JPH10195599A - Free cutting non-heat treated steel excellent in strength and toughness - Google Patents

Free cutting non-heat treated steel excellent in strength and toughness

Info

Publication number
JPH10195599A
JPH10195599A JP197497A JP197497A JPH10195599A JP H10195599 A JPH10195599 A JP H10195599A JP 197497 A JP197497 A JP 197497A JP 197497 A JP197497 A JP 197497A JP H10195599 A JPH10195599 A JP H10195599A
Authority
JP
Japan
Prior art keywords
steel
content
machinability
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP197497A
Other languages
Japanese (ja)
Other versions
JP3494271B2 (en
Inventor
Koji Watari
宏二 渡里
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP00197497A priority Critical patent/JP3494271B2/en
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to KR1019980704909A priority patent/KR100268536B1/en
Priority to DE69718784T priority patent/DE69718784T2/en
Priority to EP97913441A priority patent/EP0903418B1/en
Priority to CA002243123A priority patent/CA2243123C/en
Priority to PCT/JP1997/004297 priority patent/WO1998023784A1/en
Priority to CN97191416A priority patent/CN1095503C/en
Priority to US09/103,566 priority patent/US5922145A/en
Publication of JPH10195599A publication Critical patent/JPH10195599A/en
Application granted granted Critical
Publication of JP3494271B2 publication Critical patent/JP3494271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a free cutting non-heat treated steel having excellent strength and toughness and suitable as the stock for machine structural parts or the like at a low cost. SOLUTION: This steel is the one having a compsn. contg., by weight, 0.2 to 0.6% C, 0.1 to 1.5% Si, 0.1 to 2.0% Mn, 0.01 to 0.07% P, 0.01 to 0.2% S, 0.02 to 2.0% Cr, 0.05 to 1.0% Ti, 0.002 to 0.05% Al, <=0.008% N, 0 to 0.1% Nd, 0 to 0.3% V, 0 to 0.05% Nb, 0 to 0.5% Mo, 0 to 1.0% Cu, 0 to 0.50% Pb, 0 to 0.01% Ca, 0 to 0.5% Se, 0 to 0.05% Te, 0 to 0.4% Bi, and the balance Fe with inevitable impurities, and in which >=90% of the structure is composed of ferrite-pearlite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度と靱性に優れ
た快削非調質鋼に関する。更に詳しくは、熱間加工後に
焼入れ焼戻しの調質処理を施さずとも優れた強度と靱性
を有する、機械構造用部品などの素材として好適な快削
非調質鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cut non-heat treated steel having excellent strength and toughness. More specifically, the present invention relates to a free-cutting non-heat treated steel which has excellent strength and toughness without being subjected to a tempering treatment of quenching and tempering after hot working and is suitable as a material for parts for machine structural use.

【0002】[0002]

【従来の技術】従来、高い引張強度と疲労強度(以下、
引張強度と疲労強度を単に「強度」という場合もある)
並びに高靱性を必要とする鋼製の機械構造部品などは、
熱間加工で所定の形状に粗加工し、次いで切削加工によ
って最終の所望形状とした後、焼入れ焼戻しの調質処理
を施すのが一般的であった。しかしこの調質処理には多
くのエネルギーとコストを費やす。そこで近年、省エネ
ルギーの社会的要請に応え、且つ一方では低コスト化を
図るために、熱間加工のままで使用できる非調質鋼の開
発が盛んに行われている。
2. Description of the Related Art Conventionally, high tensile strength and fatigue strength (hereinafter, referred to as "high")
Tensile strength and fatigue strength are sometimes referred to simply as "strength".)
In addition, steel mechanical structural parts that require high toughness,
In general, after roughing into a predetermined shape by hot working, and then to a final desired shape by cutting, a tempering treatment such as quenching and tempering is generally performed. However, this refining process consumes a lot of energy and cost. Therefore, in recent years, non-heat-treated steels that can be used as they are in hot working have been actively developed in order to meet social demands for energy saving and reduce costs.

【0003】又、熱間加工後の切削加工を容易にする目
的から、被削性に優れた快削鋼に対する要求もますます
大きくなっている。
[0003] Further, for the purpose of facilitating cutting after hot working, the demand for free-cutting steel excellent in machinability has been increasing.

【0004】一般に鋼の被削性は金属組織に大きく依存
し、その組織が主としてフェライト・パーライトからな
る鋼の場合には被削性が良好であり、フェライト・ベイ
ナイト組織やベイナイトあるいはマルテンサイトの単相
組織の鋼にあっては被削性が悪いことが知られている。
又、Pb、Te、Bi、Ca及びSなどの快削元素を単
独あるいは複合添加すれば被削性が向上することも周知
の事実である。したがって、従来は非調質鋼に前記の快
削元素を添加して熱間加工後の切削加工性を改善する方
法が採られてきた。しかし、非調質鋼に単に快削元素を
添加しただけの場合には、所望の強度(なかでも疲労強
度)と所望の靱性とを確保できないことが多い。
[0004] Generally, the machinability of steel largely depends on the metallographic structure. In the case of a steel mainly composed of ferrite / pearlite, the machinability is good, and the machinability of ferrite / bainite or bainite or martensite is simple. It is known that steel having a phase structure has poor machinability.
It is also a well-known fact that machinability is improved by adding free-cutting elements such as Pb, Te, Bi, Ca, and S alone or in combination. Therefore, conventionally, a method of improving the machinability after hot working by adding the above-mentioned free-cutting element to non-heat treated steel has been adopted. However, when a free-cutting element is simply added to a non-heat treated steel, a desired strength (particularly, fatigue strength) and a desired toughness cannot often be secured.

【0005】こうした状況の下、例えば、特開平2−1
11842号公報と特開平6−279849号公報に
は、鋼中のCを黒鉛として存在させ、この黒鉛の切欠き
並びに潤滑効果を利用することによって被削性を向上さ
せた「被削性、焼入性に優れた熱間圧延鋼材」と「被削
性に優れた機械構造用鋼の製造方法」がそれぞれ提案さ
れている。
Under these circumstances, for example, Japanese Patent Laid-Open No. 2-1
Japanese Patent No. 11842 and Japanese Patent Application Laid-Open No. Hei 6-279849 disclose "Machinability and sintering properties" in which C in steel is present as graphite and the machinability is improved by utilizing the notch and lubrication effect of the graphite. A hot-rolled steel excellent in machinability and a method for producing steel for machine structural use excellent in machinability have been proposed.

【0006】しかし、特開平2−111842号公報に
提案された鋼材は、Bを添加しB窒化物(BN)を黒鉛
化の核として黒鉛化を促進させるものであって、Bの添
加が必須であるため凝固時に割れを生じ易いという問題
を含んでいる。一方、特開平6−279849号公報に
記載の方法は、Al添加とともに鋼中O(酸素)を低く
規制することで熱間圧延ままで黒鉛化を促進させるもの
であるが、熱間圧延後に黒鉛化焼なまし処理を施す必要
があるため、必ずしも経済的とはいえないものである。
更に、前記した2つの公報における提案はいずれも黒鉛
化を活用したものであるため、所定の形状に加工した機
械構造部品などに所望の機械的特性を付与するために
は、必ず焼入れ焼戻しの調質処理を施さねばならず、
「非調質化」と「高強度鋼の被削性の向上」を両立させ
たいとする産業界の要請には応えきれないものであっ
た。
However, the steel material proposed in Japanese Patent Application Laid-Open No. 2-111842 is one in which B is added to promote graphitization using B nitride (BN) as a nucleus of graphitization, and the addition of B is essential. Therefore, there is a problem that cracks easily occur during solidification. On the other hand, the method described in Japanese Patent Application Laid-Open No. 6-279849 is to promote graphitization while hot rolling by restricting O (oxygen) in steel to a low level together with the addition of Al. Since it is necessary to perform a chemical annealing treatment, it is not necessarily economical.
Further, since the proposals in the two publications described above both utilize graphitization, in order to impart desired mechanical properties to a machine structural part or the like processed into a predetermined shape, it is necessary to adjust the quenching and tempering. Quality treatment,
It was unable to meet the demands of the industry to achieve both "non-tempering" and "improvement in machinability of high-strength steel".

【0007】鉄と鋼(vol.57(1971年)S4
84)には、脱酸調整快削鋼にTiを添加すれば被削性
が高まる場合のあることが報告されている。しかし、T
iの多量の添加はTiNが多量に生成されることもあっ
て工具摩耗を増大させ、被削性の点からは好ましくない
ことも述べられている。例えば、C:0.45%、S
i:0.29%、Mn:0.78%、P:0.017
%、S:0.041%、Al:0.006%、N:0.
0087%、Ti:0.228%、O:0.004%及
びCa:0.001%を含有する鋼では却ってドリル寿
命が低下して被削性が劣っている。このように、鋼に単
にTiを添加するだけでは被削性は向上するものではな
い。
Iron and steel (vol. 57 (1971) S4)
84) reports that the addition of Ti to deoxidized adjusted free-cutting steel may enhance machinability. But T
It is also described that the addition of a large amount of i increases tool wear due to generation of a large amount of TiN, and is undesirable from the viewpoint of machinability. For example, C: 0.45%, S
i: 0.29%, Mn: 0.78%, P: 0.017
%, S: 0.041%, Al: 0.006%, N: 0.
Steel containing 0087%, Ti: 0.228%, O: 0.004%, and Ca: 0.001%, on the contrary, has a short drill life and poor machinability. Thus, the machinability is not improved simply by adding Ti to steel.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前記した問
題に鑑みなされたもので、通常の熱間加工と冷却の条件
で、それも焼戻しを含めて熱処理を行うことなく非調質
のままで、高い強度と良好な靱性を有し、しかも優れた
被削性を有する機械構造部品などの素材用の鋼を、低コ
ストで提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in a non-refined condition without performing heat treatment including tempering under ordinary hot working and cooling conditions. Accordingly, an object of the present invention is to provide steel for a material such as a machine structural part having high strength and good toughness and excellent machinability at a low cost.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記に
示す強度と靱性に優れた快削非調質鋼にある。
SUMMARY OF THE INVENTION The gist of the present invention is a free-cutting non-heat treated steel having the following excellent strength and toughness.

【0010】すなわち、「重量%で、C:0.2〜0.
6%、Si:0.1〜1.5%、Mn:0.1〜2.0
%、P:0.01〜0.07%、S:0.01〜0.2
%、Cr:0.02〜2.0%、Ti:0.04〜1.
0%、Al:0.002〜0.05%、N:0.008
%以下、Nd:0〜0.1%、V:0〜0.3%、N
b:0〜0.05%、Mo:0〜0.5%、Cu:0〜
1.0%、Pb:0〜0.50%、Ca:0〜0.01
%、Se:0〜0.5%、Te:0〜0.05%及びB
i:0〜0.4%を含有し、残部がFe及び不可避不純
物からなり、更に、組織の90%以上がフェライト・パ
ーライト組織からなることを特徴とする強度と靱性に優
れた快削非調質鋼」である。
That is, "in weight%, C: 0.2-0.
6%, Si: 0.1 to 1.5%, Mn: 0.1 to 2.0
%, P: 0.01 to 0.07%, S: 0.01 to 0.2
%, Cr: 0.02-2.0%, Ti: 0.04-1.
0%, Al: 0.002 to 0.05%, N: 0.008
%, Nd: 0 to 0.1%, V: 0 to 0.3%, N
b: 0 to 0.05%, Mo: 0 to 0.5%, Cu: 0 to 0%
1.0%, Pb: 0 to 0.50%, Ca: 0 to 0.01
%, Se: 0 to 0.5%, Te: 0 to 0.05% and B
i: 0 to 0.4%, the balance being Fe and inevitable impurities, and 90% or more of the structure is composed of a ferrite / pearlite structure, and free cutting is excellent in strength and toughness. Quality steel. "

【0011】[0011]

【発明の実施の形態】本発明者は、非調質鋼の化学組成
及び組織について研究を重ねた結果、Tiを添加した鋼
を熱間加工した後適正な冷却速度で冷却して、その組織
を主としてフェライト・パーライトからなるものにすれ
ば、鋼の被削性が飛躍的に向上することを見いだした。
そこで更に研究を続けた結果、下記の事項を知見した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of repeated studies on the chemical composition and structure of a non-heat treated steel, the present inventor has found that a steel to which Ti has been added is hot-worked, then cooled at an appropriate cooling rate, and the structure thereof is reduced. It has been found that the machinability of steel is greatly improved if it is mainly made of ferrite / pearlite.
Therefore, as a result of further research, the following items were found.

【0012】Sとのバランスを考慮して鋼にTiを積
極的に添加すると、鋼中にTiの炭硫化物が形成され
る。
If Ti is positively added to steel in consideration of the balance with S, Ti carbosulfide is formed in the steel.

【0013】鋼中に上記したTiの炭硫化物が生成す
ると、MnSの生成量が減少する。
When the above-mentioned Ti carbosulfide is formed in the steel, the amount of MnS formed decreases.

【0014】鋼中のS含有量が同じ場合には、Tiの
炭硫化物はMnSよりも大きな被削性改善効果を有す
る。これは、Tiの炭硫化物の融点がMnSのそれより
も低いため、切削加工時に工具のすくい面での潤滑作用
が大きくなることに基づくものである。
When the S content in steel is the same, Ti carbosulfide has a greater machinability improving effect than MnS. This is based on the fact that the melting point of the carbosulfide of Ti is lower than that of MnS, so that the lubricating action on the rake face of the tool during cutting is increased.

【0015】Tiの炭硫化物の効果を充分発揮させる
ためには、N含有量を低く制限することが重要である。
これは、N含有量が多いとTiNとしてTiが固定され
てしまい、Tiの炭硫化物の生成が抑制されてしまうた
めである。
In order to sufficiently exert the effect of the carbosulfide of Ti, it is important to limit the N content to a low level.
This is because if the N content is large, Ti is fixed as TiN, and the generation of Ti carbosulfide is suppressed.

【0016】製鋼時に生成したTiの炭硫化物は、通
常の熱間加工のための加熱温度では基地に固溶しない。
[0016] Ti carbosulfide produced during steelmaking does not form a solid solution with the matrix at the normal heating temperature for hot working.

【0017】本発明は上記の知見に基づいて完成された
ものである。
The present invention has been completed based on the above findings.

【0018】以下、本発明の各要件について詳しく説明
する。なお、成分含有量の「%」は「重量%」を意味す
る。
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”.

【0019】(A)鋼の化学組成 C: 0.2〜0.6% Cは、強度を確保するのに有効な元素である。しかし、
その含有量が0.2%未満では添加効果に乏しく、一
方、0.6%を超えると靱性が劣化する。したがって、
Cの含有量を0.2〜0.6%とした。なお、C含有量
は0.25〜0.5%とすることが好ましい。
(A) Chemical composition of steel C: 0.2 to 0.6% C is an element effective for securing strength. But,
If the content is less than 0.2%, the effect of the addition is poor, while if it exceeds 0.6%, the toughness deteriorates. Therefore,
The content of C was set to 0.2 to 0.6%. Note that the C content is preferably set to 0.25 to 0.5%.

【0020】Si:0.1〜1.5% Siは、鋼の脱酸及びフェライトの強化のために添加す
る。しかし、その含有量が0.1%未満では前記の効果
は不十分であり、一方、1.5%を超えると前記の効果
が飽和するばかりか靱性の低下をきたす。したがって、
Siの含有量を0.1〜1.5%とした。なお、Siの
好ましい含有量は0.3〜1.3%である。
Si: 0.1-1.5% Si is added for deoxidizing steel and strengthening ferrite. However, if the content is less than 0.1%, the above effect is insufficient, while if it exceeds 1.5%, not only the above effect is saturated but also the toughness is reduced. Therefore,
The content of Si was set to 0.1 to 1.5%. In addition, the preferable content of Si is 0.3 to 1.3%.

【0021】Mn:0.1〜2.0% Mnは、固溶強化によって疲労強度を向上させる効果を
有する。しかし、その含有量が0.1%未満では所望の
効果が得られず、2.0%を超えると焼入れ性が高くな
りすぎてベイナイト組織や島状マルテンサイト組織の生
成を促進し、耐久比(疲労限度/引張強度)及び降伏比
(耐力/引張強度)が低下するようになる。したがっ
て、Mnの含有量を0.1〜2.0%とした。なお、M
n含有量は0.5〜1.7%とすることが好ましい。
Mn: 0.1 to 2.0% Mn has the effect of improving fatigue strength by solid solution strengthening. However, if the content is less than 0.1%, the desired effect cannot be obtained, and if the content exceeds 2.0%, the hardenability becomes too high to promote the formation of bainite structure and island-like martensite structure, and the durability (Fatigue limit / tensile strength) and yield ratio (proof stress / tensile strength) are reduced. Therefore, the content of Mn is set to 0.1 to 2.0%. Note that M
The n content is preferably set to 0.5 to 1.7%.

【0022】P:0.01〜0.07% Pは、固溶強化元素であり、引張強度及び疲労強度を向
上させる効果がある。しかし、その含有量が0.01%
未満では添加効果に乏しく、一方、0.07%を超える
とその効果が飽和するとともに靱性の劣化及び延性(加
工性)の低下をもたらすので、その含有量を0.01〜
0.07%とした。Pの好ましい含有量は0.015〜
0.05%である。
P: 0.01 to 0.07% P is a solid solution strengthening element and has an effect of improving tensile strength and fatigue strength. However, its content is 0.01%
If it is less than 0.07%, the effect is saturated, and if it exceeds 0.07%, the effect is saturated and the toughness is deteriorated and the ductility (workability) is reduced.
0.07%. The preferred content of P is 0.015
0.05%.

【0023】S:0.01〜0.2% Sは、被削性の向上に有効な元素である。特に、Cとと
もにTiと結合してTiの炭硫化物を形成し、被削性を
高める作用を有する。更に、Mnと結合したMnSやN
dを添加した場合のNdと結合したNd23が微細分散
析出することによってフェライト生成核密度を高くし、
フェライト量を増加させるとともにフェライト粒を微細
化する効果を有する。しかし、その含有量が0.01%
未満では所望の効果が得られず、0.2%を超えるとM
nSが過剰に生成するのでTi炭硫化物による被削性向
上効果が低下するばかりか、却って靱性が劣化するよう
になるので、その含有量を0.01〜0.2%とした。
なお、S含有量は0.02〜0.17%とすることが好
ましい。
S: 0.01 to 0.2% S is an element effective for improving machinability. In particular, it has an effect of forming a carbosulfide of Ti by combining with Ti together with C to enhance machinability. Further, MnS or N bonded to Mn
When N is added, Nd 2 S 3 combined with Nd is finely dispersed and precipitated, thereby increasing the ferrite generation nucleus density.
This has the effect of increasing the amount of ferrite and miniaturizing ferrite grains. However, its content is 0.01%
If it is less than 0.2%, the desired effect cannot be obtained.
Excessive generation of nS not only reduces the machinability improving effect of Ti carbosulfide, but also deteriorates the toughness. Therefore, the content is set to 0.01 to 0.2%.
Note that the S content is preferably set to 0.02 to 0.17%.

【0024】Cr:0.02〜2.0% Crは、固溶強化によって疲労強度を向上させる効果を
有する。しかし、その含有量が0.02%未満では所望
の効果が得られず、2.0%を超えると焼入れ性が高く
なりすぎてベイナイト組織や島状マルテンサイト組織の
生成を促進し、耐久比並びに降伏比が低下するようにな
る。したがって、Crの含有量を0.02〜2.0%と
した。Crの好ましい含有量は0.05〜1.5%であ
る。
Cr: 0.02 to 2.0% Cr has the effect of improving the fatigue strength by solid solution strengthening. However, if the content is less than 0.02%, the desired effect cannot be obtained. If the content exceeds 2.0%, the hardenability becomes too high, and the formation of bainite structure and island-like martensite structure is promoted. In addition, the yield ratio decreases. Therefore, the content of Cr is set to 0.02 to 2.0%. The preferable content of Cr is 0.05 to 1.5%.

【0025】Ti:0.04〜1.0% Tiは本発明において重要な元素であって、C及びSと
結合してTiの炭硫化物を形成し、被削性を高める作用
を有する。しかし、その含有量が0.04%未満では所
望の効果が得られない。一方、1.0%を超えて含有さ
せてもTi炭硫化物による被削性向上効果が飽和してコ
ストが嵩むばかりか、TiCが過剰に生成するので靱性
の低下をきたす。したがって、Tiの含有量を0.04
〜1.0とした。なお、安定して被削性を向上させると
ともに良好な靱性を確保するためには、Tiの含有量を
0.08〜0.6%とすることが好ましい。
Ti: 0.04 to 1.0% Ti is an important element in the present invention, and has an effect of forming a carbosulfide of Ti by combining with C and S to enhance machinability. However, if the content is less than 0.04%, the desired effect cannot be obtained. On the other hand, even if the content exceeds 1.0%, the effect of improving machinability due to Ti carbosulfide is saturated, which not only increases the cost, but also decreases the toughness due to excessive generation of TiC. Therefore, the content of Ti is set to 0.04
-1.0. In order to stably improve machinability and secure good toughness, the content of Ti is preferably set to 0.08 to 0.6%.

【0026】Al:0.002〜0.05% Alは、鋼の脱酸の安定化及び均質化を図るのに有効な
元素である。しかし、その含有量が0.002%未満で
は所望の効果が得られず、0.05%を超えるとその効
果が飽和するとともに、却って鋼の被削性を低下させる
ことになる。したがって、Alの含有量を0.002〜
0.05%とした。なお、Al含有量は0.005〜
0.03%とすることが好ましい。
Al: 0.002 to 0.05% Al is an element effective for stabilizing and homogenizing steel deoxidation. However, if the content is less than 0.002%, the desired effect cannot be obtained. If the content exceeds 0.05%, the effect is saturated and the machinability of the steel is rather reduced. Therefore, the content of Al is 0.002 to
0.05%. In addition, the Al content is 0.005 to
It is preferably set to 0.03%.

【0027】N:0.008%以下 本発明においてはNの含有量を低く制御することが極め
て重要である。すなわち、NはTiとの親和力が大きい
ために、容易にTiと結合してTiNを形成して靱性を
大きく劣化させるだけでなく、Tiを固定してしまうの
で、Nを多量に含有する場合には前記したTiの炭硫化
物の被削性向上効果が充分に発揮できないこととなる。
N含有量が0.008%以下の場合に前記したTi炭硫
化物の効果が確保される。なお、Ti炭硫化物の効果を
高めるために、N含有量の上限は0.006%とするこ
とが好ましい。
N: 0.008% or less In the present invention, it is extremely important to control the N content to a low level. That is, since N has a large affinity for Ti, it not only easily bonds with Ti to form TiN to greatly deteriorate toughness, but also fixes Ti, so that when N is contained in a large amount, Means that the effect of improving the machinability of the carbosulfide of Ti cannot be sufficiently exhibited.
When the N content is 0.008% or less, the effect of the Ti carbosulfide described above is secured. In order to enhance the effect of Ti carbosulfide, the upper limit of the N content is preferably set to 0.006%.

【0028】Nd:0〜0.1% Ndは添加しなくても良い。添加すれば、Nd23とし
てチップブレーカーの作用を有し被削性を向上させる効
果を有する。更に、Nd23が溶鋼の比較的高温域で微
細に分散して生成することにともなって、MnSを微細
に分散析出させてフェライト生成核密度を高め、フェラ
イト量を増加させるとともにフェライト粒を微細化し
て、微細なフェライト・パーライト組織として鋼を高強
度・高靱性化する効果もある。前記の効果を確実に得る
には、Ndは0.005%以上の含有量とすることが好
ましい。しかし、その含有量が0.1%を超えるとNd
23自体が粗大化して却って靱性の低下をきたす。した
がって、Ndの含有量を0〜0.1%とした。なお、N
d含有量の好ましい上限値は0.08%である。
Nd: 0 to 0.1% Nd may not be added. If added, Nd 2 S 3 acts as a chip breaker and has the effect of improving machinability. Further, as Nd 2 S 3 is finely dispersed and generated in a relatively high temperature range of molten steel, MnS is finely dispersed and precipitated to increase the ferrite generation nucleus density, increase the amount of ferrite, and increase the ferrite grain size. It also has the effect of increasing the strength and toughness of the steel as a fine ferrite-pearlite structure by making it finer. In order to surely obtain the above-mentioned effects, the content of Nd is preferably set to 0.005% or more. However, if the content exceeds 0.1%, Nd
2 S 3 itself is coarsened, resulting in a decrease in toughness. Therefore, the content of Nd is set to 0 to 0.1%. Note that N
A preferred upper limit of the d content is 0.08%.

【0029】V:0〜0.3% Vは添加しなくても良い。添加すれば、微細な窒化物や
炭窒化物として析出し、鋼の強度、特に疲労強度を向上
させる効果を有する。この効果を確実に得るには、Vは
0.05%以上の含有量とすることが好ましい。しか
し、その含有量が0.3%を超えると析出物が粗大化す
るので前記の効果が飽和したり、却って低下したりす
る。更に、原料コストも嵩むばかりである。したがっ
て、Vの含有量を0〜0.3%とした。
V: 0 to 0.3% V may not be added. If added, it precipitates as fine nitrides or carbonitrides and has the effect of improving the strength of the steel, especially the fatigue strength. In order to ensure this effect, it is preferable that the content of V is 0.05% or more. However, if the content exceeds 0.3%, the precipitates are coarsened, so that the above-mentioned effects are saturated or rather reduced. In addition, the raw material cost only increases. Therefore, the content of V is set to 0 to 0.3%.

【0030】Nb:0〜0.05% Nbは添加しなくても良い。添加すれば、微細な窒化物
や炭窒化物として析出し、オ−ステナイト粒の粗大化を
防止するとともに、鋼の強度、特に疲労強度を向上させ
る効果を有する。この効果を確実に得るには、Nbは
0.005%以上の含有量とすることが好ましい。しか
し、その含有量が0.05%を超えると前記の効果が飽
和するばかりか、粗大な窒化物が生じて工具を損傷し、
被削性の低下を招く。したがって、Nbの含有量を0〜
0.05%とした。
Nb: 0 to 0.05% Nb may not be added. If added, it precipitates as fine nitrides or carbonitrides, has the effect of preventing austenite grains from coarsening and improving the strength of steel, especially fatigue strength. In order to surely obtain this effect, the content of Nb is preferably set to 0.005% or more. However, when the content exceeds 0.05%, not only the above-mentioned effect is saturated, but also coarse nitrides are formed and the tool is damaged,
This leads to reduced machinability. Therefore, the content of Nb is 0 to
0.05%.

【0031】Mo:0〜0.5% Moは添加しなくても良い。添加すれば、フェライト・
パーライト組織を微細化して鋼の強度、特に疲労強度を
向上させる効果を有する。この効果を確実に得るには、
Moの含有量は0.05%以上とすることが好ましい。
しかし、その含有量が0.5%を超えると熱間加工後の
組織が却って異常粗大化し、疲労強度が低下してしま
う。このため、Moの含有量を0〜0.5%とした。
Mo: 0 to 0.5% Mo may not be added. If added, ferrite
It has the effect of refining the pearlite structure to improve the strength of the steel, especially the fatigue strength. To ensure this effect,
The content of Mo is preferably set to 0.05% or more.
However, if the content exceeds 0.5%, the structure after hot working is rather abnormally coarsened and the fatigue strength is reduced. Therefore, the content of Mo is set to 0 to 0.5%.

【0032】Cu:0〜1.0% Cuは添加しなくても良い。添加すれば、析出強化によ
り鋼の強度、特に疲労強度を向上させる効果を有する。
この効果を確実に得るには、Cuは0.2%以上の含有
量とすることが好ましい。しかし、その含有量が1.0
%を超えると熱間加工性が劣化することに加えて、析出
物が粗大化して前記の効果が飽和したり却って低下した
りする。更に、コストも嵩むばかりである。したがっ
て、Cuの含有量を0〜1.0%とした。
Cu: 0 to 1.0% Cu need not be added. If added, it has the effect of improving the strength of the steel, especially the fatigue strength, by precipitation strengthening.
In order to ensure this effect, it is preferable that the content of Cu be 0.2% or more. However, the content is 1.0
%, The hot workability is deteriorated, and the precipitates are coarsened, so that the above-mentioned effects are saturated or rather deteriorated. In addition, costs are only increasing. Therefore, the content of Cu is set to 0 to 1.0%.

【0033】Pb:0〜0.50% Pbは添加しなくても良い。添加すれば、鋼の被削性を
一段と高める作用がある。この効果を確実に得るには、
Pbは0.05%以上の含有量とすることが好ましい。
しかし、その含有量が0.50%を超えると前記の効果
が飽和するばかりか、却って粗大介在物を生成して疲労
強度の低下をきたす。更に、熱間加工性が劣化するので
鋼材の表面に疵が生じてしまう。したがって、Pbの含
有量を0〜0.50%とした。
Pb: 0 to 0.50% Pb may not be added. If added, it has the effect of further increasing the machinability of the steel. To ensure this effect,
It is preferable that the content of Pb is 0.05% or more.
However, if the content exceeds 0.50%, not only the above-mentioned effects are saturated, but rather coarse inclusions are formed and the fatigue strength is lowered. Further, the hot workability is deteriorated, so that the surface of the steel material is flawed. Therefore, the content of Pb was set to 0 to 0.50%.

【0034】Ca:0〜0.01% Caは添加しなくても良い。添加すれば、鋼の被削性を
大きく高める作用がある。この効果を確実に得るには、
Caは0.001%以上の含有量とすることが好まし
い。しかし、その含有量が0.01%を超えると前記の
効果が飽和するばかりか、却って粗大介在物を生成して
疲労強度の低下をきたす。したがって、Caの含有量を
0〜0.01%とした。
Ca: 0 to 0.01% Ca may not be added. If added, it has the effect of greatly improving the machinability of steel. To ensure this effect,
Preferably, the content of Ca is 0.001% or more. However, if the content exceeds 0.01%, not only the above-mentioned effects are saturated, but rather coarse inclusions are formed, and the fatigue strength is lowered. Therefore, the content of Ca is set to 0 to 0.01%.

【0035】Se:0〜0.5% Seは添加しなくても良い。添加すれば、鋼の被削性を
一段と向上させる効果を有する。この効果を確実に得る
には、Seは0.1%以上の含有量とすることが好まし
い。しかし、その含有量が0.5%を超えると前記の効
果が飽和するばかりか、却って粗大介在物を生成して疲
労強度の低下をきたす。したがって、Seの含有量を0
〜0.5%とした。
Se: 0 to 0.5% Se need not be added. If added, it has the effect of further improving the machinability of the steel. To ensure this effect, the content of Se is preferably set to 0.1% or more. However, if the content exceeds 0.5%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed and the fatigue strength is lowered. Therefore, the content of Se is set to 0.
-0.5%.

【0036】Te:0〜0.05% Teも添加しなくても良い。添加すれば、鋼の被削性を
一段と高める効果を有する。この効果を確実に得るに
は、Teは0.005%以上の含有量とすることが好ま
しい。しかし、その含有量が0.05%を超えると前記
の効果が飽和するばかりか、却って粗大介在物を生成し
て疲労強度の低下をもたらす。更に、熱間加工性が著し
く劣化するので鋼材の表面に疵が生じてしまう。したが
って、Teの含有量を0〜0.05%とした。
Te: 0 to 0.05% Te need not be added. If added, it has the effect of further increasing the machinability of the steel. To ensure this effect, the content of Te is preferably 0.005% or more. However, if the content exceeds 0.05%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed and the fatigue strength is reduced. Further, the hot workability is remarkably deteriorated, so that the surface of the steel material is flawed. Therefore, the content of Te is set to 0 to 0.05%.

【0037】Bi:0〜0.4% Biは添加しなくても良い。添加すれば、鋼の被削性を
大きく向上させる効果を有する。この効果を確実に得る
には、Biは0.05%以上の含有量とすることが好ま
しい。しかし、その含有量が0.4%を超えると前記の
効果が飽和するばかりか、却って粗大介在物を生成して
疲労強度の低下をきたす。更に、熱間加工性が劣化する
ので鋼材の表面に疵が生じてしまう。したがって、Bi
の含有量を0〜0.4%とした。
Bi: 0 to 0.4% Bi may not be added. If added, it has the effect of greatly improving the machinability of steel. To ensure this effect, the content of Bi is preferably set to 0.05% or more. However, when the content exceeds 0.4%, not only the above-mentioned effect is saturated, but also coarse inclusions are formed and the fatigue strength is lowered. Further, the hot workability is deteriorated, so that the surface of the steel material is flawed. Therefore, Bi
Was set to 0 to 0.4%.

【0038】ところで、不純物元素としてのO(酸素)
は硬質な酸化物系介在物を形成し、これが切削時に切削
工具を損傷させて被削性を低下させてしまう場合があ
る。特に、O含有量が0.015%を超えると被削性の
著しい低下を招く場合がある。したがって、良好な被削
性を維持するために不純物元素としてのOはその含有量
を0.015%以下とすることが好ましい。なお、Oの
含有量は0.01%以下とすることがより好ましい。
Incidentally, O (oxygen) as an impurity element
Forms hard oxide-based inclusions, which may damage the cutting tool during cutting and reduce machinability. In particular, if the O content exceeds 0.015%, the machinability may be significantly reduced. Therefore, in order to maintain good machinability, the content of O as an impurity element is preferably set to 0.015% or less. It is more preferable that the content of O be 0.01% or less.

【0039】(B)鋼の組織 上記の化学組成を有する鋼であっても、熱間加工後に常
温(室温)まで冷却した場合、その組織がベイナイトや
マルテンサイトといった所謂「低温変態生成物」からな
るものでは、被削性が劣化する。更に、熱間加工後の冷
却過程で、変態歪による曲がりや残留応力が大きくなっ
て仕上げ工程で支障をきたし、例えば、曲がり取りの矯
正工程が必要となりコストアップにつながる。したがっ
て、良好な被削性を得るとともに変態歪を小さくするた
めに鋼の主な組織は、フェライト・パーライト組織とし
なければならない。なお、組織中に占める上記の「低温
変態生成物」の割合が10%未満であれば、前記した被
削性の劣化や変態歪による曲がりや残留応力の発生は大
きな問題にはならない。したがって、本発明において
は、組織の90%以上がフェライト・パーライトからな
るように規定した。そのための製造方法としては例え
ば、鋼片を1050〜1300℃に加熱してから、例え
ば熱間鍛造などの熱間加工を行い、900℃以上の温度
で仕上げた後60℃/分以下の冷却速度で、少なくとも
500℃まで空冷あるいは放冷する処理がある。なお、
前記(A)の化学組成は熱間加工後に鋼材を上記の条件
で冷却すれば組織中に10%を超える「低温変態生成
物」が生成しないように配慮されたものである。
(B) Structure of Steel Even if the steel has the above chemical composition, when it is cooled to room temperature (room temperature) after hot working, its structure is changed from so-called “low-temperature transformation products” such as bainite and martensite. In such cases, the machinability deteriorates. Further, in the cooling process after hot working, bending and residual stress due to transformation strain increase, which hinders the finishing process. For example, a process for correcting the bending is required, which leads to an increase in cost. Therefore, in order to obtain good machinability and reduce transformation strain, the main structure of the steel must be a ferrite-pearlite structure. If the ratio of the "low-temperature transformation product" in the structure is less than 10%, the deterioration of the machinability and the occurrence of bending and residual stress due to transformation strain do not become a serious problem. Therefore, in the present invention, it is specified that 90% or more of the structure is made of ferrite / pearlite. As a manufacturing method therefor, for example, a slab is heated to 1050 to 1300 ° C., then subjected to hot working such as hot forging, finished at a temperature of 900 ° C. or more, and then cooled at a rate of 60 ° C./min or less. Then, there is a process of air cooling or cooling to at least 500 ° C. In addition,
The chemical composition of (A) is designed so that if the steel material is cooled under the above conditions after hot working, a "low-temperature transformation product" exceeding 10% is not generated in the structure.

【0040】ところで、組織におけるフェライトの体積
分率が20〜70%で、且つフェライトの結晶粒度がJ
IS粒度番号5以上の場合、特に強度と被削性が優れた
ものとなる。
Incidentally, the volume fraction of ferrite in the structure is 20 to 70%, and the crystal grain size of ferrite is J
When the IS particle size number is 5 or more, the strength and machinability are particularly excellent.

【0041】更に、Ti炭硫化物の最大直径が10μm
以下で、且つ、その量が清浄度で0.05%以上の場合
に、良好な被削性とともに高い強度が得られ、特に、T
i炭硫化物の最大直径が0.5〜7μm程度でその量が
清浄度で0.08〜2.0%程度の場合に、被削性と強
度が極めて優れたものとなる。なお、Tiの炭硫化物の
サイズと清浄度を前記の値とするためには、Tiの酸化
物が過剰に生成することを防ぐことが重要で、このため
には製鋼時に、例えば、Si及びAlで充分脱酸し、最
後にTiを添加すれば良い。
Further, the maximum diameter of Ti carbosulfide is 10 μm.
Below, and when the amount is 0.05% or more in cleanliness, high machinability and high strength are obtained.
When the maximum diameter of the i-carbon sulfide is about 0.5 to 7 μm and the amount thereof is about 0.08 to 2.0% in terms of cleanliness, the machinability and strength are extremely excellent. In order to set the size and cleanliness of the carbosulfide of Ti to the above-mentioned values, it is important to prevent the generation of an excessive amount of Ti oxide. It is sufficient to sufficiently deoxidize with Al and finally add Ti.

【0042】上記のTi炭硫化物は、鋼材から採取した
試験片を鏡面研磨し、その研磨面を被検面として倍率4
00倍以上で光学顕微鏡観察すれば、色と形状から容易
に他の介在物と識別できる。すなわち、前記の条件で光
学顕微鏡観察すれば、Ti炭硫化物の「色」は極めて薄
い灰色で、「形状」はJISのB系介在物に相当する粒
状(球状)として認められる。Ti炭硫化物の詳細判定
は、前記の被検面をEDX(エネルギー分散型X線分析
装置)などの分析機能を備えた顕微鏡で観察することに
よって行うこともできる。なお、前記のTi炭硫化物の
清浄度は、光学顕微鏡の倍率を400倍として、JIS G
0555の方法によって測定した値をいう。
The Ti carbosulfide described above is obtained by mirror polishing a test piece taken from a steel material and using the polished surface as a test surface with a magnification of 4.
When observed with an optical microscope at a magnification of 00 or more, it can be easily distinguished from other inclusions based on the color and shape. That is, when observed with an optical microscope under the above conditions, the "color" of the Ti carbosulfide is very light gray, and the "shape" is recognized as a granular shape (spherical shape) corresponding to JIS B-based inclusions. The detailed determination of Ti carbosulfide can also be performed by observing the test surface with a microscope having an analysis function such as EDX (energy dispersive X-ray analyzer). The cleanliness of the above-mentioned Ti carbosulfide was determined by a JIS G
The value measured by the method of 0555.

【0043】[0043]

【実施例】表1〜6に示す化学組成の鋼を150kg真
空溶解炉を用いて溶製した。なお、Ti酸化物の生成を
防ぐために、Si及びAlで充分脱酸し種々の元素を添
加した最後にTiを添加して、Ti炭硫化物のサイズと
清浄度を調整するようにした。
EXAMPLES Steel having the chemical composition shown in Tables 1 to 6 was melted using a 150 kg vacuum melting furnace. In order to prevent the formation of Ti oxide, the size and cleanliness of the Ti carbosulfide were adjusted by adding Ti at the end after sufficiently deoxidizing with Si and Al and adding various elements.

【0044】表1における鋼1〜5、表2における鋼1
5〜21、表3における鋼26〜30、表4における鋼
36〜40、表5における鋼51〜57及び表6におけ
る鋼62〜66は本発明例の鋼、表1における鋼6〜1
4、表2における鋼22〜25、表3における鋼31〜
35、表4における鋼41〜50、表5における鋼58
〜61及び表6における鋼67〜71は成分のいずれか
が本発明で規定する含有量の範囲から外れた比較例の鋼
である。
Steels 1 to 5 in Table 1 and Steel 1 in Table 2
5 to 21, steels 26 to 30 in Table 3, steels 40 to 40 in Table 4, steels 51 to 57 in Table 5, and steels 62 to 66 in Table 6 are steels of the present invention and steels 6-1 in Table 1.
4, steels 22 to 25 in Table 2, steels 31 to 31 in Table 3
35, steels 41 to 50 in Table 4, steel 58 in Table 5
61 to 67 and steels 67 to 71 in Table 6 are steels of comparative examples in which any of the components was out of the range of the content specified in the present invention.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】次いで、これらの鋼を1250℃に加熱し
てから1000℃で仕上げる熱間鍛造を行って直径60
mmの丸棒を作製した。なお、熱間鍛造後の冷却条件を
冷却速度が5〜35℃/分となるように空冷又は放冷し
て400℃まで冷却し、丸棒の組織が主にフェライト・
パーライトからなるように調整した。
Next, these steels were heated to 1250 ° C. and then subjected to hot forging to finish at 1000 ° C.
mm round bar was prepared. The cooling conditions after hot forging were air-cooled or allowed to cool to 400 ° C. so that the cooling rate was 5 to 35 ° C./min.
Adjusted to consist of perlite.

【0052】こうして得られた丸棒の表面から15mm
の位置(R/2部位置、Rは丸棒の半径)から、JIS
14A号の引張試験片、小野式回転曲げ試験片(平行部
の直径が8mmでその長さが18.4mm)及びJIS
3号衝撃試験片(2mmUノッチシャルピー試験片)を
採取し、室温での引張強度、疲労強度(疲労限度)及び
靱性(衝撃試験時の吸収エネルギー)を調査した。又、
JIS G 0555の図3に則って試験片を採取し、鏡面研磨し
た幅が15mmで高さが20mmの被検面を、倍率40
0倍の光学顕微鏡観察して、Ti炭硫化物を他の介在物
と区分しながらその清浄度を測定した。又、Ti炭硫化
物の最大直径を、倍率400倍の光学顕微鏡観察して調
査した。
15 mm from the surface of the round bar thus obtained.
From the position (R / 2 part position, R is the radius of the round bar)
No. 14A tensile test specimen, Ono-type rotary bending test specimen (parallel part diameter 8 mm and length 18.4 mm) and JIS
A No. 3 impact test piece (2 mm U notch Charpy test piece) was sampled, and its tensile strength, fatigue strength (fatigue limit) and toughness (absorbed energy at impact test) at room temperature were examined. or,
A test specimen was collected according to FIG. 3 of JIS G 0555, and a mirror-polished test surface having a width of 15 mm and a height of 20 mm was magnified by 40%.
Observation with an optical microscope at a magnification of 0 was performed to measure the cleanliness of the Ti carbosulfide while separating it from other inclusions. In addition, the maximum diameter of Ti carbosulfide was investigated by observation with an optical microscope at a magnification of 400 times.

【0053】ドリル穿孔試験による被削性の評価も行っ
た。すなわち、直径60mmの丸棒を25mmの長さの
輪切りにしたものを用いてその長さ方向に貫通孔をあ
け、刃先摩損により穿孔不能となった時の貫通孔の個数
を数え、被削性の評価を行った。穿孔条件はJIS高速
度工具鋼SKH51のφ5mmストレートシャンクドリ
ルを使用し、水溶性の潤滑剤を用いて、送り0.15m
m/rev、回転数980rpmで行った。
The machinability was also evaluated by a drilling test. That is, a round bar having a diameter of 60 mm was cut into a 25 mm-length round bar, and a through-hole was made in the length direction. The number of through-holes when drilling was impossible due to abrasion of the cutting edge was counted. Was evaluated. The drilling conditions were as follows: using a JIS high-speed tool steel SKH51 φ5 mm straight shank drill, using a water-soluble lubricant, and feeding 0.15 m.
m / rev and the number of rotations were 980 rpm.

【0054】表7、8に、上記の各種試験の結果を示
す。又、図1〜6に各鋼の疲労強度と被削性の関係を、
図7及び図8に引張強度と靱性の関係を整理して示す。
なお、図1は鋼1〜14について、図2は鋼15〜25
について、図3は鋼26〜35について、図4は鋼36
〜50について、図5は鋼51〜61について、図6は
鋼62〜71について疲労強度と被削性の関係を整理し
たものである。又、図7は鋼1〜35について、図8は
鋼36〜71について引張強度と靱性の関係を整理した
ものである。
Tables 7 and 8 show the results of the various tests described above. 1 to 6 show the relationship between the fatigue strength and machinability of each steel.
7 and 8 show the relationship between the tensile strength and the toughness.
1 is for steels 1 to 14, and FIG.
3 is for steels 26 to 35, and FIG.
FIG. 5 summarizes the relationship between fatigue strength and machinability for steels 51 to 61 and FIG. 6 for steels 62 to 71. 7 shows the relationship between tensile strength and toughness for steels 1 to 35, and FIG. 8 shows the relationship between steels 36 to 71.

【0055】[0055]

【表7】 [Table 7]

【0056】[0056]

【表8】 [Table 8]

【0057】先ず、表7と図1〜3及び図7から本発明
例の鋼は良好な被削性を有するとともに、強度(引張強
度と疲労強度)と靱性に優れていることが明らかであ
る。本発明例の鋼のうちでも、鋼15〜21の耐久比
(疲労強度/引張強度)は0.45を超える大きなもの
で、疲労強度−引張強度のバランスが特に優れている。
First, from Table 7 and FIGS. 1 to 3 and FIG. 7, it is clear that the steel of the present invention has good machinability and excellent strength (tensile strength and fatigue strength) and toughness. . Among the steels of the present invention, the durability ratio (fatigue strength / tensile strength) of steels 15 to 21 is as large as more than 0.45, and the balance between fatigue strength and tensile strength is particularly excellent.

【0058】これに対して比較例の鋼の場合には、引張
強度、疲労強度、靱性(吸収エネルギー)、被削性(貫
通孔の数)のうち少なくとも1つの特性が劣っている。
On the other hand, the steel of the comparative example is inferior in at least one of tensile strength, fatigue strength, toughness (absorbed energy), and machinability (number of through holes).

【0059】次に、表8と図4〜6及び図8から、Nd
を添加した本発明例の鋼は良好な被削性を有するととも
に、強度(引張強度と疲労強度)に優れ、更に靱性が極
めて優れていることが明らかである。本発明例の鋼のう
ちでも、鋼51〜57の耐久比は0.45を超える大き
なもので、疲労強度−引張強度のバランスが特に優れて
いる。
Next, from Table 8 and FIGS. 4 to 6 and FIG.
It is evident that the steel of the present invention to which the steel of the present invention is added has good machinability, excellent strength (tensile strength and fatigue strength), and extremely excellent toughness. Among the steels of the present invention, the durability ratio of steels 51 to 57 exceeds 0.45, and the balance between fatigue strength and tensile strength is particularly excellent.

【0060】これに対して比較例の鋼の場合には、引張
強度、疲労強度、靱性(吸収エネルギー)、被削性(貫
通孔の数)のうち少なくとも1つの特性が劣っている。
On the other hand, the steel of the comparative example is inferior in at least one of tensile strength, fatigue strength, toughness (absorbed energy), and machinability (number of through holes).

【0061】[0061]

【発明の効果】本発明の快削非調質鋼は優れた強度と靱
性を有し、且つ、被削性に優れるので、機械構造部品な
どの素材として利用することができる。この強度と靱性
に優れた快削非調質鋼は比較的容易に低コストで製造す
ることができる。
The free-cutting non-heat treated steel of the present invention has excellent strength and toughness and excellent machinability, so that it can be used as a material for machine structural parts. This free-cutting non-heat treated steel excellent in strength and toughness can be manufactured relatively easily at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた鋼1〜14の疲労強度と被削性
の関係を示した図である。
FIG. 1 is a diagram showing a relationship between fatigue strength and machinability of steels 1 to 14 used in Examples.

【図2】実施例で用いた鋼15〜25の疲労強度と被削
性の関係を示した図である。
FIG. 2 is a diagram showing a relationship between fatigue strength and machinability of steels 15 to 25 used in Examples.

