JPH10195858A - Plane maintaining device for artificial road surface - Google Patents

Plane maintaining device for artificial road surface

Info

Publication number
JPH10195858A
JPH10195858A JP1442397A JP1442397A JPH10195858A JP H10195858 A JPH10195858 A JP H10195858A JP 1442397 A JP1442397 A JP 1442397A JP 1442397 A JP1442397 A JP 1442397A JP H10195858 A JPH10195858 A JP H10195858A
Authority
JP
Japan
Prior art keywords
road surface
pile
artificial road
piles
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1442397A
Other languages
Japanese (ja)
Inventor
Katsuo Mutaguchi
勝生 牟田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1442397A priority Critical patent/JPH10195858A/en
Publication of JPH10195858A publication Critical patent/JPH10195858A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct irregularity of an artificial road surface by supporting an artificial road surface in each upper end surface of piles through a telescopic actuator, and detecting settlement of piles with an inclination sensor so as to operate each telescopic actuator for extension and contraction. SOLUTION: A telescopic actuator 5 such as a hydraulic jack is assembled in an upper end of each pile 1, which is placed in the ground so as to support an artificial road surface, so as to be operated for extension and contraction in the vertical direction. A X, Y double-shaft type inclination sensor 6 is provided at a central part of a lower surface of each decking 3, and driving command is sent to each telescopic actuator 5 through a computing unit 7. In the case where irregularity is generated in a deck 4 as an artificial road surface by unequal settlement of the piles 1, the inclination sensor 6 detects it, and computing is performed in the computing unit 7, and a required telescopic actuator 5 is driven so that the output of the inclination sensor 6 becomes zero, and the deck 4 is thereby corrected flat. Absolute height level can be maintained by monitoring level position, which is provided in the pile 1, with a measuring unit provided in land on the basis of a gauge, which is provided as a reference point in the pile 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多数の杭によって支
持される人工路面の平面維持装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for maintaining a flat surface of an artificial road surface supported by a plurality of piles.

【0002】[0002]

【従来の技術】海洋石油掘削基地や洋上空港等の海洋構
造物は、図11にその一例の概略を示す如く、多数の杭
1を前後左右方向に配列して土中2に打ち込み、各杭1
の上端面間に敷板3を並べて人工路面となるデッキ4を
形成するようにしてある。
2. Description of the Related Art As shown schematically in FIG. 11, an offshore structure such as an offshore oil drilling base or an offshore airport has a large number of piles 1 arranged in the front-rear and left-right directions and driven into the soil 2, and 1
The decking plates 3 are arranged between the upper end surfaces of the vehicle to form an artificial road surface.

【0003】上記海洋構造物では、土質変化や海洋波浪
等の外力を杭1が受けること等により、杭1に不等沈下
が発生すると、デッキ4の表面に凹凸が生じて支障を来
すのて、定期的にデッキ4の平面度(平坦度)を計測
し、凹凸が生じた部分を修正する必要がある。
[0003] In the above-mentioned marine structure, if the pile 1 undergoes uneven settlement due to an external force such as soil change or ocean waves, the unevenness of the surface of the deck 4 will cause trouble. Therefore, it is necessary to periodically measure the flatness (flatness) of the deck 4 and correct the portion where the unevenness occurs.

【0004】従来におけるデッキ4表面の凹凸の修正方
法の一例としては、デッキ4を形成する敷板3間の継目
のシール材を取り除き、次に敷板3を取り外し、不等沈
下を起した杭1の上端にスペーサ部材を配置し、敷板3
の下面にスペーサ部材が介在するように敷板3を元に戻
した後、敷板3間の継目にシール材を再充填させるよう
にしたものがある。
[0004] As an example of a conventional method of correcting unevenness on the surface of the deck 4, a sealing material of a seam between the floor plates 3 forming the deck 4 is removed, then the floor plate 3 is removed, and the pile 1 having uneven settlement is caused. A spacer member is arranged at the upper end, and
There is a method in which, after the bottom plate 3 is returned so that the spacer member is interposed on the lower surface of the bottom plate, the sealing material is refilled at the joint between the bottom plates 3.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記修正方
法の場合、シール材の撤去及び再充填や、敷板3の移動
及び再セット等、作業が非常に大がかりになるため、小
規模の凹凸の場合にはそのまま放置されているのが実情
である。
However, in the case of the above-mentioned correction method, since the work such as removal and refilling of the sealing material and movement and resetting of the floor plate 3 becomes very large, when the unevenness is small, The fact is that it is left untouched.

【0006】因に、陸上構造物での沈下修正方法として
は、特開平8−27829号公報に示されているよう
に、基礎を根伐して穴を掘り、その穴の中で基礎杭の上
端と基礎の下面との間に油圧ジャッキを介在させ、油圧
ジャッキにより基礎を持ち上げ、しかる後、基礎と基礎
杭との間にスペーサを取り付けるようにし、更に、油圧
ジャッキを撤去してから上記の穴をモルタルで埋め戻す
ようにしたものもあるが、やはり作業が大がかりとなる
ため、洋上での作業には適さないものである。
As a method of correcting settlement on land structures, as disclosed in Japanese Patent Application Laid-Open No. Hei 8-27829, a foundation is dug by cutting down a foundation, and a foundation pile is buried in the hole. A hydraulic jack is interposed between the upper end and the lower surface of the foundation, the foundation is lifted by the hydraulic jack, and then a spacer is attached between the foundation and the foundation pile. Some of the holes are backfilled with mortar, but they also require a large amount of work and are not suitable for offshore work.

【0007】そこで、本発明は、人工路面を支える杭に
不等沈下が生じて人工路面に凹凸が生じたとしても、そ
れを容易に修正することができるようにしようとするも
のである。
[0007] Therefore, the present invention is intended to make it possible to easily correct even if unevenness occurs on the artificial road surface due to uneven settlement of the pile supporting the artificial road surface.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、土中に打ち込んで上端面で人工路面を支
持するようにしてある多数の杭に、人工路面を上下方向
に変位させるための伸縮アクチュエータを組み付け、且
つ上記各杭の沈下を検出するための傾斜センサを所要個
所に設置し、更に、上記各傾斜センサの出力を基に上記
各伸縮アクチュエータに駆動指令を送る演算器を備えた
構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to displace an artificial road surface in a vertical direction on a plurality of piles which are driven into the soil to support the artificial road surface at an upper end surface. A telescopic actuator for assembling the telescopic actuator, and installing a tilt sensor for detecting the settlement of each of the piles at a required position, and further transmitting a drive command to each of the telescopic actuators based on the output of each of the tilt sensors. The configuration is provided with.

【0009】杭に不等沈下が生じると、不等沈下が生じ
た傾斜センサが出力を発するので、傾斜センサの出力を
基に演算器からの指令で伸縮アクチュエータを作動させ
るようにする。これにより、人工路面は杭の位置で上下
方向に変位させられ、凹凸が修正される。
[0009] When uneven settlement occurs on the pile, the tilt sensor in which uneven settlement has occurred outputs an output. Therefore, based on the output of the tilt sensor, the telescopic actuator is operated by a command from a computing unit. Thereby, the artificial road surface is displaced in the vertical direction at the position of the pile, and the irregularities are corrected.

【0010】又、任意の杭に、上下方向の基準点を設定
するためのゲージを取り付け、且つ該ゲージを鑑視する
測量器を備えた構成とすることにより、人工路面の絶対
高さレベルも容易に維持される。
In addition, a gauge for setting a reference point in the vertical direction is attached to an arbitrary pile and a surveying instrument for observing the gauge is provided, so that the absolute height level of the artificial road surface can be reduced. Easily maintained.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1乃至図3は本発明の実施の一形態を示
すもので、図11に示したと同様な構成としてある海洋
構造物において、本発明では、予め各杭1の上端部内
に、油圧ジャッキの如き伸縮アクチュエータ5を上下方
向へ向けて組み付け、伸縮アクチュエータ5を伸長作動
させることにより敷板3の境界部を上下方向に変位させ
られるようにし、又、上記各敷板3の下面中央部に、X
方向とY方向の傾斜変位を検出できる2軸式の傾斜セン
サ6をそれぞれ設置し、且つ該各傾斜センサ6の出力を
基に各伸縮アクチュエータ5へ駆動指令を送る演算器7
を備えた構成とする。
FIGS. 1 to 3 show an embodiment of the present invention. In an offshore structure having a structure similar to that shown in FIG. 11, in the present invention, hydraulic pressure is previously set in the upper end of each pile 1. A telescopic actuator 5 such as a jack is assembled in the up and down direction, and the extension of the telescopic actuator 5 allows the boundary portion of the floor plate 3 to be displaced in the vertical direction. X
A computing unit 7 for installing two-axis type inclination sensors 6 capable of detecting the inclination displacement in the direction and the Y direction, and sending a drive command to each telescopic actuator 5 based on the output of each inclination sensor 6
The configuration is provided with.

【0013】なお、図1において、8は各杭1の間を連
結する連結材を示し、図2において、9は敷板3の継目
に充填したシール材を示し、図3において、10は接続
用のインターフェイスを示す。
In FIG. 1, reference numeral 8 denotes a connecting member for connecting between the piles 1, in FIG. 2, reference numeral 9 denotes a sealing material filled in a joint of the base plate 3, and in FIG. Interface.

【0014】本発明では、杭1の不等沈下により人工路
面となるデッキ4に凹凸が生じたときに、杭1の不等沈
下を傾斜センサ6により検知し、その信号を演算器7で
演算し、傾斜センサ6の出力が零になるように所要の伸
縮アクチュエータ5を駆動することによりデッキ4を平
坦に修正させるようにする。
In the present invention, when unevenness of the pile 1 causes unevenness on the deck 4 serving as an artificial road surface, the uneven settlement of the pile 1 is detected by the inclination sensor 6, and the signal is calculated by the arithmetic unit 7. Then, by driving the required telescopic actuator 5 so that the output of the tilt sensor 6 becomes zero, the deck 4 is corrected to be flat.

【0015】詳述すると、たとえば、図4に示す如く、
杭1がX方向に7本、Y方向に6本配列されているもの
とする。なお、P10,P11,P12…は杭1の座標上の設
置点、l1 はX方向の杭間スパン、l2 はY方向の杭間
スパンを示す。
More specifically, for example, as shown in FIG.
It is assumed that seven piles 1 are arranged in the X direction and six in the Y direction. Incidentally, P 10, P 11, P 12 ... are disposed point on the pile 1 coordinates, l 1 is pile span between the X-direction, l 2 represents the pile span between the Y-direction.

【0016】今、傾斜センサ6の出力が、図5におい
て、(イ)に示す如く、敷板3が水平のときは零、
(ロ)に示す如く、敷板3が右上りのときは+θ°、
(ハ)に示す如く、敷板3が右下りのときは−θ°とす
る場合において、X方向に並ぶ点P10列の杭1の上端レ
ベル(X,Y方向と直交するZ方向)が図6に示す如き
状態であったとする。
The output of the tilt sensor 6 is zero when the floor plate 3 is horizontal as shown in FIG.
As shown in (b), when the floor plate 3 is at the upper right, + θ °,
As shown in (c), when the floor plate 3 is to be - [theta] ° when downhill, the upper end level of the pile 1 point P 10 columns arranged in the X direction (X, Z direction perpendicular to the Y direction) in FIG. Assume that the state is as shown in FIG.

【0017】この場合、点P10の杭1を基準とすると、 P10=0 P11=P10−l1 sin θ112=P11+l1 sin θ213=P12+l1 sin θ314=P13−l1 sin θ415=P14+l1 sin θ516=P15+l1 sin θ6 となる。これを展開すると、 P11=−l1 sin θ112=l1 (−sin θ1 +sin θ2 ) P13=l1 (−sin θ1 +sin θ2 +sin θ3 ) P14=l1 (−sin θ1 +sin θ2 +sin θ3 −sin θ
4 ) P15=l1 (−sin θ1 +sin θ2 +sin θ3 −sin θ
4 +sin θ5 ) P16=l1 (−sin θ1 +sin θ2 +sin θ3 −sin θ
4 +sin θ5 +sinθ6 ) となる。
[0017] In this case, when a reference pile 1 of the point P 10, P 10 = 0 P 11 = P 10 -l 1 sin θ 1 P 12 = P 11 + l 1 sin θ 2 P 13 = P 12 + l 1 sin the θ 3 P 14 = P 13 -l 1 sin θ 4 P 15 = P 14 + l 1 sin θ 5 P 16 = P 15 + l 1 sin θ 6. Expanding this, P 11 = −l 1 sin θ 1 P 12 = l 1 (−sin θ 1 + sin θ 2 ) P 13 = l 1 (−sin θ 1 + sin θ 2 + sin θ 3 ) P 14 = l 1 (−sin θ 1 + sin θ 2 + sin θ 3 −sin θ
4 ) P 15 = l 1 (−sin θ 1 + sin θ 2 + sin θ 3 −sin θ
4 + sin θ 5 ) P 16 = l 1 (−sin θ 1 + sin θ 2 + sin θ 3 −sin θ
4 + sin θ 5 + sin θ 6 ).

【0018】次に、−sin θ1 と≧1,(−sin θ1
sin θ2 )と≧1,(−sin θ1 +sin θ2 +sin
θ3 )と≧1,…(−sin θ1 +sin θ2 +sin θ3
sin θ4+sin θ5 +sin θ6 )と≧1を比較する。こ
の値が≧1をもつ杭1であれば、上記基準とした点P10
の杭1より高さが高いことになる。よって1≦αの杭群
の高さをすべて比較し、その中で一番1≦αの値が大き
い杭1の番号を選び出す。これを基準杭として、その他
の杭1の値を算出する。同様に、X方向に並ぶ点P
20列、P30列、P40列、P50列、P60列について基準の
杭1を算出する。これをマクロ的に示すと、図7のよう
になる。
Next, -sin θ 1 and ≧ 1, (−sin θ 1 +
sin θ 2 ) and ≧ 1, (−sin θ 1 + sin θ 2 + sin
θ 3 ) and ≧ 1,... (−sin θ 1 + sin θ 2 + sin θ 3
sin θ 4 + sin θ 5 + sin θ 6 ) is compared with ≧ 1. If this value is stake 1 having ≧ 1, the point P 10 used as the reference
Will be higher than the pile 1. Therefore, the heights of the pile groups of 1 ≦ α are all compared, and the number of the pile 1 having the largest value of 1 ≦ α is selected from among them. Using this as a reference pile, the values of the other piles 1 are calculated. Similarly, the points P arranged in the X direction
The reference pile 1 is calculated for the 20th row, the 30th row, the 40th row, the 50th row, and the 60th row. This is shown in macro form in FIG.

【0019】図7は、X方向に並ぶ1列の杭1の高さは
すべて等しいが、各列間にはレベル差があることを示し
ている。しかし、このレベル差は傾斜センサ6のY方向
の出力を基に、X方向の場合と同様に算出することがで
きる。よって、Y方向に並ぶ点P10列、P11列、P
12列、P13列、P14列、P15列、P16列の基準の杭1を
算出する。これをマクロ的に示すと、図8のようにな
る。次に、X方向の任意の点を基に、各点のX方向のレ
ベル差を算出し、X方向の最高点を求める。この場合、
図8では、点P14となる。
FIG. 7 shows that the heights of one row of piles 1 arranged in the X direction are all the same, but there is a level difference between the rows. However, this level difference can be calculated based on the output of the inclination sensor 6 in the Y direction in the same manner as in the X direction. Thus, the point in the Y direction P 10 column, P 11 column, P
Calculate the standard pile 1 of the 12th row, the 13th row, the 14th row, the 15th row, and the 16th row. This is macroscopically shown in FIG. Next, based on an arbitrary point in the X direction, the level difference in the X direction of each point is calculated, and the highest point in the X direction is obtained. in this case,
In Figure 8, a point P 14.

【0020】したがって、点P14を基準としてP14の相
互間、つまり、P13及びP15をP14と同一レベルにする
ための変位量が傾斜センサ6の傾き距離によって算出で
きる。同様に、P13を基準にP12、P12を基準にP11
11を基準にP10、そして、P15を基準にP16の変位量
を算出する。
[0020] Thus, between mutual P 14 point P 14 as a reference, that is, the displacement amount for the P 13 and P 15 at the same level as P 14 can be calculated by the inclination distance of the inclination sensor 6. Similarly, P 11 based on the P 12, P 12, based on the P 13,
The displacement amount of P 10 is calculated based on P 11 , and the displacement amount of P 16 is calculated based on P 15 .

【0021】これにより、X方向に並ぶ点P10列はすべ
て同一レベルになるので、更に、これを基準レベルとし
て、Y方向に並ぶ列の各点の変位量を同様な手順で算出
する。したがって、この変位量に基づき各点の伸縮アク
チュエータ5を作動させることによって、各点の杭1の
座標はすべてX,Y平面内において、同一レベルとな
る。すなわち、デッキ4を平坦に修正することができ
る。
[0021] Thus, since all the 10 columns point P aligned in the X direction becomes the same level, further, as a reference level, and calculates the amount of displacement of each point of the rows arranged in the Y direction in a similar procedure. Therefore, by operating the telescopic actuator 5 at each point based on this displacement amount, the coordinates of the pile 1 at each point are all at the same level in the X and Y planes. That is, the deck 4 can be corrected to be flat.

【0022】なお、杭1の各点での上下方向の変位量を
求めて伸縮アクチュエータ5を駆動させるようにする方
式としては、たとえば、ある任意の1点に位置する杭1
を基準に、他の点に位置する杭1のレベル差を求めるよ
うにしたり、あるいは、かかるレベル差を求める作業を
各点について実施して、最もレベル差が小さいパターン
を算出して最終修正量を決定させるようにしてもよい。
As a method of driving the telescopic actuator 5 by calculating the amount of vertical displacement at each point of the pile 1, for example, the pile 1 located at an arbitrary point is used.
With reference to the above, the level difference of the pile 1 located at another point is obtained, or the operation of obtaining the level difference is performed for each point, the pattern with the smallest level difference is calculated, and the final correction amount is calculated. May be determined.

【0023】次に、図9は本発明の他の実施の形態を示
すもので、図1乃至図3に示したと同様な構成におい
て、比較的陸11に近い位置に構築された海洋構造物を
対象とし、陸11側にトランシットの如き測量器12を
設置し、且つ任意の1本の杭1を選択して、該杭1に、
上記測量器12にて監視するためのゲージ13を貼り、
該ゲージ13の任意のレベル位置を基準点とし、この基
準点を初期零点として他の杭間の状態を傾斜センサ6で
監視し、傾斜センサ6の出力がある範囲以上になると、
伸縮アクチュエータ5を作動させるようにしたものであ
る。
Next, FIG. 9 shows another embodiment of the present invention. In the structure similar to that shown in FIGS. 1 to 3, a marine structure constructed at a position relatively close to land 11 is shown. A surveying instrument 12 such as a transit is installed on the land 11 side, and an arbitrary one pile 1 is selected.
A gauge 13 for monitoring with the surveying instrument 12 is attached,
An arbitrary level position of the gauge 13 is used as a reference point, and the state between the other piles is monitored by the inclination sensor 6 using this reference point as an initial zero point. When the output of the inclination sensor 6 exceeds a certain range,
The telescopic actuator 5 is operated.

【0024】図9に示すように構成した場合、測量器1
2にて基準点を監視できるので、デッキ4の単なる平坦
度のみならず、絶対高さレベルをも維持することができ
る。
In the case of the structure shown in FIG.
Since the reference point can be monitored at 2, it is possible to maintain not only the flatness of the deck 4 but also the absolute height level.

【0025】なお、上記実施の形態では、杭1の上端部
に伸縮アクチュエータ5を組み付けた場合を示したが、
杭1の中間部に組み付けるようにしてもよいこと、又、
実施の形態では、傾斜センサ6を敷板3の下面に設置し
た場合を示したが、たとえば、図10(イ)に示す如
く、杭1間の連結材8が対角線方向に取り付けられてい
るときには、連結材8の交差部に設置したり、あるい
は、連結材8がX、Y方向に単独に取り付けられている
ときには、一軸式傾斜センサ6aと6bを、X方向の連
結材8とY方向の連結材8に別々に設置してもよいこ
と、更に、実施の形態では、杭1が水中にある構造物と
しての海洋構造物への採用例を示したが、杭が陸上ある
いは任意の媒体中に打ち込まれる任意の構造物へ採用で
きること、更に、上記実施の形態では、人工路面が水平
を維持するようにした場合を示したが、水平に対しある
傾斜角をもって支持される人工路面にも適用できるこ
と、その他本発明の要旨を逸脱しない範囲内において種
々変更を加え得ることは勿論である。
In the above embodiment, the case where the telescopic actuator 5 is mounted on the upper end of the pile 1 has been described.
That it may be assembled to the middle part of the pile 1,
In the embodiment, the case where the inclination sensor 6 is installed on the lower surface of the floor plate 3 has been described. For example, as shown in FIG. 10A, when the connecting members 8 between the piles 1 are mounted diagonally, When installed at the intersection of the connecting members 8 or when the connecting members 8 are independently attached in the X and Y directions, the uniaxial tilt sensors 6a and 6b are connected to the connecting members 8 in the X direction and the Y direction. The pile 1 may be separately installed on the material 8, and in the embodiment, the example in which the pile 1 is employed in an offshore structure as a structure in which the pile 1 is underwater is shown. However, the pile 1 may be installed on land or in any medium. It can be applied to any structure to be driven, and in the above embodiment, the case where the artificial road surface is kept horizontal is shown, but it can also be applied to an artificial road surface supported at a certain inclination angle with respect to the horizontal , Other gist of the present invention It is needless to say that various changes and modifications may be made within a scope not prolapse.

【0026】[0026]

【発明の効果】以上述べた如く、本発明の人工路面の平
面維持装置によれば、次の如き優れた効果を発揮する。 (1) 土中に打ち込んで上端面で人工路面を支持するよう
にしてある多数の杭に、人工路面を上下方向に変位させ
るための伸縮アクチュエータを組み付け、且つ上記各杭
の沈下を検出するための傾斜センサを所要個所に設置
し、更に、上記各傾斜センサの出力を基に上記各伸縮ア
クチュエータに駆動指令を送る演算器を備えた構成とし
てあるので、沈下した杭の伸縮アクチュエータを所要量
伸長作動させることにより、人工路面の凹凸を容易に修
正することができて平坦度を維持することができる。し
たがって、海洋構造物に容易に適用することができる。 (2) 伸縮アクチュエータへは、演算器から傾斜センサの
信号に基づく駆動指令が送られるので、自動的に平坦度
を修正することができる。 (3) 傾斜センサの出力を演算器に取り込んでデータ処理
できるので、リアルタイムで人工路面の状況を把握でき
る。 (4) 画像処理することによって感覚的に人工路面の状況
が判断できる。 (5) 任意の杭に、上下方向の基準点を設定するためのゲ
ージを取り付け、且つ該ゲージを監視する測量器を備え
た構成とすることにより、平坦度のみならず、絶対高さ
レベルも維持することができる。
As described above, the artificial road surface maintaining apparatus of the present invention has the following excellent effects. (1) To assemble telescopic actuators for displacing the artificial road surface in the vertical direction, and to detect the settlement of each of the above-mentioned piles, on a number of piles that are driven into the soil to support the artificial road surface at the upper end surface The tilt sensor is installed at a required location, and furthermore, there is provided a computing unit that sends a drive command to each of the telescopic actuators based on the output of each of the tilt sensors. By operating, the unevenness of the artificial road surface can be easily corrected, and the flatness can be maintained. Therefore, it can be easily applied to marine structures. (2) Since a drive command based on the signal of the tilt sensor is sent from the arithmetic unit to the telescopic actuator, the flatness can be automatically corrected. (3) Since the output of the inclination sensor can be taken into the arithmetic unit and processed, the situation of the artificial road surface can be grasped in real time. (4) By performing image processing, the condition of the artificial road surface can be intuitively judged. (5) By attaching a gauge for setting a reference point in the vertical direction to an arbitrary pile and having a surveying instrument for monitoring the gauge, not only the flatness but also the absolute height level can be reduced. Can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の人工路面の平面維持装置の実施の一形
態を示す概略側面図である。
FIG. 1 is a schematic side view showing an embodiment of an artificial road surface flatness maintaining device according to the present invention.

【図2】図1のA部拡大断面図である。FIG. 2 is an enlarged sectional view of a portion A in FIG.

【図3】制御ブロック図である。FIG. 3 is a control block diagram.

【図4】杭の設置位置をX−Y座標で示す図である。FIG. 4 is a diagram showing an installation position of a stake in XY coordinates.

【図5】傾斜センサを示すもので、(イ)は出力が零の
場合を、(ロ)はプラスの出力を発する場合を、(ハ)
はマイナスの出力を発する場合をそれぞれ示す概略側面
図である。
5A and 5B show an inclination sensor, wherein FIG. 5A shows a case where the output is zero, FIG. 5B shows a case where a positive output is generated, and FIG.
FIG. 4 is a schematic side view showing a case where a negative output is generated.

【図6】X方向に並ぶ杭の沈下状態の一例を示す概略図
である。
FIG. 6 is a schematic diagram showing an example of a settlement state of piles arranged in the X direction.

【図7】X方向に並ぶ杭のレベルを揃えた状態をマクロ
的に示す斜視図である。
FIG. 7 is a perspective view macroscopically showing a state in which the levels of the piles arranged in the X direction are aligned.

【図8】Y方向に並ぶ杭のレベルを揃えた状態をマクロ
的に示す斜視図である。
FIG. 8 is a macro perspective view showing a state in which the levels of the piles arranged in the Y direction are aligned.

【図9】本発明の他の実施の形態を示す概略図である。FIG. 9 is a schematic view showing another embodiment of the present invention.

【図10】傾斜センサの他の設置構造を示すもので、
(イ)は連結材の交差部に二軸式を設置した状態を、
又、(ロ)はX方向とY方向の連結材に一軸式をそれぞ
れ設置した状態を示す概略平面図である。
FIG. 10 shows another installation structure of the tilt sensor.
(A) shows the state where the biaxial type is installed at the intersection of the connecting materials,
(B) is a schematic plan view showing a state where the uniaxial type is installed on the connecting members in the X direction and the Y direction, respectively.

【図11】海洋構造物の一例を示す概略側面図である。FIG. 11 is a schematic side view showing an example of an offshore structure.

【符号の説明】[Explanation of symbols]

1 杭 2 土中 4 デッキ(人工路面) 5 伸縮アクチュエータ 6,6a,6b 傾斜センサ 7 演算器 Reference Signs List 1 pile 2 soil 4 deck (artificial road surface) 5 telescopic actuator 6, 6a, 6b tilt sensor 7 arithmetic unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 土中に打ち込んで上端面で人工路面を支
持するようにしてある多数の杭に、人工路面を上下方向
に変位させるための伸縮アクチュエータを組み付け、且
つ上記各杭の沈下を検出するための傾斜センサを所要個
所に設置し、更に、上記各傾斜センサの出力を基に上記
各伸縮アクチュエータに駆動指令を送る演算器を備えた
構成を有することを特徴とする人工路面の平面維持装
置。
1. A telescopic actuator for vertically displacing an artificial road surface is mounted on a number of piles which are driven into the soil to support the artificial road surface at an upper end surface, and the settlement of each of the piles is detected. For maintaining a flat surface of an artificial road surface, further comprising a configuration in which a tilt sensor for performing an operation is provided at a required place, and further, a computing unit that sends a drive command to each of the telescopic actuators based on the output of each of the tilt sensors is provided. apparatus.
【請求項2】 任意の杭に、上下方向の基準点を設定す
るためのゲージを取り付け、且つ該ゲージを鑑視する測
量器を備えた請求項1記載の人工路面の平面維持装置。
2. The artificial road surface maintaining apparatus according to claim 1, further comprising: a gauge for setting a reference point in a vertical direction attached to an arbitrary pile, and a surveying instrument for observing the gauge.
JP1442397A 1997-01-10 1997-01-10 Plane maintaining device for artificial road surface Pending JPH10195858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1442397A JPH10195858A (en) 1997-01-10 1997-01-10 Plane maintaining device for artificial road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1442397A JPH10195858A (en) 1997-01-10 1997-01-10 Plane maintaining device for artificial road surface

Publications (1)

Publication Number Publication Date
JPH10195858A true JPH10195858A (en) 1998-07-28

Family

ID=11860618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1442397A Pending JPH10195858A (en) 1997-01-10 1997-01-10 Plane maintaining device for artificial road surface

Country Status (1)

Country Link
JP (1) JPH10195858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107348A (en) * 1999-10-12 2001-04-17 Takenaka Komuten Co Ltd Marine artificial ground and construction method therefor
JP2003027453A (en) * 2001-07-17 2003-01-29 Ohbayashi Corp Artificial ground structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107348A (en) * 1999-10-12 2001-04-17 Takenaka Komuten Co Ltd Marine artificial ground and construction method therefor
JP4588821B2 (en) * 1999-10-12 2010-12-01 株式会社竹中工務店 Marine artificial ground and its construction method
JP2003027453A (en) * 2001-07-17 2003-01-29 Ohbayashi Corp Artificial ground structure

Similar Documents

Publication Publication Date Title
US4888890A (en) Laser control of excavating machine digging depth
JP4189310B2 (en) Loading test apparatus and method
JPH10195858A (en) Plane maintaining device for artificial road surface
CN115200815A (en) Dynamic response testing device and testing method for seabed suction type three-barrel foundation
US4371292A (en) Gravity structure
Akizono et al. Seabottom roughness measurement by aquatic walking robot
US5833398A (en) Dynamic self-compensating volume deformation support system
JP5015885B2 (en) Non-settlement control structure of structures
JP6940092B2 (en) How to replace the seismic isolation support system and seismic isolation device
KR101854268B1 (en) Offshore structure
JP2007092454A (en) Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground
CN210975915U (en) Synchronous lifting and shock insulation structure for existing sinking old building
CN112726685B (en) Existing structure system pile foundation bearing capacity detection and durability evaluation method
CN213926418U (en) Measuring device for displacement and internal force of pile foundation
JP7422692B2 (en) Foundation pile damage determination system
JP4588821B2 (en) Marine artificial ground and its construction method
JP4325225B2 (en) Projection amount calculation method for shunt structure in fluidization countermeasure method
JP4801283B2 (en) Hybrid artificial ground constructed in ocean space and its construction method
CN214460401U (en) Steel pipe pile positioning device
JP2008261144A (en) Base-isolated building and height adjusting method for the same
KR102615425B1 (en) Computer-based structure lifting system
CN117387555A (en) Intelligent monitoring and control test equipment and method for foundation pit deformation
JP6870478B2 (en) Ruler for tower site
Boland et al. Pile-supported Wharf centrifuge model (SMS02)
JP2003064784A (en) Mounting structure between column-cum-pile and beam