JPH10200091A - Manufacture of semiconductor thin film device - Google Patents

Manufacture of semiconductor thin film device

Info

Publication number
JPH10200091A
JPH10200091A JP35780396A JP35780396A JPH10200091A JP H10200091 A JPH10200091 A JP H10200091A JP 35780396 A JP35780396 A JP 35780396A JP 35780396 A JP35780396 A JP 35780396A JP H10200091 A JPH10200091 A JP H10200091A
Authority
JP
Japan
Prior art keywords
atoms
substrate
temperature
thin film
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35780396A
Other languages
Japanese (ja)
Inventor
Tsutomu Obata
勤 小幡
Kazuo Nomura
和雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP35780396A priority Critical patent/JPH10200091A/en
Publication of JPH10200091A publication Critical patent/JPH10200091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to form a desired device on a substrate easily and accurately. SOLUTION: A Si substrate 10 is heated to such a temperature that the bonding between Si and Sb atoms may not be broken, but the bonding between the Sb atoms may be easily broken to vapor-deposit Sb atoms in flat atomic layers by molecular beam epitaxy (BME) or another method. After that, the temperature of the Si substrate 10 is decreased to the extent that Sb atoms may hardly evaporate and electron beam or laser light is cast on a specified place to apply energy to break the bonding between Sb atoms and Si atoms and thereby the Sb atoms are evaporated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、Si基板上に量
子効果素子を形成する半導体薄膜素子の製造方法に関す
る。
The present invention relates to a method for manufacturing a semiconductor thin film device for forming a quantum effect device on a Si substrate.

【0002】[0002]

【従来の技術】従来、Si基板上にSb等を用いて量子
効果素子を形成する方法として、δ−doping法が
ある。この方法により、不純物の局在によるバンド不連
続構造の形成や、チャネル構造へのキャリアの供給が可
能となる。この方法は分子線エピタキシー(MBE)に
より薄膜を形成しするもので、不純物濃度のコントロー
ルは、主に、Sb−SiとSb−Sb結合の結合エネル
ギーの差を利用して行なっている。
2. Description of the Related Art Conventionally, as a method of forming a quantum effect element using Sb or the like on a Si substrate, there is a δ-doping method. According to this method, formation of a band discontinuous structure due to localization of impurities and supply of carriers to a channel structure can be performed. In this method, a thin film is formed by molecular beam epitaxy (MBE), and the impurity concentration is controlled mainly by using the difference in the binding energy between Sb-Si and Sb-Sb bonds.

【0003】[0003]

【発明が解決しようとする課題】上記従来のδ−dop
ing法の場合、薄膜におけるdopingプロファイ
ルのコントロールが困難であり、任意の形状のdopi
ng部分を形成することはできないものでああった。従
って、電子素子への利用にも大きな制限があった。
The above conventional δ-dop
In the case of the ing method, it is difficult to control the doping profile in the thin film, and the doping profile of an arbitrary shape
No ng portion could be formed. Accordingly, there is a great limitation on the use for electronic devices.

【0004】この発明は、Si等の基板上に容易且つ正
確に所望の素子形成が可能な半導体薄膜素子の製造方法
を提供することを目的とする。
It is an object of the present invention to provide a method of manufacturing a semiconductor thin film device which can easily and accurately form a desired device on a substrate such as Si.

【0005】[0005]

【課題を解決するための手段】この発明は、Si基板
を、SiとSb原子の結合は切れずSb同士の結合は容
易に切れる温度に加熱し、Sb原子を1原子の平面的な
層に分子線エピタキシー(MBE)等により蒸着させ、
この後、上記Si基板温度をSb原子が蒸発ににくい温
度に降下させ、所定の位置に電子線またはレーザー光を
照射してエネルギーを加え、Sb原子とSi原子の結合
を切り、Sbを蒸発させる半導体薄膜素子の製造方法で
ある。
According to the present invention, a Si substrate is heated to a temperature at which the bond between Si and Sb atoms is not broken and the bond between Sb atoms is easily broken, so that the Sb atoms are converted into a one-atom planar layer. Deposited by molecular beam epitaxy (MBE) or the like,
Thereafter, the temperature of the Si substrate is lowered to a temperature at which Sb atoms are difficult to evaporate, and a predetermined position is irradiated with an electron beam or a laser beam to apply energy, thereby breaking the bond between the Sb atoms and the Si atoms and evaporating Sb. This is a method for manufacturing a semiconductor thin film element.

【0006】[0006]

【発明の実施の形態】以下、この発明の一実施の形態に
ついて図面を基にして説明する。この実施例の半導体薄
膜素子の製造方法は、図1(A)に示すように、Si基
板10を650℃に加熱し、図1(B)に示すように、
Sb原子をSi基板10上に蒸着させる。蒸着方法は分
子線エピタキシーにより行なう。このときのSi基板1
0の温度は、Si−Sbの結合によるSbが蒸発せず、
Sb−Sb結合は、この基板温度で容易に蒸発する温度
に設定する。これにより、図1(C)に示すように、S
i基板10上では、Si基板19の表面で結合したSb
原子にさらにSb原子が蒸着しても高い基板温度によ
り、Sb−Sb結合が切れてSb原子は蒸発してしま
う。これにより、図1(D)に示すように、Sbの1原
子の層が形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In the method of manufacturing a semiconductor thin film element of this embodiment, as shown in FIG. 1A, the Si substrate 10 is heated to 650 ° C., and as shown in FIG.
Sb atoms are deposited on the Si substrate 10. The deposition is performed by molecular beam epitaxy. Si substrate 1 at this time
At a temperature of 0, Sb due to the bond of Si—Sb does not evaporate,
The Sb-Sb bond is set at a temperature at which the substrate temperature easily evaporates. As a result, as shown in FIG.
On the i-substrate 10, Sb bonded on the surface of the Si substrate 19
Even if Sb atoms are further vapor-deposited on the atoms, the Sb-Sb bond is broken due to the high substrate temperature, and the Sb atoms evaporate. Thus, as shown in FIG. 1D, a layer of one atom of Sb is formed.

【0007】この後、Si基板10の温度をSb原子が
蒸発しにくい温度、例えば室温に近い温度に降下させ、
図1(D)に示すように、所定の位置に電子線またはレ
ーザー光を照射して、その部分にエネルギーを与えSb
原子とSi原子の結合を切り、Sbを蒸発させる。以上
により、Si基板10の表面に、所望形状のSbの1原
子の層を正確に形成することができる。
After that, the temperature of the Si substrate 10 is reduced to a temperature at which Sb atoms hardly evaporate, for example, a temperature close to room temperature.
As shown in FIG. 1 (D), a predetermined position is irradiated with an electron beam or a laser beam, and energy is given to that portion to give Sb.
The bond between the atom and the Si atom is broken, and Sb is evaporated. As described above, a single-atom layer of Sb having a desired shape can be accurately formed on the surface of the Si substrate 10.

【0008】なお、この発明の基板及び蒸着させる原子
は適宜組み合わせて選択可能なものである。この発明の
半導体薄膜素子は、半導体レーザー等の量子効果を利用
した発光素子やHEMT等の超高速デバイス等に用いる
ことができる。
The substrate of the present invention and the atoms to be vapor-deposited can be appropriately combined and selected. The semiconductor thin film element of the present invention can be used for a light emitting element utilizing a quantum effect such as a semiconductor laser, an ultra high speed device such as a HEMT, and the like.

【0009】[0009]

【発明の効果】この発明の半導体薄膜素子は、Si等の
半導体基板上にSb等の1原子の層を所望の位置に正確
に形成することができ、各種の半導体素子の不純物ドー
ピング等に利用可能である。
According to the semiconductor thin film device of the present invention, a single atomic layer of Sb or the like can be accurately formed at a desired position on a semiconductor substrate of Si or the like, and is used for impurity doping of various semiconductor devices. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の半導体薄膜素子の製造方法を示す概
念図である。
FIG. 1 is a conceptual diagram showing a method for manufacturing a semiconductor thin film device of the present invention.

【符号の説明】[Explanation of symbols]

10 Si基板 10 Si substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体の基板を、その基板半導体原子と
他の原子の結合は切れず上記他の原子同士の結合は容易
に切れる温度に加熱し、上記他の原子を1原子の層に蒸
着させ、この後、上記基板温度を上記他の原子が蒸発に
にくい温度に降下させ、所定の位置にエネルギーを与
え、上記他の原子と上記半導体基板の原子の結合を切
り、その部分の上記他の原子を蒸発させる半導体薄膜素
子の製造方法。
A semiconductor substrate is heated to a temperature at which the bond between the substrate semiconductor atoms and other atoms is not broken and the bonds between the other atoms are easily broken, and the other atoms are deposited on a layer of one atom. Then, the substrate temperature is lowered to a temperature at which the other atoms are difficult to evaporate, energy is applied to a predetermined position, the bond between the other atoms and the atoms of the semiconductor substrate is cut, and the other Of manufacturing a semiconductor thin-film element for evaporating atoms.
【請求項2】 Si基板を、SiとSb原子の結合は切
れずSb同士の結合は容易に切れる温度に加熱し、Sb
原子を1原子の層に蒸着させ、この後、上記Si基板温
度をSb原子が蒸発ににくい温度に降下させ、所定の位
置に電子線またはレーザー光を照射して、Sb原子とS
i原子の結合を切り、Sbを蒸発させる半導体薄膜素子
の製造方法。
2. The Si substrate is heated to a temperature at which the bond between Si and Sb atoms is not broken and the bond between Sb is easily broken.
Atoms are vapor-deposited on a one-atom layer, and thereafter, the temperature of the Si substrate is reduced to a temperature at which Sb atoms are difficult to evaporate, and a predetermined position is irradiated with an electron beam or a laser beam.
A method of manufacturing a semiconductor thin film element in which a bond of an i atom is cut off and Sb is evaporated.
【請求項3】 上記Si基板のSb蒸着時の温度は、6
50℃に加熱する請求項2記載の半導体薄膜素子の製造
方法。
3. The temperature of the Si substrate during Sb deposition is 6
3. The method for manufacturing a semiconductor thin film device according to claim 2, wherein the heating is performed at 50.degree.
JP35780396A 1996-12-28 1996-12-28 Manufacture of semiconductor thin film device Pending JPH10200091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35780396A JPH10200091A (en) 1996-12-28 1996-12-28 Manufacture of semiconductor thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35780396A JPH10200091A (en) 1996-12-28 1996-12-28 Manufacture of semiconductor thin film device

Publications (1)

Publication Number Publication Date
JPH10200091A true JPH10200091A (en) 1998-07-31

Family

ID=18456007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35780396A Pending JPH10200091A (en) 1996-12-28 1996-12-28 Manufacture of semiconductor thin film device

Country Status (1)

Country Link
JP (1) JPH10200091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
US8133554B2 (en) * 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133554B2 (en) * 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US20120171389A1 (en) * 2004-05-06 2012-07-05 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US9023436B2 (en) * 2004-05-06 2015-05-05 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces

Similar Documents

Publication Publication Date Title
JPH0834180B2 (en) Method for growing compound semiconductor thin film
JPH11162850A (en) Silicon carbide substrate and its production, and semiconductor element using the same
JPS59211216A (en) Method of producing semiconductor device
JPH10200091A (en) Manufacture of semiconductor thin film device
JPS6158976B2 (en)
US5232862A (en) Method of fabricating a transistor having a cubic boron nitride layer
JPH0770481B2 (en) Method for forming silicon semiconductor layer
US5081053A (en) Method for forming a transistor having cubic boron nitride layer
JPS61174621A (en) Manufacture of semiconductor thin crystal
JPS59181636A (en) Semiconductor device
JP2936878B2 (en) Manufacturing method of semiconductor Schottky junction
JPS6185815A (en) Method for formation of polycrystalline silicon film
JP3163773B2 (en) Thin film manufacturing method
JPS6236381B2 (en)
JPS63278217A (en) Manufacture of semiconductor substrate
JPH06209130A (en) Forming method of insb thin film
JP2671848B2 (en) 2-6 Semiconductor impurity addition method
JPS61145823A (en) Molecular beam epitaxial growth method
KR101896639B1 (en) Method of manufacturing semiconductor
JPH03240945A (en) Formation of thin metallic film
JPH10297996A (en) Formation of silicon carbide thin layer
JP4358567B2 (en) Deposition method of organic thin film
JP2005011887A (en) High dielectric constant metal oxide film, method for forming the same, gate insulating film and semiconductor element
JPH029127A (en) Forming method for soi substrate
JPS6379953A (en) Production of thin single crystal film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080409