【図3】実施例で用いた鋼26〜35の疲労強度と被削
性の関係を示した図である。
FIG. 3 is a diagram showing a relationship between fatigue strength and machinability of steels 26 to 35 used in Examples.

【図4】実施例で用いた鋼36〜50の疲労強度と被削
性の関係を示した図である。
FIG. 4 is a diagram showing a relationship between fatigue strength and machinability of steels 36 to 50 used in Examples.

【図5】実施例で用いた鋼51〜61の疲労強度と被削
性の関係を示した図である。
FIG. 5 is a diagram showing the relationship between the fatigue strength and machinability of steels 51 to 61 used in Examples.

【図6】実施例で用いた鋼62〜71の疲労強度と被削
性の関係を示した図である。
FIG. 6 is a diagram showing the relationship between the fatigue strength and machinability of steels 62 to 71 used in Examples.

【図7】実施例で用いた鋼1〜35の引張強度と靱性の
関係を示した図である。
FIG. 7 is a diagram showing a relationship between tensile strength and toughness of steels 1 to 35 used in Examples.

【図8】実施例で用いた鋼36〜71の引張強度と靱性
の関係を示した図である。
FIG. 8 is a diagram showing a relationship between tensile strength and toughness of steels 36 to 71 used in Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.2〜0.6%、Si:
0.1〜1.5%、Mn:0.1〜2.0%、P:0.
01〜0.07%、S:0.01〜0.2%、Cr:
0.02〜2.0%、Ti:0.04〜1.0%、A
l:0.002〜0.05%、N:0.008%以下、
Nd:0〜0.1%、V:0〜0.3%、Nb:0〜
0.05%、Mo:0〜0.5%、Cu:0〜1.0
%、Pb:0〜0.50%、Ca:0〜0.01%、S
e:0〜0.5%、Te:0〜0.05%及びBi:0
〜0.4%を含有し、残部がFe及び不可避不純物から
なり、更に、組織の90%以上がフェライト・パーライ
ト組織からなることを特徴とする強度と靱性に優れた快
削非調質鋼。
C .: 0.2 to 0.6% by weight, Si:
0.1-1.5%, Mn: 0.1-2.0%, P: 0.
01-0.07%, S: 0.01-0.2%, Cr:
0.02-2.0%, Ti: 0.04-1.0%, A
l: 0.002 to 0.05%, N: 0.008% or less,
Nd: 0 to 0.1%, V: 0 to 0.3%, Nb: 0 to 0%
0.05%, Mo: 0 to 0.5%, Cu: 0 to 1.0
%, Pb: 0 to 0.50%, Ca: 0 to 0.01%, S
e: 0 to 0.5%, Te: 0 to 0.05%, and Bi: 0
A free-cutting non-heat-treated steel having excellent strength and toughness, characterized in that the steel contains up to 0.4%, the balance being Fe and unavoidable impurities, and more than 90% of the structure being a ferrite-pearlite structure.
JP00197497A 1996-11-25 1997-01-09 Free-cutting non-heat treated steel with excellent strength and toughness Expired - Fee Related JP3494271B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP00197497A JP3494271B2 (en) 1997-01-09 1997-01-09 Free-cutting non-heat treated steel with excellent strength and toughness
DE69718784T DE69718784T2 (en) 1996-11-25 1997-11-25 STEEL WITH EXCELLENT PROCESSABILITY AND COMPONENT PRODUCED WITH IT
EP97913441A EP0903418B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
CA002243123A CA2243123C (en) 1996-11-25 1997-11-25 Steel products excellent in machinability and machined steel parts
KR1019980704909A KR100268536B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
PCT/JP1997/004297 WO1998023784A1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
CN97191416A CN1095503C (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component using said steel
US09/103,566 US5922145A (en) 1996-11-25 1998-06-24 Steel products excellent in machinability and machined steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00197497A JP3494271B2 (en) 1997-01-09 1997-01-09 Free-cutting non-heat treated steel with excellent strength and toughness

Publications (2)

Publication Number Publication Date
JPH10195599A true JPH10195599A (en) 1998-07-28
JP3494271B2 JP3494271B2 (en) 2004-02-09

Family

ID=11516536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00197497A Expired - Fee Related JP3494271B2 (en) 1996-11-25 1997-01-09 Free-cutting non-heat treated steel with excellent strength and toughness

Country Status (1)

Country Link
JP (1) JP3494271B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256394A (en) * 2001-03-02 2002-09-11 Daido Steel Co Ltd Non-heattreated steel for hot forging which is easily separable by fracture
WO2013121930A1 (en) * 2012-02-15 2013-08-22 新日鐵住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
JP2015183253A (en) * 2014-03-25 2015-10-22 愛知製鋼株式会社 Non-conditioned steel for saving v type hot forging excellent in machinability and fatigue strength and having small hardness variation, hot forged component manufactured by using the steel and manufacturing method therefor
JP2015212414A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Steel for cold-forged component
JP2019035126A (en) * 2017-08-18 2019-03-07 大同特殊鋼株式会社 Steel for machine structure use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256394A (en) * 2001-03-02 2002-09-11 Daido Steel Co Ltd Non-heattreated steel for hot forging which is easily separable by fracture
WO2013121930A1 (en) * 2012-02-15 2013-08-22 新日鐵住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
JP2013166983A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Corp Rolled steel bar for hot forging, hot forged roughly shaped material, and common rail and method for producing the same
CN104114734A (en) * 2012-02-15 2014-10-22 新日铁住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
US9951403B2 (en) 2012-02-15 2018-04-24 Nippon Steel & Sumitomo Metal Corporation Hot-forged section material and common rail
US9994943B2 (en) 2012-02-15 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for hot forging, hot-forged section material, and common rail and method for producing the same
JP2015183253A (en) * 2014-03-25 2015-10-22 愛知製鋼株式会社 Non-conditioned steel for saving v type hot forging excellent in machinability and fatigue strength and having small hardness variation, hot forged component manufactured by using the steel and manufacturing method therefor
JP2015212414A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Steel for cold-forged component
JP2019035126A (en) * 2017-08-18 2019-03-07 大同特殊鋼株式会社 Steel for machine structure use

Also Published As

Publication number Publication date
JP3494271B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
US5922145A (en) Steel products excellent in machinability and machined steel parts
WO1998023784A1 (en) Steel having excellent machinability and machined component
US5648044A (en) Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
WO2001071050A1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP3241897B2 (en) Non-heat treated steel for hot forging with excellent tensile strength, fatigue strength and machinability
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP2010236062A (en) Method for manufacturing component for machine structure
JP3416869B2 (en) Low ductility non-heat treated steel with excellent machinability
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP4752800B2 (en) Non-tempered steel
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3890724B2 (en) Ferritic / pearlite non-heat treated steel with excellent machinability
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP2009108357A (en) Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP4280923B2 (en) Steel materials for carburized parts or carbonitrided parts
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JP3475706B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP2020169354A (en) Steel for direct cutting
JPH0673490A (en) High toughness non-heat-treated rolled bar steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees