。したがって、図
9に示すように、携帯端末102には、異なるタイミン
グでパスP1からの信号S1、パスP2からの信号S
2、パスP3からの信号S3が到達する。これら、複数
のパスP1、P2、P3からの信号S1、S2、S3が
干渉し合うと、フェージングが発生する。FDAM方式
やTDMA方式では、このようなマルチパスによるフェ
ージングの影響が問題となっている。
【0014】これに対して、CDMA方式では、ダイバ
シティRAKE方式を採用することにより、マルチパス
によるフェージングの影響を軽減できると共に、S/N
比の向上を図ることができる。
【0015】ダイバシティRAKE方式では、上述のよ
うな複数のパスの信号S1、S2、S3に対して、図1
0に示すように、複数のパスからの信号を夫々受信でき
る受信機221A、221B、221Cが用意される。
そして、タイミング検出器222で、各パスにおける符
号が捕捉され、この符号が各パスP1、P2、P3の受
信機221A、221B、221Cに設定される。複数
の受信機221A、221B、221Cにより、複数の
パスP1、P2、P3の信号が夫々復調され、これらの
受信出力がを合成回路222で合成される。
【0016】スペクトラム拡散方式では、各パスによる
干渉を受けずらい。そして、このように、複数のパスP
1、P2、P3からの受信出力を夫々復調し、これら複
数のパスからの復調出力を合成すれば、信号強度が大き
くなり、S/N比の向上が図れると共に、マルチパスに
よるフェージングの影響が軽減できる。
【0017】上述の例では、説明のために、3つの受信
機221A、221B、221Cと、タイミング検出器
222とによりダイバシティRAKE方式の構成を示し
たが、ダイバシティRAKE方式のセルラ電話端末で
は、通常、図11に示すように、各パスの復調出力を得
るためのフィンガ251A、251B、251Cと、マ
ルチパスの信号を検出するためのサーチャ252と、各
パスの復調データを合成するためのデータコンバイナ2
53とが設けられる。
【0018】図11において、入力端子250に、中間
周波数に変換されたスペクトラム拡散信号の受信信号が
供給される。この信号が準同期検波回路255に供給さ
れる。準同期検波回路255は乗算回路で、準同期検波
回路255で、入力端子250からの信号とPLLシン
セサイザ256の出力とが乗算される。PLLシンセサ
イザ256の出力は、周波数コンバイナ257の出力に
より制御され、準同期検波回路255で受信信号が直交
検波される。
【0019】準同期検波回路255の出力は、A/Dコ
ンバータ258に供給される。A/Dコンバータ258
で、この信号がディジタル信号に変換される。この際、
A/Dコンバータ258のサンプリング周波数は、スペ
クトラム拡散に使われるPN符号の周波数よりも十分高
い周波数に設定され、所謂オーバーサンプリングが行わ
れる。
【0020】A/Dコンバータ258の出力は、フィン
ガ251A、251B、251Cに供給されると共に、
サーチャ252に供給される。フィンガ251A、25
1B、251Cは、各パスにおける信号を逆拡散し、同
期捕捉し、データを復調すると共に、周波数誤差を検出
するものである。
【0021】サーチャ252は、受信信号の符号を捕捉
し、フィンガ251A、251B、251Cに設定する
各パスの符号を決定するものである。すなわち、サーチ
ャ252は、受信信号にPN符号を乗算して逆拡散を行
う逆拡散回路を備えている。そして、コントローラ25
8の制御の基に、PN符号の位相を動かし、受信符号と
の相関を求める。この設定された符号と受信符号との相
関により、各パスの符号が決定される。
【0022】サーチャ252の出力がコントローラ25
8に供給される。コントローラ258は、サーチャ25
2の出力に基づいて、各フィンガ251A、251B、
251Cに対するPN符号の位相を設定する。フィンガ
251A、251B、251Cは、これに基づいて、P
N符号の位相を設定し、受信信号の逆拡散を行い、そし
て、各パスにおける受信信号を復調する。
【0023】フィンガ251A、251B、251Cで
復調されたデータは、データコンバイナ253に供給さ
れる。データコンバイナ253で、各パスの受信信号か
合成される。この合成された信号が出力端子259から
出力される。
【0024】また、フィンガ251A、251B、25
1Cで、周波数誤差が検出される。この周波数誤差が周
波数コンバイナ257に供給される。この周波数コンバ
イナ257の出力により、PLLシンセサイザ256の
発振周波数が制御される。
【0025】このようなRAKE方式の携帯電話端末に
おいては、従来、サーチャ252として、図12に示す
ような構成のものが用いられている。
【0026】図12において、入力端子301に、A/
Dコンバータ258(図11)からのディジタル信号が
供給される。前述したように、A/Dコンバータ258
のサンプリング周波数は、PN符号の周波数よりも高い
周波数とされており、オーバサンプリングとなってい
る。この入力端子301からのディジタル信号がデシメ
ート回路302に供給される。デシメート回路302
で、入力端子301からの信号がデシメートされる。デ
シメート回路302の出力が乗算回路303に供給され
る。
【0027】PN符号発生回路304からは、送信側で
拡散したのと同様のPN符号が発生される。PN符号発
生回路304からのPN符号の位相は、コントローラ2
58により設定可能とされる。PN符号発生回路304
からのPN符号が乗算回路303に供給される。
【0028】乗算回路303により、デシメート回路3
02の出力と、PN符号発生回路304からのPN符号
とが乗算される。これにより、入力端子301からの受
信信号がPN符号発生回路304からの符号により逆拡
散される。受信符号とPN符号発生回路304からの符
号とのパターン及び位相が一致すると、受信信号の逆拡
散が成立し、乗算回路303からの出力レベルが大きく
なる。乗算回路303の出力がバンドパスフィルタ30
6を介してレベル検出回路307に供給される。レベル
検出回路307により、乗算回路303の出力レベルが
検出される。
【0029】レベル検出回路307の出力が加算回路3
08に供給される。加算回路308で、レベル検出回路
307の出力が所定回数、例えば64回分累積加算され
る。このように、レベル検出回路307の出力レベルを
累積加算した値から、PN符号発生回路304に設定さ
れている符号と、受信符号との相関値が得られる。この
加算回路308の出力は、メモリ309に供給される。
【0030】PN符号発生回路304からのPN符号の
位相は、所定チップごとに動かされる。そして、各位相
ごとに、加算回路308の出力から相関値が求められ
る。この相関値が各位相ごとにメモリ309に蓄えられ
る。そして、PN符号の1周期分の設定が終了したら、
コントローラ258によりメモリ309に蓄えられてい
た相関値が大きい順にソートされる。そして、相関値の
大きい例えば3つのパスの位相が選択される。この3つ
のパスの位相がフィンガ251A、251B、251C
(図11)に夫々設定される。
【0031】図13は、上述のサーチャの一例の処理を
示すフローチャートである。図13において、PN符号
発生回路304の位相が初期値に設定され(ステップS
T101)、加算回数がクリアされ(ステップST10
2)、加算回路308の累積加算結果がクリアされる
(ステップST103)。
【0032】PN符号発生回路304に初期位相が設定
されると、設定されたPN符号により、乗算回路303
で受信信号が逆拡散される。そして、加算回路308に
より、このとき逆拡散された信号レベルが累積加算され
(ステップST104)、1回加算するごとに加算回数
がインクリメントされる(ステップST105)。加算
回数が所定の回数(例えば64回)に達したかどうかが
判断され(ステップST106)、加算回数が例えば6
4回に達するまで、信号レベルの累積加算が行われる。
これにより、相関値が求められる。加算回数が例えば6
4回に達っしたら、このときの相関値がメモリ309に
蓄えられる(ステップST107)。
【0033】PN符号発生回路304の位相が最終値ま
で設定されたかどうかが判断され(ステップST10
8)、最終値でなければ、PN符号の位相が所定値だけ
進められ又は遅らされる(ステップST109)。そし
て、ステップST102に戻され、所定値だけ動かされ
たPN符号の位相で、上述と同様の処理が繰り返され
る。
【0034】PN符号の位相が1周期分動かされると、
最終位相となり、ステップST108で最終位相である
と判断される。最終位相であると判断されると、メモリ
309に記憶されている相関値がソートされ、相関値の
大きい3つの値が求められる(ステップST110)。
そして、この上位3つの位相がフィンガ251A、25
1B、251Cに夫々設定される(ステップST11
1)。
【0035】ところで、図12に示したサーチャの例で
は、PN符号の全ての位相について、逆拡散レベルを例
えば64回加算して相関値を求めている。このため、サ
ーチ時間が長くなる。加算回数を減らせば、サーチ時間
は短縮されるが、相関値の精度が悪化する。
【0036】そこで、先ず、加算回数を例えば32回と
して相関値が所定の閾値に達したかどうかを判断し、閾
値を越えた場合だけ、更に例えば32回の加算を行って
相関値を得るようにすることにより、精度を落とさず
に、サーチを高速化することが考えられる。図14は、
このようにして、サーチを高速化して例を示すものであ
る。
【0037】図14において、入力端子351に、A/
Dコンバータ258からのディジタル信号が供給され
る。この入力端子351からのディジタル信号がデシメ
ート回路352に供給される。デシメート回路352
で、入力端子351からの信号がデシメートされる。デ
シメート回路352の出力が乗算回路353に供給され
る。
【0038】PN符号発生回路354からは、送信側で
拡散したのと同様のPN符号が発生される。PN符号発
生回路354からのPN符号の位相は、コントローラ2
58により設定可能とされる。PN符号発生回路354
からのPN符号が乗算回路353に供給される。
【0039】乗算回路353により、デシメート回路3
52の出力と、PN符号発生回路354からのPN符号
とが乗算される。これにより、入力端子351からの受
信信号がPN符号発生回路354からの符号により逆拡
散される。受信符号とPN符号発生回路354からの符
号とのパターン及び位相が一致すると、受信信号の逆拡
散が成立し、乗算回路353からの出力レベルが大きく
なる。乗算回路353の出力がバンドパスフィルタ35
6を介してレベル検出回路357に供給される。レベル
検出回路357により、乗算回路353の出力レベルが
検出される。
【0040】レベル検出回路357の出力が加算回路3
58に供給される。加算回路358で、レベル検出回路
357の出力が累積加算される。このように、レベル検
出回路357の出力レベルを累積加算した値から、PN
符号発生回路354に設定されている符号と、受信符号
との相関値が得られる。
【0041】この加算回路358での累積加算の回数
は、最初に、例えば32回行われる。そして、レベル検
出回路357の出力を32回累積加算して得られた相関
値は、コンパレータ362に供給され、相関値が所定の
閾値を越えているかどうかが判断される。相関の小さい
ものは不要なので、相関値が所定の閾値以下の場合に
は、その位相では相関値が弱いと判断され、PN符号発
生回路354の位相が直ちに次の位相に設定される。相
関値が所定の閾値を越えている場合のみ、相関値を精度
良く検出するために、更に、32回の累積加算が行われ
る。加算回路358の出力は、メモリ359に供給され
る。
【0042】PN符号発生回路354からのPN符号の
位相は、所定チップごとに動かされる。そして、各位相
ごとに、加算回路358の出力から相関値が求められ
る。加算回路358での累積加算の回数は、最初に、例
えば32回行われ、相関値が所定の閾値以下の場合に
は、相関が弱いと判断され、PN符号発生回路354の
位相が直ちに次の位相に進められ、相関値が所定の閾値
を越えている場合のみ、更に、32回の累積加算が行わ
れ、この相関値がメモリ359に蓄えられる。そして、
1周期分の位相が設定されたら、相関値の大きい順に例
えば3つのパスが選択される。この3つのパスの符号が
フィンガ251A、251B、251Cに設定される。
【0043】図15及び図16は、上述のサーチャの他
の例の処理を示すフローチャートである。図15及び図
16において、PN符号発生回路354の位相が初期値
に設定され(ステップST151)、加算回数がクリア
され(ステップST152)、加算回路358の累積加
算結果がクリアされる(ステップST153)。
【0044】PN符号発生回路354に初期位相が設定
されると、設定されたPN符号により、乗算回路353
で受信信号が逆拡散される。そして、加算回路358に
より、このとき逆拡散された信号レベルが加算され(ス
テップST154)、1回加算するごとに加算回数がイ
ンクリメントされる(ステップST155)。加算回数
が所定の回数(例えば32回)に達したかどうかが判断
され(ステップST156)、加算回数が例えば32回
に達するまで、信号レベルの累積加算が行われる。
【0045】ステップST156で、加算回数が32回
に達したと判断されたら、加算結果が所定の閾値に達し
たかどうかが判断される(ステップST157)。加算
結果が所定の閾値に達していなければ、相関が弱いと判
断される(ステップST158)。そして、最終位相か
どうかが判断され(ステップST159)、最終位相で
なければ、PN符号の位相が所定値(例えば、1/2チ
ップ分)だけ進められ又は遅らされる(ステップST1
60)。そして、ステップST152に戻され、所定値
だけ動かされたPN符号の位相で、上述と同様の処理が
繰り返される。
【0046】ステップST157で、加算結果が所定の
閾値に達したと判断されたら、更に、加算が続けられ
(ステップST161)、1回加算するごとに加算回数
がインクリメントされる(ステップST162)。加算
回数が所定の回数(例えば64)に達したかどうかが判
断され(ステップST163)、加算回数が例えば64
回に達するまで、信号レベルの累積加算が行われる。加
算回数例えば64回に達っしたら、このときの相関値が
メモリ359に蓄えられる(ステップST164)。
【0047】PN符号発生回路174の位相が最終値ま
で設定されたかどうかが判断され(ステップST15
9)、最終値でなければ、PN符号の位相が所定値(例
えば、1/2チップ分)だけ進められ又は遅らされる
(ステップST160)。そして、ステップST152
に戻され、所定値だけ動かされたPN符号の位相で、上
述と同様の処理が繰り返される。
【0048】PN符号の位相が1周期分動かされると、
最終位相となり、ステップST159で最終位相である
と判断される。最終位相であると判断されると、メモリ
359に記憶されている相関値の中から、相関値の大き
い順にソートされ、相関値の大きい上位3つの位相が求
められる(ステップST165)。そして、この上位3
つの位相がフィンガ251A、251B、251Cに夫
々設定される(ステップST166)。
【0049】
【発明が解決しようとする課題】このように、最初に加
算回数を所定回数(例えば32回)として相関値が所定
の閾値に達したかどうかを判断し、閾値を越えた場合だ
け、更に所定回数(例えば更に32回)の加算を行って
相関値を得るようにすると、相関が小さい場合にも加算
が繰り返されることがなく、精度を落とさずに、サーチ
を高速化できる。ところが、この場合、閾値と比較する
際の加算回数の設定が問題になる。
【0050】すなわち、加算回数が少ない段階で、加算
回路358からの累積加算値と閾値との比較を行なうよ
うにすると、受信符号との相関が強いが、累積加算の初
期段階でノイズの影響を受けている場合に、相関が弱い
と誤判定され、その位相での相関値が求められなくなる
危険性がある。また、加算回数が大きくなってから、加
算回路358からの累積加算値と閾値との比較を行ない
ようにしたのでは、無駄な加算が繰り返されることにな
り、サーチの高速化に不利である。
【0051】したがって、この発明の目的は、サーチ時
に加算回数に応じた閾値が設定でき、サーチ時間が高速
化できると共に、フィンガへの最適なパスを確実に設定
できる受信装置及び受信方法、並びに無線システムの端
末装置を提供することにある。
【0052】
【課題を解決するための手段】この発明は、拡散符号に
よりスペクトラム拡散された信号を受信する受信装置に
おいて、マルチパスとなっている受信信号から個々のパ
スを検索するサーチャと、検索されたパスの夫々の受信
信号を逆拡散してデータを復調する複数のフィンガと、
複数のフィンガの出力を合成するコンバイナとを有し、
サーチャは、送信時の拡散符号と同一のパターンで、順
次その位相がシフトされる符号を発生する符号発生手段
と、受信信号と符号発生手段からの符号とを乗算して逆
拡散を行う逆拡散手段と、逆拡散手段の出力レベルを累
積加算する毎に、逆拡散手段の出力レベルの累積加算値
と閾値とを比較し、累積値が所定の閾値より小さければ
相関が殆ど無いと判断するようにし、累積値が所定の閾
値より大きければ、逆拡散手段の出力レベルを累積加算
して相関値を求める相関値検出手段と、相関検出手段で
検出された相関値の中から相関値の大きいものを複数個
選択する手段とを備えるようにしたようにしたことを特
徴とする受信装置である。
【0053】この発明は、拡散符号によりスペクトラム
拡散された信号を受信する受信方法において、サーチャ
でマルチパスとなっている受信信号から個々のパスを検
索し、複数のフィンがで検索されたパスの夫々の受信信
号を逆拡散してデータを復調し、コンバイナで複数のフ
ィンガの出力を合成し、サーチャは、送信時の拡散符号
と同一のパターンで、順次その位相がシフトされる符号
を発生し、受信信号と符号発生手段からの符号とを乗算
して逆拡散を行ない、逆拡散出力レベルを累積加算する
毎に、逆拡散レベルの累積加算値と閾値とを比較し、累
積値が所定の閾値より小さければ相関が殆ど無いと判断
するようにし、累積値が所定の閾値より大きければ、逆
拡散手段の出力レベルを累積加算して相関値を求め、相
関値の中から相関値の大きいものを複数個選択するよう
にしたことを特徴とする受信方法である。
【0054】この発明は、拡散符号により送信信号をス
ペクトラム拡散して送信し、拡散符号の符号系列のパタ
ーンや位相を異ならせることにより、多次元接続を可能
とした無線システムの端末装置において、マルチパスと
なっている受信信号から個々のパスを検索するサーチャ
と、検索されたパスの夫々の受信信号を逆拡散してデー
タを復調する複数のフィンガと、複数のフィンガの出力
を合成するコンバイナとを有し、サーチャは、送信時の
拡散符号と同一のパターンで、順次その位相がシフトさ
れる符号を発生する符号発生手段と、受信信号と符号発
生手段からの符号とを乗算して逆拡散を行う逆拡散手段
と、逆拡散手段の出力レベルを累積加算する毎に、逆拡
散手段の出力レベルの累積加算値と閾値とを比較し、累
積値が所定の閾値より小さければ相関が殆ど無いは判断
するようにし、累積値が所定の閾値より大きければ、逆
拡散手段の出力レベルを累積加算して相関値を求める相
関値検出手段と、相関検出手段で検出された相関値の中
から相関値の大きいものを複数個選択する手段とを備え
るようにしたようにしたことを特徴とする無線システム
の端末装置である。
【0055】PN符号の位相を所定のチップ毎に動かし
ながら、受信符号との相関値を求めていく際に、逆拡散
出力を累積加算して、相関値を求めるようにしている。
このとき、逆拡散出力の累積加算数に応じて閾値を設定
する。すなわち、加算回数が増加するのに応じて、その
閾値を大きくしている。または、加算回数を正規化し
て、閾値と比較する。そして、累積加算数が所定の閾値
に達してない場合には、相関が弱いとして、直ちに次の
位相にシフトする。
【0056】
【発明の実施の形態】以下、この発明の実施の形態につ
いて図面を参照して説明する。図1は、この発明が適用
できるCDMA方式の携帯電話システムの携帯端末の一
例を示すものである。この携帯端末では、受信方式とし
て、複数のパスからの信号を同時に受信し、これらを合
成するようにしたダイバシティRAKE方式が採用され
ている。
【0057】図1において、送信時には、マイクロホン
1に音声信号が入力される。この音声信号は、A/Dコ
ンバータ2に供給され、A/Dコンバータ2によりアナ
ログ音声信号がディジタル音声信号に変換される。A/
Dコンバータ2の出力が音声圧縮回路3に供給される。
【0058】音声圧縮回路3は、ディジタル音声信号を
圧縮符号化するものである。圧縮符号化方式としては、
種々のものが提案されているが、例えばQCELP(Qu
alcomm Code Excited Linear Coding )のような、話者
の声の性質や、通信路の混雑状況により、複数の符号化
速度が選択できるものを用いることができる。QCEL
Pでは、話者の声の性質や通信路の混雑状況によって4
通りの符号化速度(9.6kbps、4.8kbps、
2.4kbps、1.2kbps)が選択でき、通話品
質を保つのに最低限の速度で符号化が行えるようになっ
ている。勿論、音声圧縮方式は、これに限定されるもの
ではない。
【0059】音声圧縮回路3の出力が畳込み符号化回路
4に供給される。畳込み符号化回路4により、送信デー
タに対して、畳込み符号のエラー訂正コードが付加され
る。畳込み符号化回路4の出力がインターリーブ回路5
に供給される。インターリーブ回路5により、送信デー
タがインターリーブされる。インターリーブ回路5の出
力がスペクトラム拡散回路6に供給される。
【0060】スペクトラム拡散回路6により、搬送波が
一次変調され、更に、PN符号で拡散される。すなわ
ち、例えば平衡QPSK変調により、送信データの一次
変調が行われ、更に、PN符号が乗じられる。PN符号
はランダム符号であるから、このようにPN符号を乗じ
ると、搬送波の周波数帯域が広げられ、スペクトラム拡
散が行われる。なお、送信データの変調方式としては、
例えば平衡QPSK変調を用いられているが、種々のも
のが提案されており、他の変調方式を用いるようにして
も良い。
【0061】スペクトラム拡散回路6の出力は、バンド
パスフィルタ7を介して、D/Aコンバータ8に供給さ
れる。D/Aコンバータ8の出力がRF回路9に供給さ
れる。
【0062】RF回路9には、PLLシンセサイザ11
から局部発振信号が供給される。RF回路9により、D
/Aコンバータ8の出力とPLLシンセサイザ11から
の局部発振信号とが乗じられ、送信信号の周波数が所定
の周波数に変換される。RF回路9の出力が送信アンプ
10に供給され、電力増幅された後、アンテナ12に供
給される。そして、アンテナ12からの電波が基地局に
向けて送られる。
【0063】受信時には、基地局からの電波がアンテナ
12により受信される。この基地局からの電波は、建物
等の反射を受けるため、マルチパスを形成して、携帯端
末のアンテナ12に到達する。また、携帯端末を自動車
等で使用する場合には、ドップラー効果により、受信信
号の周波数が変化することがある。
【0064】アンテナ12からの受信出力は、RF回路
20に供給される。RF回路20には、PLLシンセサ
イザ11から局部発振信号が供給される。RF回路20
により、受信信号が所定周波数の中間周波数信号に変換
される。
【0065】RF回路20の出力が中間周波回路21を
介して、準同期検波回路22に供給される。準同期検波
回路22には、PLLシンセサイザ23の出力が供給さ
れる。PLLシンセサイザ23からの出力信号の周波数
は、周波数コンバイナ32の出力により制御されてい
る。準同期検波回路22により、受信信号が直交検波さ
れる。
【0066】準同期検波回路22の出力は、A/Dコン
バータ24に供給される。A/Dコンバータ24によ
り、準同期検波回路22の出力がディジタル化される。
このとき、A/Dコンバータ24のサンプリング周波数
は、スペクトラム拡散に使われているPN符号の周波数
よりも高い周波数に設定されており、所謂オーバーサン
プリングとされている。A/Dコンバータ24の出力が
フィンガ25A、25B、25Cに供給されると共に、
サーチャ28に供給される。
【0067】前述したように、受信時には、マルチパス
の信号が受信される。フィンガ25A、25B、25C
は、夫々、これらマルチパスの受信信号にPN符号を乗
算して逆拡散を行い、逆拡散出力からデータを復調す
る。更に、フィンガ25A、25B、25Cからは、各
パスでの受信信号レベルと、各パスでの周波数誤差が出
力される。
【0068】サーチャ28は、受信信号の符号を捕捉
し、フィンガ25A、25B、25Cに設定する各パス
の符号を決定するものである。すなわち、サーチャ28
は、受信信号にPN符号を乗算して逆拡散を行う逆拡散
回路を備えている。そして、コントローラ29の制御の
基に、PN符号の位相を動かし、受信符号との相関を求
める。この設定された符号と受信符号との相関値によ
り、各パスの符号が決定される。コントローラ29によ
り決定された符号がフィンガ25A、25B、25Cに
設定される。
【0069】フィンガ25A、25B、25Cにより復
調された各パスの受信データは、データコンバイナ30
に供給される。データコンバイナ30により、各パスの
受信データが合成される。このデータコンバイナ30の
出力がAGC回路33に供給される。
【0070】また、フィンガ25A、25B、25Cに
より、各パスにおける信号強度が求められる。フィンガ
25A、25B、25Cからの各パスにおける信号強度
は、RSSI(Received Signal Strength Indicator)
コンバイナ31に供給される。RSSIコンバイナ31
により、各パスにおける信号強度が合成される。このR
SSIコンバイナ31の出力がAGC回路33に供給さ
れ、受信データの信号レベルが一定となるように、AG
C回路33のゲインが制御される。
【0071】また、フィンガ25A、25B、25Cか
らの各パスにおける周波数誤差が周波数コンバイナ32
に供給される。周波数コンバイナ32により、各パスに
おける周波数誤差が合成される。この周波数コンバイナ
32の出力がPLLシンセサイザ11及び23に供給さ
れ、周波数誤差に応じて、PLLシンセサイザ11及び
23の周波数が制御される。
【0072】AGC回路33の出力がデインターリーブ
回路34に供給される。デインターリーブ回路34によ
り、送信側のインターリーブに対応して、受信データが
デインターリーブされる。デインターリーブ回路34の
出力がビタビ復号回路35に供給される。ビタビ復号回
路35は、軟判定と最尤復号とにより、畳込み符号を復
号するものである。ビタビ復号回路35により、エラー
訂正処理が行われる。このビタビ復号回路35の出力が
音声伸長回路36に供給される。
【0073】音声伸長回路36により、例えばQCEL
Pにより圧縮符号化されて送られてきた音声信号が伸長
され、ディジタル音声信号が復号される。このディジタ
ル音声信号がD/Aコンバータ37に供給される。D/
Aコンバータ37によりディジタル音声信号がアナログ
音声信号に戻される。このアナログ音声信号がスピーカ
38に供給される。
【0074】この発明が適用できるCDMA方式のセル
ラ電話システムの携帯端末では、RAKE方式が用いら
れ、複数のパスの受信出力が合成される。そして、この
発明が適用された携帯電話端末では、サーチャ28は、
逆拡散された値を累積加算していくと共に、加算数に応
じて閾値を動的に動かしていき、逆拡散された値の累積
加算値が、動的に動かされた閾値を越えたかどうかを判
断し、閾値を越えた場合だけ、所定回数の加算を行なっ
て、相関値を得るようにしている。これにより、精度を
落とさずに、サーチを高速化できる。
【0075】図2は、この発明が適用された携帯電話端
末におけるサーチャ28の構成を示すものである。図2
において、入力端子51に、A/Dコンバータ24(図
1)からのディジタル信号が供給される。前述したよう
に、A/Dコンバータ24のサンプリング周波数は、P
N符号の周波数よりも高い周波数とされており、オーバ
サンプリングとなっている。この入力端子51からのデ
ィジタル信号がデシメート回路52に供給され、デシメ
ート回路52で、入力端子51からの信号がデシメート
される。デシメート回路52の出力が乗算回路53に供
給される。
【0076】PN符号発生回路54からは、送信側で拡
散したのと同様のPN符号が発生される。PN符号発生
回路54からのPN符号の位相は、コントローラ29に
より設定可能とされる。PN符号発生回路54からのP
N符号が乗算回路53に供給される。
【0077】乗算回路53により、デシメート回路52
の出力と、PN符号発生回路54からのPN符号とが乗
算される。これにより、入力端子51からの受信信号が
PN符号発生回路54からの符号により逆拡散される。
受信符号とPN符号発生回路54からの符号とのパター
ン及び位相が一致すると、受信信号の逆拡散が成立し、
乗算回路53からの出力レベルが大きくなる。乗算回路
53の出力がバンドパスフィルタ56を介してレベル検
出回路57に供給される。レベル検出回路57により、
乗算回路53の出力レベルが検出される。
【0078】レベル検出回路57の出力が加算回路58
に供給される。加算回路58で、レベル検出回路57の
出力が所定回数、例えば64回分累積加算される。この
ように、レベル検出回路57の出力レベルを累積加算し
た値から、PN符号発生回路54に設定されている符号
と、受信符号との相関値が得られる。この加算回路58
の出力は、メモリ59に供給されると共に、コンパレー
タ60に供給される。コンパレータ60には、閾値発生
回路61から閾値が供給される。この閾値は、コントロ
ーラ29により、加算回路58での加算回数に応じて、
動的に変化される。
【0079】PN符号発生回路54からのPN符号の位
相は、コントローラ29の制御の基に、所定チップ(例
えばチップ或いは1/2チップ)ごとに動かされる。そ
して、各位相ごとに、加算回路58の出力から相関値が
求められる。この相関値がメモリ59に蓄えられる。そ
して、PN符号の1周期分の設定が終了したら、相関値
の大きい順に例えば3つの位相が選択され、これがフィ
ンガ25A、25B、25C(図1)に設定される。
【0080】サーチャ28では相関の強い例えば3つの
パスを検出している。したがって、このように加算回路
58の出力から相関値を求める際に、加算回路58で累
積加算を繰り返して、相関の小さいものの相関値を求め
るのは無駄である。そこで、コンパレータ60により、
加算回路58の出力レベルが閾値より小さいかどうかが
判断され、加算回路58の出力レベルが閾値より小さけ
れば、その位相では符号の相関は小さいとして、直ちに
次の位相にシフトされる。これにより、サーチ時間の短
縮が図れる。
【0081】そして、この例では、閾値発生回路61か
ら、加算回数に応じて動的に変化する閾値が発生され
る。これにより、加算回路58での累積加算の毎に、加
算回路58の出力レベルが閾値より小さいかどうかを判
断することができるようになり、信頼性を低下させず
に、サーチ時間の短縮化を図ることができる。
【0082】つまり、図3は、加算回数と閾値との関係
を示すものである。図3に示すように、この例では、閾
値発生回路61からは、加算回数が少ないときには略ゼ
ロで、所定の加算回数以上では、加算回数に応じて略直
線的に増加するような閾値が発生される。このように変
化する閾値が閾値発生回路61からコンパレータ60に
供給される。
【0083】一方、加算回路58の出力は、図4A〜図
4Cに示すように、相関値に応じて、加算数と共に増加
していく。図4Aは、非常に受信符号との相関が強い場
合を示し、この場合には、加算回路58の出力m1 は、
加算回数と共に大きな傾きをもって変化する。したがっ
て、加算回路58の出力m1 は、どの加算回数の場合で
も、常に、閾値より大きくなる。このため、所定数とな
るまで、累積加算が続けられ、相関値が求められる。
【0084】図4Bは、非常に受信符号との相関が強い
が、累積加算の初期段階で、ノイズの影響を受けている
例である。この場合には、加算回路58の出力m2 は、
加算回数と共に大きな傾きをもって変化するが、累積加
算の初期段階では、加算回路58の出力が小さくなって
いる。しかしながら、閾値は、ノイズ等の影響を受けや
すい加算の初期段階では略ゼロなので、加算回路58の
出力m2 は、どの加算数の場合でも、常に、閾値より大
きくなる。このため、所定数となるまで、累積加算が続
けられ、相関値が求められる。
【0085】図4Cは、受信符号との相関は弱いが、累
積加算の初期段階で、ノイズの影響を受けている例であ
る。この場合には、加算回路58からの出力m3 の傾き
は小さいが、累積加算の初期段階では、ノイズ等の影響
により、加算回路58の出力m3 が大きくなっている。
これに対して、閾値は、加算数と共に略直線的に増加し
ている。したがって、加算回路58の出力m3 は、累積
加算の初期段階では閾値以上であるが、加算数がn1
なったところで、閾値以下となる。このため、加算数n
1 になったところで、相関が弱いと判断され、その位相
での累積加算が終了され、次の位相にシフトされる。
【0086】このように、閾値を加算数と共にも動的に
変化させると、信頼性を低下させずに、サーチ時間の短
縮化を図ることができる。
【0087】図5は、図2に示したサーチャの一例の処
理を示すフローチャートである。図5において、PN符
号発生回路54の位相が初期値に設定され(ステップS
T1)、加算回数がクリアされ(ステップST2)、加
算回路58の累積加算結果がクリアされる(ステップS
T3)。
【0088】PN符号発生回路54に初期位相が設定さ
れると、設定されたPN符号により、乗算回路53で受
信信号が逆拡散される。そして、加算回路58により、
このとき逆拡散された信号レベルが累積加算され(ステ
ップST4)、1回加算するごとに加算回数がインクリ
メントされる(ステップST5)。加算回数が所定の回
数(例えば64回)に達したかどうかが判断される(ス
テップST6)。
【0089】加算回数が例えば64回に達していなけれ
ば、閾値発生回路61から、加算回数に応じて閾値が発
生され(ステップST7)、この加算回路58の出力と
閾値とが比較される(ステップST8)。加算回路58
の出力がそのときの加算数の閾値よりに大きければ、ス
テップST4に戻され、累積加算が続けられる。
【0090】ステップST8で、加算回路58の出力が
そのときの加算数の閾値よりに小さいと判断された場合
には、相関弱いと判断され(ステップST9)、PN符
号発生回路54の位相が最終値まで設定されたかどうか
が判断され(ステップST10)、最終値でなければ、
PN符号の位相が所定値(例えば、1/2チップ分)だ
け進められ又は遅らされる(ステップST11)。そし
て、ステップST2に戻され、所定値だけ動かされたP
N符号の位相で、上述と同様の処理が繰り返される。
【0091】ステップST6で、加算回数が例えば64
回に達したと判断されたら、このときの相関値がメモリ
59に蓄えられる(ステップST12)。そして、PN
符号発生回路54の位相が最終値まで設定されたかどう
かが判断され(ステップST10)、最終値でなけれ
ば、PN符号の位相が所定値だけ進められ又は遅らされ
る(ステップST11)、ステップST2に戻され、所
定値だけ動かされたPN符号の位相で、上述と同様の処
理が繰り返される。
【0092】このようにして、PN符号を例えば1/2
チップ分づつ動かしながら相関値を求めていき、PN符
号の位相が1周期分動かされると、最終位相となり、ス
テップST10で最終位相であると判断される。ステッ
プST10で最終位相であると判断されると、メモリ5
9に記憶されている相関値がソートされ、相関値の大き
い3つの値が求められる(ステップST13)。そし
て、この上位3つの位相がフィンガ25A、25B、2
5Cに夫々設定される(ステップST14)。
【0093】図6は、この発明が適用された携帯電話端
末におけるフィンガ25A、25B、25Cの構成を示
すものである。図6において、入力端子71に、A/D
コンバータ24(図1)からのディジタル信号が供給さ
れる。前述したように、A/Dコンバータ24のサンプ
リング周波数は、PN符号の周波数よりも高い周波数と
されており、オーバーサンプリングとなっている。
【0094】この入力端子71からのディジタル信号が
デシメート回路72、73、74に供給される。デシメ
ート回路72には、クロック制御回路75からのクロッ
クが遅延回路76を介して供給され、デシメート回路7
3には、クロック制御回路75からのクロックがそのま
ま供給され、デシメート回路74には、クロック制御回
路75からのクロックが遅延回路76、77を介して供
給される。遅延回路76及び77は、1/2チップ分の
遅延量を有している。デシメート回路72、73、74
で、入力端子71からのディジタル信号がデシメートさ
れる。
【0095】デシメート回路72、73、74の出力が
乗算回路78、79、80に夫々供給される。乗算回路
78、79、80には、PN符号発生回路81からのP
N符号が供給される。PN符号発生回路81からは、送
信側で拡散したのと同様のPN符号が発生される。
【0096】乗算回路78により、デシメート回路72
の出力とPN符号発生回路81の出力とが乗算される。
受信符号とPN符号発生回路81からの符号のパターン
及び位相が合致していれば、乗算回路78からは逆拡散
出力が得られる。この乗算回路78の出力がバンドパス
フィルタ82を介して復調回路83に供給される。
【0097】復調回路83で受信信号が復調され、復調
回路83からは、復調データが出力される。この復調デ
ータが出力端子84から出力される。また、復調回路8
1で、受信信号の信号レベルが検出される。この信号レ
ベルが信号が出力端子85から出力される。また、復調
回路81で、周波数誤差が検出される。この周波数誤差
が出力端子86から出力される。
【0098】乗算回路79及び80により、デシメート
回路73及び74の出力とPN符号発生回路81の出力
とが乗算される。デシメート回路73には、クロック制
御回路75からのクロックがそのまま供給され、デシメ
ート回路74には、クロック制御回路75からのクロッ
クが1チップ分遅延されて供給されているので、デシメ
ート回路72の出力をセンタ位相とすると、デシメート
回路73及び74からは、夫々、1/2チップ分位相が
進んだ出力及び1/2チップ分位相が遅れた出力が得ら
れる。乗算回路79及び80により、1/2チップ進ん
だ及び遅れた位相の受信符号と、PN符号発生回路81
の符号とが乗算され、1/2チップ進んだ及び遅れた位
相の逆拡散出力が得られる。この乗算回路79及び80
の出力は、DLL(Delay Locked Loop )を構成するの
に用いられる。
【0099】すなわち、乗算回路79及び80の出力
は、バンドパスフィルタ87及び88を夫々介して、レ
ベル検出回路89及び90に夫々供給される。レベル検
出回路89及び90からは、1/2チップ進んだ及び遅
れた位相の逆拡散出力レベルが得られる。レベル検出回
路89及び90の出力が減算回路91に供給される。
【0100】減算回路91で、1/2チップ進んだ位相
の逆拡散出力レベルと、1/2チップ遅れた位相の逆拡
散出力レベルとが比較される。この比較出力は、ループ
フィルタ92を介して、クロック制御回路75に供給さ
れる。クロック制御回路75で、減算回路91の出力が
ゼロになるように、デシメート回路72〜74に与えら
れるクロックが制御される。
【0101】例えば、A/Dコンバータ24で8倍のオ
ーバーサンプリングをしたとし、デシメート回路72〜
74で1/8にデシメートする場合、デシメート回路7
2〜74からは、8サンプル毎に信号が出力される。減
算回路91の出力から、今までのタイミングでは遅過ぎ
ると判断されるような場合には、8サンプルおきに出力
していたタイミングが、7サンプルおきに出力されるよ
うに制御される。これにより、位相が進められたことに
なる。
【0102】PN符号発生回路81には、入力端子93
から初期位相データが供給される。この初期位相データ
は、サーチャ28で検出されたパスに基づいて設定され
る。その後の符号の変動に対しては、上述のDLLルー
プが働き、受信符号が捕捉される。
【0103】上述のように、この発明が適用された携帯
電話端末では、サーチャ28は、逆拡散された値を累積
加算していくと共に、加算数に応じて閾値を動的に動か
していき、逆拡散された値の累積加算値が、動的に動か
された閾値を越えたかどうかを判断し、閾値を越えた場
合だけ、所定回数の加算を行ないて、相関値を得るよう
にしているため、精度を落とさずに、サーチを高速化で
きる。
【0104】なお、位相サーチを行う際に、全位相を複
数の位相のグループに分割し、各グループ毎にサーチを
行うようにしても良い。例えば、全位相を4つのグルー
プに分割する。そして、各グループ毎に上述のようにし
てサーチを行い、各グループ毎に最高値を検出する。こ
の各グループ毎の最高値を比較して、最適な位相を決定
する。
【0105】ところで、図2に示したサーチャ28の例
では、加算回数に応じて閾値の値を変化させるようにし
ているが、閾値は一定とし、累積加算の結果を加算回数
で割算して正規化し、正規化された累積加算の結果と一
定の閾値とを比較するようにしても良い。図7は、この
ようにして、サーチを高速化して例を示すものである。
【0106】図7において、入力端子101に、A/D
コンバータ24からのディジタル信号が供給される。こ
の入力端子101からのディジタル信号がデシメート回
路102に供給される。デシメート回路102で、入力
端子101からの信号がデシメートされる。デシメート
回路102の出力が乗算回路103に供給される。
【0107】PN符号発生回路104からは、送信側で
拡散したのと同様のPN符号が発生される。PN符号発
生回路104からのPN符号の位相は、コントローラ2
9により設定可能とされる。PN符号発生回路104か
らのPN符号が乗算回路103に供給される。
【0108】乗算回路103により、デシメート回路1
02の出力と、PN符号発生回路104からのPN符号
とが乗算される。これにより、入力端子101からの受
信信号がPN符号発生回路104からの符号により逆拡
散される。受信符号とPN符号発生回路104からの符
号とのパターン及び位相が一致すると、受信信号の逆拡
散が成立し、乗算回路103からの出力レベルが大きく
なる。乗算回路103の出力がバンドパスフィルタ10
6を介してレベル検出回路107に供給される。レベル
検出回路107により、乗算回路103の出力レベルが
検出される。
【0109】レベル検出回路107の出力が加算回路1
08に供給される。加算回路108で、レベル検出回路
107の出力が累積加算される。このように、レベル検
出回路107の出力レベルを累積加算した値から、PN
符号発生回路104に設定されている符号と、受信符号
との相関値が得られる。
【0110】この加算回路108での累積加算値は、正
規化回路109に供給され、正規化される。すなわち、
加算回路108からの累積加算値が加算数で割算され、
累積加算数が正規化される。この正規化された累積加算
値がコンパレータ110に供給される。コンパレータ1
10で、正規化された累積加算値が所定の閾値を越えて
いるかどうかが判断される。
【0111】この正規化された累積加算値が所定の閾値
以下の場合には、その位相では相関が殆ど無いと判断さ
れ、PN符号発生回路104の位相が直ちに次の位相に
設定される。この値が所定の閾値を越えている場合の
み、相関値を精度良く検出するために、更に、加算回路
108で累積加算が続けられる。
【0112】加算回路108で所定回数(例えば64
回)の累積加算が行われると、加算回路108の出力か
ら相関値が求められる。この相関値がメモリ111に供
給される。
【0113】
【発明の効果】この発明によれば、PN符号の位相を所
定のチップ毎に動かしながら、受信符号との相関値を求
めていく際に、逆拡散出力を累積加算して、相関値を求
めるようにしている。逆拡散出力を閾値と比較し、累積
加算数が所定の閾値に達してない場合には、相関が弱い
として、直ちに次の位相にシフトするようにしている。
このとき、累積加算数に応じて動的に閾値を設定してい
る。すなわち、加算回数が大きくなると、その閾値を大
きくしている。または、累積加算値を正規化して、閾値
と比較するようにしている。このため、検出精度を低下
させることなく、サーチ時間を短縮できる。
【図面の簡単な説明】
【図1】この発明が適用できるCDMA方式の携帯電話
端末の全体構成を示すブロック図である。
【図2】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例を示すブロック図で
ある。
【図3】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例の説明に用いるグラ
フである。
【図4】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例の説明に用いるグラ
フである。
【図5】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例の説明に用いるフロ
ーチャートである。
【図6】この発明が適用できるCDMA方式の携帯電話
端末におけるフィンガの構成の一例を示すブロック図で
ある。
【図7】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの他の例のブロック図である。
【図9】マルチパスの説明に用いる略線図である。
【図9】マルチパスの説明に用いる波形図である。
【図10】ダイバシティRAKE方式の説明に用いるブ
ロック図である。
【図11】ダイバシティRAKE方式の受信機の一例の
ブロック図である。
【図12】従来のサーチャの一例のブロック図である。
【図13】従来のサーチャの一例の説明に用いるフロー
チャートである。
【図14】従来のサーチャの他の例のブロック図であ
る。
【図15】従来のサーチャの他の例の説明に用いるフロ
ーチャートである。
【図16】従来のサーチャの他の例の説明に用いるフロ
ーチャートである。
【符号の説明】
25A、25B、25C・・・フィンガ、28・・・サ
ーチャ、60・・・最高値検出回路、61・・・最高値
メモリ
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成9年2月24日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】図面の簡単な説明
【補正方法】変更
【補正内容】
【図面の簡単な説明】
【図1】この発明が適用できるCDMA方式の携帯電話
端末の全体構成を示すブロック図である。
【図2】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例を示すブロック図で
ある。
【図3】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例の説明に用いるグラ
フである。
【図4】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例の説明に用いるグラ
フである。
【図5】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの構成の一例の説明に用いるフロ
ーチャートである。
【図6】この発明が適用できるCDMA方式の携帯電話
端末におけるフィンガの構成の一例を示すブロック図で
ある。
【図7】この発明が適用できるCDMA方式の携帯電話
端末におけるサーチャの他の例のブロック図である。
【図8】マルチパスの説明に用いる略線図である。
【図9】マルチパスの説明に用いる波形図である。
【図10】ダイバシティRAKE方式の説明に用いるブ
ロック図である。
【図11】ダイバシティRAKE方式の受信機の一例の
ブロック図である。
【図12】従来のサーチャの一例のブロック図である。
【図13】従来のサーチャの一例の説明に用いるフロー
チャートである。
【図14】従来のサーチャの他の例のブロック図であ
る。
【図15】従来のサーチャの他の例の説明に用いるフロ
ーチャートである。
【図16】従来のサーチャの他の例の説明に用いるフロ
ーチャートである。
【符号の説明】 25A、25B、25C・・・フィンガ、28・・・サ
ーチャ、60・・・最高値検出回路、61・・・最高値
メモリ ─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成9年12月25日
【手続補正1】
【補正対象書類名】図面
【補正対象項目名】図2
【補正方法】変更
【補正内容】
【図2】
【手続補正2】
【補正対象書類名】図面
【補正対象項目名】図14
【補正方法】変更
【補正内容】
【図14】

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 拡散符号によりスペクトラム拡散された
    信号を受信する受信装置において、 マルチパスとなっている受信信号から個々のパスを検索
    するサーチャと、 上記検索されたパスの夫々の受信信号を逆拡散してデー
    タを復調する複数のフィンガと、 上記複数のフィンガの出力を合成するコンバイナとを有
    し、 上記サーチャは、送信時の拡散符号と同一のパターン
    で、順次その位相がシフトされる符号を発生する符号発
    生手段と、 受信信号と上記符号発生手段からの符号とを乗算して逆
    拡散を行う逆拡散手段と、 上記逆拡散手段の出力レベルを累積加算する毎に、上記
    逆拡散手段の出力レベルの累積加算値と閾値とを比較
    し、上記累積値が所定の閾値より小さければ相関が殆ど
    無いと判断するようにし、上記累積値が所定の上記閾値
    より大きければ、上記逆拡散手段の出力レベルを累積加
    算して相関値を求める相関値検出手段と、 上記相関検出手段で検出された相関値の中から相関値の
    大きいものを複数個選択する手段とを備えるようにした
    ようにしたことを特徴とする受信装置。
  2. 【請求項2】 上記閾値を、上記加算回数に応じて変化
    させるようにした請求項1記載の受信装置。
  3. 【請求項3】 上記閾値を所定の値とし、上記累積加算
    値を上記加算回数で正規化するようにした請求項1記載
    の受信装置。
  4. 【請求項4】 上記サーチャは、全位相を複数のグルー
    プに分割し、各グループ毎に相関値の最高値を検出し、
    上記各グループ毎の最高値から復調できる可能性の高い
    位相を用いて復調するようにした請求項1記載の受信装
    置。
  5. 【請求項5】 拡散符号によりスペクトラム拡散された
    信号を受信する受信方法において、 サーチャでマルチパスとなっている受信信号から個々の
    パスを検索し、 複数のフィンがで上記検索されたパスの夫々の受信信号
    を逆拡散してデータを復調し、 コンバイナで上記複数のフィンガの出力を合成し、 上記サーチャは、送信時の拡散符号と同一のパターン
    で、順次その位相がシフトされる符号を発生し、 受信信号と上記符号発生手段からの符号とを乗算して逆
    拡散を行ない、 上記逆拡散出力レベルを累積加算する毎に、上記逆拡散
    レベルの累積加算値と上記閾値とを比較し、上記累積値
    が所定の閾値より小さければ相関が殆ど無いと判断する
    ようにし、上記累積値が所定の上記閾値より大きけれ
    ば、上記逆拡散手段の出力レベルを累積加算して相関値
    を求め、 上記相関値の中から相関値の大きいものを複数個選択す
    るようにしたことを特徴とする受信方法。
  6. 【請求項6】 上記閾値を、上記加算回数に応じて変化
    させるようにした請求項5記載の受信方法。
  7. 【請求項7】 上記閾値を所定の値とし、上記累積加算
    値を上記加算回数で正規化するようにした請求項5記載
    の受信方法。
  8. 【請求項8】 上記サーチャは、全位相を複数のグルー
    プに分割し、各グループ毎に相関値の最高値を検出し、
    上記各グループ毎の最高値から復調できる可能性の高い
    位相を用いて復調するようにした請求項5記載の受信方
    法。
  9. 【請求項9】 拡散符号により送信信号をスペクトラム
    拡散して送信し、拡散符号の符号系列のパターンや位相
    を異ならせることにより、多次元接続を可能とした無線
    システムの端末装置において、 マルチパスとなっている受信信号から個々のパスを検索
    するサーチャと、 上記検索されたパスの夫々の受信信号を逆拡散してデー
    タを復調する複数のフィンガと、 上記複数のフィンガの出力を合成するコンバイナとを有
    し、 上記サーチャは、送信時の拡散符号と同一のパターン
    で、順次その位相がシフトされる符号を発生する符号発
    生手段と、 受信信号と上記符号発生手段からの符号とを乗算して逆
    拡散を行う逆拡散手段と、 上記逆拡散手段の出力レベルを累積加算する毎に、上記
    逆拡散手段の出力レベルの累積加算値と閾値とを比較
    し、上記累積値が所定の閾値より小さければ相関が殆ど
    無いと判断するようにし、上記累積値が所定の上記閾値
    より大きければ、上記逆拡散手段の出力レベルを累積加
    算して相関値を求める相関値検出手段と、上記相関検出
    手段で検出された相関値の中から相関値の大きいものを
    複数個選択する手段とを備えるようにしたようにしたこ
    とを特徴とする無線システムの端末装置。
  10. 【請求項10】 上記閾値を、上記加算回数に応じて変
    化させるようにした請求項9記載の無線システムの端末
    装置。
  11. 【請求項11】 上記閾値を所定の値とし、上記累積加
    算値を上記加算回数で正規化するようにした請求項9記
    載の無線システムの端末装置。
  12. 【請求項12】 上記サーチャは、全位相を複数のグル
    ープに分割し、各グループ毎に相関値の最高値を検出
    し、上記各グループ毎の最高値から復調できる可能性の
    高い位相を用いて復調するようにした請求項9記載の無
    線システムの端末装置。
JP9000394A 1997-01-06 1997-01-06 受信装置及び受信方法、並びに無線システムの端末装置 Pending JPH10200505A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9000394A JPH10200505A (ja) 1997-01-06 1997-01-06 受信装置及び受信方法、並びに無線システムの端末装置
US08/998,390 US6075809A (en) 1997-01-06 1997-12-24 Receiving apparatus, receiving method and terminal unit for use with radio system
KR1019970077168A KR19980070261A (ko) 1997-01-06 1997-12-29 수신장치, 수신방법 및 무선방식의 단말기
EP98300035A EP0852431A3 (en) 1997-01-06 1998-01-06 Threshold setting for PN code acquisition
CN98105793A CN1104115C (zh) 1997-01-06 1998-01-06 接收设备、接收方法以及与无线电系统一起使用的终端单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000394A JPH10200505A (ja) 1997-01-06 1997-01-06 受信装置及び受信方法、並びに無線システムの端末装置

Publications (1)

Publication Number Publication Date
JPH10200505A true JPH10200505A (ja) 1998-07-31

Family

ID=11472602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000394A Pending JPH10200505A (ja) 1997-01-06 1997-01-06 受信装置及び受信方法、並びに無線システムの端末装置

Country Status (5)

Country Link
US (1) US6075809A (ja)
EP (1) EP0852431A3 (ja)
JP (1) JPH10200505A (ja)
KR (1) KR19980070261A (ja)
CN (1) CN1104115C (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374028B1 (ko) * 1999-09-06 2003-02-26 삼성전자주식회사 부호분할 다중접속 방식의 이동통신시스템에서 온-오프키잉 수신신호 검출 장치 및 방법
US6763056B1 (en) 1999-11-04 2004-07-13 Nec Corporation Path timing detection circuit and detection method thereof
US7085252B1 (en) 1999-04-28 2006-08-01 Fujitsu Limited Cell search method, communication synchronization apparatus, portable terminal apparatus, and recording medium
US7133439B1 (en) 2000-01-12 2006-11-07 Mitsubishi Denki Kabushiki Kaisha Mobile communication terminal and method of communication
JP2008160642A (ja) * 2006-12-26 2008-07-10 Seiko Epson Corp 相関演算制御回路及び相関演算制御方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531982B1 (en) 1997-09-30 2003-03-11 Sirf Technology, Inc. Field unit for use in a GPS system
US6327471B1 (en) 1998-02-19 2001-12-04 Conexant Systems, Inc. Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
JP2937994B1 (ja) * 1998-03-04 1999-08-23 日本電気移動通信株式会社 セルラーシステムと移動携帯機、基地局装置、及び最適パス検出方法とその装置
US6348744B1 (en) 1998-04-14 2002-02-19 Conexant Systems, Inc. Integrated power management module
KR100268872B1 (ko) * 1998-08-28 2000-10-16 김영환 휴대장치의 분실 방지회로
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7545854B1 (en) * 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US6693953B2 (en) 1998-09-30 2004-02-17 Skyworks Solutions, Inc. Adaptive wireless communication receiver
US6618431B1 (en) * 1998-12-31 2003-09-09 Texas Instruments Incorporated Processor-based method for the acquisition and despreading of spread-spectrum/CDMA signals
US6448925B1 (en) 1999-02-04 2002-09-10 Conexant Systems, Inc. Jamming detection and blanking for GPS receivers
US6606349B1 (en) * 1999-02-04 2003-08-12 Sirf Technology, Inc. Spread spectrum receiver performance improvement
US6577271B1 (en) 1999-03-30 2003-06-10 Sirf Technology, Inc Signal detector employing coherent integration
US6304216B1 (en) * 1999-03-30 2001-10-16 Conexant Systems, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6351486B1 (en) 1999-05-25 2002-02-26 Conexant Systems, Inc. Accelerated selection of a base station in a wireless communication system
US6519237B1 (en) * 1999-05-28 2003-02-11 Koninklijke Philips Electronics N.V. Apparatus and method for parallel searching and correlating for CDMA system
US6996162B1 (en) 1999-10-05 2006-02-07 Texas Instruments Incorporated Correlation using only selected chip position samples in a wireless communication system
EP1093237A3 (en) * 1999-10-05 2002-10-23 Texas Instruments Incorporated Improvements in or relating to wireless communication systems
CA2394510A1 (en) * 1999-12-17 2001-06-21 Rui R.(Deceased) Wang Methods and apparatus for signal searching using correlation
US6587500B1 (en) * 1999-12-17 2003-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Symbol sampling time settlement of a hard decision radio receiver
GB0007750D0 (en) * 2000-03-30 2000-05-17 Ubinetics Ltd A rake receiver and a method of operating a rake receiver
US6714158B1 (en) 2000-04-18 2004-03-30 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US6788655B1 (en) 2000-04-18 2004-09-07 Sirf Technology, Inc. Personal communications device with ratio counter
US7885314B1 (en) 2000-05-02 2011-02-08 Kenneth Scott Walley Cancellation system and method for a wireless positioning system
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
JP2001345739A (ja) * 2000-06-06 2001-12-14 Nec Corp Rake受信装置
US6289039B1 (en) * 2000-06-14 2001-09-11 Linex Technologies, Inc. Spread-spectrum communications utilizing variable throughput reduction
KR100591700B1 (ko) * 2001-10-06 2006-07-03 엘지노텔 주식회사 배열 안테나 시스템에서 신호 경로 탐색 방법 및 이를위한 장치
US7372892B2 (en) * 2002-04-29 2008-05-13 Interdigital Technology Corporation Simple and robust digital code tracking loop for wireless communication systems
US20050209762A1 (en) * 2004-03-18 2005-09-22 Ford Global Technologies, Llc Method and apparatus for controlling a vehicle using an object detection system and brake-steer
US8964815B2 (en) * 2012-01-13 2015-02-24 Exelis Inc. Method and apparatus for radio synchronization detection in a rake receiver

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490165A (en) * 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
FI940692A (fi) * 1994-02-14 1995-08-15 Nokia Mobile Phones Ltd Menetelmä impulssivasteen huippukohtien etsimiseksi sekä vastaanotin
US5627835A (en) * 1995-04-04 1997-05-06 Oki Telecom Artificial window size interrupt reduction system for CDMA receiver
US5508708A (en) * 1995-05-08 1996-04-16 Motorola, Inc. Method and apparatus for location finding in a CDMA system
US5764687A (en) * 1995-06-20 1998-06-09 Qualcomm Incorporated Mobile demodulator architecture for a spread spectrum multiple access communication system
JP2820918B2 (ja) * 1996-03-08 1998-11-05 株式会社ワイ・アール・ピー移動通信基盤技術研究所 スペクトル拡散通信装置
KR0173904B1 (ko) * 1996-04-04 1999-04-01 서정욱 직접 확산 부호 분할 다중 접속 시스템용 레이크수신장치
US5818887A (en) * 1996-07-26 1998-10-06 Motorola, Inc. Method for receiving a signal in a digital radio frequency communication system
US5945948A (en) * 1996-09-03 1999-08-31 Motorola, Inc. Method and apparatus for location finding in a communication system
US5950131A (en) * 1996-10-29 1999-09-07 Motorola, Inc. Method and apparatus for fast pilot channel acquisition using a matched filter in a CDMA radiotelephone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085252B1 (en) 1999-04-28 2006-08-01 Fujitsu Limited Cell search method, communication synchronization apparatus, portable terminal apparatus, and recording medium
KR100374028B1 (ko) * 1999-09-06 2003-02-26 삼성전자주식회사 부호분할 다중접속 방식의 이동통신시스템에서 온-오프키잉 수신신호 검출 장치 및 방법
US6763056B1 (en) 1999-11-04 2004-07-13 Nec Corporation Path timing detection circuit and detection method thereof
US7133439B1 (en) 2000-01-12 2006-11-07 Mitsubishi Denki Kabushiki Kaisha Mobile communication terminal and method of communication
JP2008160642A (ja) * 2006-12-26 2008-07-10 Seiko Epson Corp 相関演算制御回路及び相関演算制御方法

Also Published As

Publication number Publication date
KR19980070261A (ko) 1998-10-26
CN1104115C (zh) 2003-03-26
CN1198625A (zh) 1998-11-11
EP0852431A3 (en) 2002-11-06
US6075809A (en) 2000-06-13
EP0852431A2 (en) 1998-07-08

Similar Documents

Publication Publication Date Title
JPH10200505A (ja) 受信装置及び受信方法、並びに無線システムの端末装置
JP3651154B2 (ja) Pn符号発生回路及び無線システムの端末装置
JPH10200508A (ja) 無線システムの端末装置及びサーチ方法
US6122311A (en) Demodulating method and apparatus, receiving method and apparatus and communication apparatus
US5953366A (en) Receiving apparatus, receiving method, and terminal unit for use with radio system
JPH10200506A (ja) 受信装置及び受信方法、並びに無線システムの端末装置
JP3702562B2 (ja) 無線システムの端子装置
JPH10190526A (ja) 受信装置及び受信方法、並びに無線システムの端末装置
JPH10190564A (ja) 携帯電話システムの端末装置及び受信方法
JPH10190525A (ja) 受信装置及び受信方法、並びに無線システムの端末装置
JPH10209918A (ja) 受信装置及び携帯電話システムの端末装置
JP3030230B2 (ja) 拡散通信システムの受信装置
JP4142259B2 (ja) Rake受信装置およびその方法
JP2002016587A (ja) 受信方法及び受信装置
JP4068417B2 (ja) スペクトラム拡散信号受信装置
KR100477597B1 (ko) 비트에러율을이용한탭딜레이조절방법및그를이용한탭딜레이조절장치

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees