JPH10195561A - Heat resistant platinum material - Google Patents

Heat resistant platinum material

Info

Publication number
JPH10195561A
JPH10195561A JP9340041A JP34004197A JPH10195561A JP H10195561 A JPH10195561 A JP H10195561A JP 9340041 A JP9340041 A JP 9340041A JP 34004197 A JP34004197 A JP 34004197A JP H10195561 A JPH10195561 A JP H10195561A
Authority
JP
Japan
Prior art keywords
platinum
alloy
weight
hafnium
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9340041A
Other languages
Japanese (ja)
Other versions
JP3803479B2 (en
Inventor
Manfred Dr Poniatowski
ポニアトヴスキー マンフレート
Gerhard Reber
レーバー ゲルハルト
Stefan Zeuner
ツォイナー シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of JPH10195561A publication Critical patent/JPH10195561A/en
Application granted granted Critical
Publication of JP3803479B2 publication Critical patent/JP3803479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Insulated Conductors (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Insulating Materials (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a platinum material having slight crystalline grain growth as well as creep rupture strength as high as possible at high temp. and capable of being easily manufactured by melt metallurgy by specifying a composition consisting of Hf, one element among Y, La, and Gd, and Pt. SOLUTION: The platinum alloy as a ternary alloy consisting of platinum and transition elements has a composition consisting of, by weight, 0.1-0.4%, preferably 0.2-0.4%, of Hf, 0.1-0.4%, preferably 0.15-0.3%, of one element among Y, La, and Gd, and >=99.5% of Pt. It is preferable to obtain this alloy by preparing a prealloy of Pt as a base material and alloy components by the use of a ZrO2 crucible in a vacuum induction melting furnace and further accurately regulating small amounts of working metallic additives. By the addition of Hf, the mixed crystal hardening of Pt and the solubility of Y, La, and Gd and be improved, and further, the effect of addition of the other element can be produced only in the case where Hf is a second matrix metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、白金99.5重量
%以上および希土類を含有する、耐熱性白金材料に関す
る。
The present invention relates to a heat-resistant platinum material containing at least 99.5% by weight of platinum and a rare earth element.

【0002】[0002]

【従来の技術】耐熱性白金材料は、工業および実験室に
おいて多くの利用目的に使用することができ、その際に
特に機械的、熱的および化学的安定性への要求が生じ
る。特殊な使用分野はガラス溶融技術であり、この場合
白金溶融ルツボおよび白金構造部品はますます、平面映
像面、テレビのブラウン管、PCモニターおよびガラス
繊維のための高純度で均質な光学ガラスの製造に適して
いることが実証されている。
BACKGROUND OF THE INVENTION Heat-resistant platinum materials can be used for many applications in industry and in the laboratory, with particular demands on mechanical, thermal and chemical stability. A special field of application is glass melting technology, in which platinum melting crucibles and platinum structural parts are increasingly used for the production of highly pure and homogeneous optical glass for flat screens, television cathode ray tubes, PC monitors and glass fibers. Proven suitable.

【0003】長期使用における白金の高温強度を向上さ
せるための様々な技術的な解決策が公知である。最も効
率のよい方法は、粒径50nm未満を有する、熱安定性
の、硬質でマトリックス金属に溶解しない粒子を少量、
均一に分散させる、分散硬化に基づく。この種の分散は
格子中での転位運動、ひいては長期の負荷時間および高
温の際の巨視的変形を防止する。このようにして分散
は、粗粒の形成による早期の材料の損傷および粘性の粒
子のすべりを防止する。
[0003] Various technical solutions are known for improving the high-temperature strength of platinum in long-term use. The most efficient method is to use a small amount of thermally stable, hard and insoluble matrix metal particles having a particle size of less than 50 nm,
Uniformly dispersed, based on dispersion hardening. This kind of dispersion prevents dislocation movement in the lattice and thus macroscopic deformation at long loading times and high temperatures. The dispersion thus prevents premature damage of the material due to the formation of coarse particles and slippage of the viscous particles.

【0004】該材料を製造するために、粉末冶金学の様
々な変法が使用されるが、しかしこれは基本的にコスト
高であり、かつ様々な使用の要求を考慮すると必ずしも
適用できるとは限らない。
[0004] Various variants of powder metallurgy are used to produce the material, but this is fundamentally expensive and is not always applicable given the various use requirements. Not exclusively.

【0005】通例の溶融冶金学に基づき、かつ合金技術
の手段により粒度の安定化および組織硬化の達成を試み
る製造方法もまた挙げられている。この場合基本的に析
出硬化(同種の、しかし熱安定性でない粒子による分散
硬化)、混晶硬化および粒界の偏折のメカニズムの組み
合わせを使用している。
[0005] Also mentioned are production methods which are based on customary melt metallurgy and which attempt to achieve grain size stabilization and structure hardening by means of alloy technology. This basically uses a combination of precipitation hardening (dispersion hardening by homogeneous but not thermally stable particles), mixed crystal hardening and grain boundary deflection mechanisms.

【0006】そこで例えば少量のホウ素を白金/ジルコ
ニウム合金に添加すると、高いクリープ破断強さを有す
る、粒子の安定したこの種の材料になる(ドイツ国特許
出願公開第19531342号明細書)。このことによ
りジルコニウム0.21重量%およびホウ素0.009
重量%を有する白金の合金は、1300℃で100時
間、4.3MPaのクリープ破断強さを達成するが、こ
れに対してホウ素の添加なしでは2.2MPaのクリー
プ破断強さを達成するのみである(純白金は同一の条件
下でわずか1.8MPaである)。
[0006] Thus, for example, the addition of small amounts of boron to a platinum / zirconium alloy results in a material of this kind with a high creep rupture strength and a stable particle (DE-A-195 31 342). This results in 0.21% by weight of zirconium and 0.009% of boron.
A platinum alloy having a wt.% Achieves a creep rupture strength of 4.3 MPa at 1300 ° C. for 100 hours, whereas only the creep rupture strength of 2.2 MPa without boron addition is achieved. Yes (pure platinum is only 1.8 MPa under the same conditions).

【0007】希土類金属を有する白金からなる合金の調
査から、強度の向上は達成できても、これらの元素の白
金中でのきわめて限定された溶解性により、十分に実用
的なわけではないことが公知である。すでに硬化の際
に、強度に関してほとんど効果がない、比較的粗い金属
間析出が生る。
Investigations on alloys of platinum with rare earth metals have shown that, although improved strength can be achieved, the very limited solubility of these elements in platinum is not sufficiently practical. It is known. Already upon hardening, relatively coarse intermetallic deposits occur with little effect on strength.

【0008】別の文献(Platinum Metals Review, 1995
(39), 167-171)にはジルコニウムおよびイットリウムの
添加の相乗効果に基づいた、耐熱性白金材料について報
告されている。硬化相としてイットリウムとジルコニウ
ムの化合物が推測される。しかし該材料は高温強度に関
してまだ最適な特性を有していない。
Another document (Platinum Metals Review, 1995)
(39), 167-171) report a heat-resistant platinum material based on the synergistic effect of the addition of zirconium and yttrium. A compound of yttrium and zirconium is assumed as a hardening phase. However, the material does not yet have optimal properties with respect to high temperature strength.

【0009】[0009]

【発明が解決しようとする課題】従って本発明の課題
は、白金99.5%以上および希土類を含有し、高温で
可能な限り高いクリープ破断強さおよびわずかな結晶粒
成長を有し、かつ容易に溶融冶金により製造できる、耐
熱性白金材料を提供することである。
It is therefore an object of the present invention to contain more than 99.5% of platinum and rare earths, to have as high a creep rupture strength as possible at high temperatures and to have a small grain growth, and to be easy to use. To provide a heat-resistant platinum material that can be manufactured by melt metallurgy.

【0010】[0010]

【課題を解決するための手段】上記課題は本発明によ
り、ハフニウム0.1〜0.4重量%、およびイットリ
ウムおよび/またはランタンおよび/またはガドリニウ
ムを合計で0.1〜0.4重量%、残りは白金少なくと
も99.5重量%を含有する白金材料により解決され
る。
According to the present invention, there is provided, according to the present invention, 0.1 to 0.4% by weight of hafnium and 0.1 to 0.4% by weight of yttrium and / or lanthanum and / or gadolinium in total. The balance is solved by a platinum material containing at least 99.5% by weight of platinum.

【0011】有利には該材料は白金を少なくとも99.
5重量%、ハフニウムを0.2〜0.4重量%およびイ
ットリウムおよび/またはランタンおよび/またはガド
リニウムを合計で0.15〜0.3重量%含有する。
Advantageously, the material comprises at least 99.
5% by weight, 0.2 to 0.4% by weight of hafnium and 0.15 to 0.3% by weight in total of yttrium and / or lanthanum and / or gadolinium.

【0012】ハフニウムの添加の作用方式は、白金の混
晶硬化および元素イットリウム、ガドリニウムおよびラ
ンタンのための溶解性限界の向上に基づく。ハフニウム
0.1重量%未満の濃度ではこの点で顕著な効果を有さ
ず、(その他の三元添加物との関係で)0.4重量%を
越える添加は所望の特性を悪化させる。
The mode of action of the addition of hafnium is based on the mixed crystal hardening of platinum and the increasing solubility limits for the elements yttrium, gadolinium and lanthanum. Concentrations less than 0.1% by weight of hafnium have no significant effect in this regard, and additions above 0.4% by weight (in relation to other ternary additives) degrade the desired properties.

【0013】析出硬化は、安定した金属間相、例えばY
Pt3、YPt5、GdPt5、GdPt2、LaPt5
LaPt2、HfPt3およびHfPt5の形成に基づ
く。この場合、ハフニウムの濃度0.4重量%を上回る
場合は、固体の状態での溶解性を明らかに越えており、
かつ該相はすでに硬化の際に比較的粗い結晶(>10μ
m)として生じることが判明した。このことはクリープ
破断強さに明らかに不利な影響を与える。添加量0.1
重量%未満の場合、析出相の体積割合が明らかに低下
し、ひいては同様に望ましくない強度の低下が生じる。
[0013] Precipitation hardening is achieved by a stable intermetallic phase, eg, Y
Pt 3 , YPt 5 , GdPt 5 , GdPt 2 , LaPt 5 ,
Based on the formation of LaPt 2 , HfPt 3 and HfPt 5 . In this case, if the concentration of hafnium exceeds 0.4% by weight, the solubility in the solid state is clearly exceeded,
And the phase already has relatively coarse crystals (> 10 μm) upon curing.
m). This clearly has a detrimental effect on creep rupture strength. 0.1
If it is less than% by weight, the volume fraction of the precipitated phase is significantly reduced, and thus also an undesired reduction in strength.

【0014】合金元素を組み合わせることにより明らか
な効果が生じる、つまりハフニウムが第二のマトリック
ス金属である場合のみ、イットリウム、ガドリニウムお
よびランタンの合金への添加物が記載の効果につながる
ことが判明した。個々の元素(イットリウム、ハフニウ
ム、ガドリニウムおよびランタン)が相応の濃度であっ
ても、三元合金が達成するような結果にはならない。
It has been found that the combination of alloying elements produces a clear effect, that is, only when hafnium is the second matrix metal, additives to the alloy of yttrium, gadolinium and lanthanum lead to the effect described. Appropriate concentrations of the individual elements (yttrium, hafnium, gadolinium and lanthanum) do not have the results that ternary alloys achieve.

【0015】意外にも、希土類の含量が同一の場合に
は、ハフニウムを添加することで、1200℃でのクリ
ープ破断強さに関して、公知の添加元素であるジルコニ
ウムを同量用いるよりも良好な値が達成される。ハフニ
ウムと白金および希土類との金属間相は、ジルコニウム
との金属間相よりも安定しており、かつハフニウムが白
金に基本強度を付与することが判明した。
Surprisingly, when the rare earth content is the same, the addition of hafnium gives a better value for the creep rupture strength at 1200 ° C. than using the same amount of the known additive element zirconium. Is achieved. It has been found that the intermetallic phase of hafnium with platinum and rare earths is more stable than the intermetallic phase with zirconium, and that hafnium imparts basic strength to platinum.

【0016】該材料を製造するために有利には、少量の
作用金属添加物をできる限り正確に調整できるように、
ベース材料の白金と前合金することから出発する。この
意味で実施例のために表1による前合金を製造する。
Advantageously, in order to produce the material, small amounts of the working metal additive can be adjusted as precisely as possible.
We start by pre-alloying with the base material platinum. In this sense, the prealloys according to Table 1 are produced for the examples.

【0017】[0017]

【実施例】以下の実施例は本発明を詳細に説明する。The following examples illustrate the invention in detail.

【0018】1.純白金1000g、前合金PtHf3
(No.F)150g、および前合金PtY2.6(N
o.G)45gを真空誘導溶融炉で酸化ジルコニウムル
ツボでアルゴン下、圧力約200ミリバールで溶融し、
かつ銅鋳型に鋳込み、小型の地金(寸法50×30×1
5mm)にした。鋳造地金を均質にするために1200
℃で8時間空気にさらして焼きなまし、かつ水で焼入れ
をした。引き続き鋳肌をフライス盤で加工することによ
りそれぞれ厚さ約1.0mm除去し、かつ地金から常温
圧延により厚さ0.5mmの板金を製造した。最終焼き
なまし(0.5時間、1000℃)後、表2に記載の特
性値が確認された。該合金の目標組成はPtHf/Y
0.38/0.10%である。
1. Pure platinum 1000g, pre-alloy PtHf3
(No. F) 150 g and pre-alloy PtY2.6 (N
o.G) 45 g was melted in a vacuum induction melting furnace in a zirconium oxide crucible under argon under a pressure of about 200 mbar;
And cast into a copper mold, small metal (size 50 × 30 × 1
5 mm). 1200 to homogenize the casting metal
C. for 8 hours in air, and quenched with water. Subsequently, the casting surface was removed by a milling machine to remove a thickness of about 1.0 mm, and a sheet metal having a thickness of 0.5 mm was produced from the base metal by ordinary temperature rolling. After the final annealing (0.5 hours, 1000 ° C.), the characteristic values shown in Table 2 were confirmed. The target composition of the alloy is PtHf / Y
0.38 / 0.10%.

【0019】2.純白金1000g/前合金PtHf3
(No.F)95gおよび前合金PtY2.6(No.
G)90gを例1と同様に製造し、かつ板金に加工し
た。材料特性値は同様に表2に記載されている。目標組
成はPtHf/Y 0.25/0.22%である。
2. Pure platinum 1000g / pre-alloy PtHf3
(No. F) 95 g and pre-alloy PtY2.6 (No.
G) 90 g were produced as in Example 1 and processed into sheet metal. The material property values are likewise described in Table 2. The target composition is PtHf / Y 0.25 / 0.22%.

【0020】3〜5.その都度HfおよびYの含量を変
更して例1および2と同様の方法で別の3つの合金をP
t−Hf−Y系で製造し、かつテストした。その結果は
同様に表に記載されている。例5による合金はHf含量
において本発明による範囲外にあり、かつ従って比較的
小さい高温強度を有する。
3-5. The other three alloys were prepared in the same manner as in Examples 1 and 2 by changing the Hf and Y contents in each case.
Manufactured in the t-Hf-Y system and tested. The results are also listed in the table. The alloy according to Example 5 is outside the range according to the invention in Hf content and therefore has a relatively low high-temperature strength.

【0021】6.純白金500g、前合金PtHf3
60g、および前合金PtGd19.2(A)6gを真
空誘導溶融炉で、Gd23の粉末懸濁液で被覆したZr
2のルツボで、アルゴン下、1000ミリバールで溶
融し、かつ銅鋳型に鋳込み、小型の地金(約60×40
×10mm)にした。該鋳造物を引き続き1および2に
記載のように処理し、次いで材料サンプルに同様の強度
テストを行った。結果は表2を参照のこと。目標組成は
PtHf/Gd 0.32/0.20%である。
6. 500g pure platinum, pre-alloy PtHf3
60 g, and 6 g of the pre-alloy PtGd19.2 (A) were coated with a powder suspension of Gd 2 O 3 in a vacuum induction melting furnace.
In an O 2 crucible, melted at 1000 mbar under argon and cast into a copper mold, a small metal (about 60 × 40
× 10 mm). The castings were subsequently processed as described in 1 and 2 and then the material samples were subjected to similar strength tests. See Table 2 for results. The target composition is PtHf / Gd 0.32 / 0.20%.

【0022】7.純白金500g、前合金PtHf3
60g、および前合金PtLa 19.6(B)6gを
例6と同様の方法で製造し、かつ引き続き例1および2
の記載に従って厚さ0.5mmのテスト材料に加工し
た。結果を表2に記載する。目標組成はPtHf/La
0.32/0.17%である。
7. 500g pure platinum, pre-alloy PtHf3
60 g and 6 g of the prealloy PtLa 19.6 (B) were prepared in a manner analogous to Example 6, and subsequently Examples 1 and 2
Was processed into a test material having a thickness of 0.5 mm according to the description. The results are shown in Table 2. The target composition is PtHf / La
0.32 / 0.17%.

【0023】比較のために表2に、従来技術による、い
くつかの公知の耐熱性白金材料を挙げる(8〜14)。
特に興味深いのは例2と13の比較である。これらの違
いは、2)の合金がハフニウム0.25重量%を、およ
び13)の合金がハフニウムの代わりにジルコニウム
0.25重量%を含有する点のみである。ジルコニウム
含有白金合金は実質的にハフニウム含有の合金よりも小
さいクリープ破断強さを有する。
For comparison, Table 2 lists some known heat-resistant platinum materials according to the prior art (8-14).
Of particular interest is the comparison of Examples 2 and 13. The only difference is that the alloy of 2) contains 0.25% by weight of hafnium and the alloy of 13) contains 0.25% by weight of zirconium instead of hafnium. Zirconium-containing platinum alloys have substantially lower creep rupture strength than hafnium-containing alloys.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 シュテファン ツォイナー ドイツ連邦共和国 フリードリヒスドルフ アルベルト−シュヴァイツァー−シュト ラーセ 16 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Stephann Zeuiner Germany Friedrichsdorf Albert-Schweizer-Strasse 16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 白金及び遷移元素からなる三元合金の形
での耐熱性白金材料において、該合金がハフニウム0.
1〜0.4重量%、イットリウム、ランタンまたはガド
リニウムのうちの1つの元素0.1〜0.4重量%、およ
び残りが白金少なくとも99.5重量%からなることを
特徴とする、耐熱性白金材料。
1. A heat-resistant platinum material in the form of a ternary alloy comprising platinum and a transition element, said alloy comprising hafnium 0.5.
Heat-resistant platinum, characterized in that it comprises 1 to 0.4% by weight, 0.1 to 0.4% by weight of one element of yttrium, lanthanum or gadolinium and the balance at least 99.5% by weight of platinum. material.
【請求項2】 該合金が、ハフニウム0.2〜0.4重量
%、およびイットリウム、ランタンまたはガドリニウム
元素0.15〜0.30重量%を含有する、請求項1記載
の耐熱性白金材料。
2. The heat-resistant platinum material according to claim 1, wherein said alloy contains 0.2 to 0.4% by weight of hafnium and 0.15 to 0.30% by weight of an element yttrium, lanthanum or gadolinium.
JP34004197A 1996-12-13 1997-12-10 Heat-resistant platinum material Expired - Fee Related JP3803479B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19651850A DE19651850A1 (en) 1996-12-13 1996-12-13 Heat-resistant platinum material
DE19651850.4 1996-12-13

Publications (2)

Publication Number Publication Date
JPH10195561A true JPH10195561A (en) 1998-07-28
JP3803479B2 JP3803479B2 (en) 2006-08-02

Family

ID=7814575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34004197A Expired - Fee Related JP3803479B2 (en) 1996-12-13 1997-12-10 Heat-resistant platinum material

Country Status (5)

Country Link
EP (1) EP0848070B1 (en)
JP (1) JP3803479B2 (en)
AT (1) ATE204920T1 (en)
DE (2) DE19651850A1 (en)
ES (1) ES2164287T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393901C (en) * 2000-07-03 2008-06-11 小笠和男 Hard noble metal alloy component and its making method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046456C2 (en) 2000-09-18 2003-04-10 Heraeus Gmbh W C Through finely divided, small particles of base metal oxide, dispersion-strengthened, gold-free platinum material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1238013A (en) * 1967-06-28 1971-07-07
DE1758549A1 (en) * 1967-06-28 1971-02-11 Johnson Matthey Co Ltd Metal alloys containing platinum group metals and methods of making these alloys
US5518691A (en) * 1993-07-29 1996-05-21 Tanaka Kikinzoku Kogyo K.K. Precious metal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393901C (en) * 2000-07-03 2008-06-11 小笠和男 Hard noble metal alloy component and its making method therefor

Also Published As

Publication number Publication date
EP0848070B1 (en) 2001-08-29
DE19651850A1 (en) 1998-06-18
ATE204920T1 (en) 2001-09-15
ES2164287T3 (en) 2002-02-16
EP0848070A1 (en) 1998-06-17
DE59704436D1 (en) 2001-10-04
JP3803479B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
RU2466201C2 (en) Titanium aluminide alloys
JP4849402B2 (en) High strength magnesium alloy and method for producing the same
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
EP0217305B1 (en) Cold worked tri-nickel aluminide alloy compositions
JP2023507928A (en) heat resistant aluminum powder material
US4512826A (en) Precipitate hardened titanium alloy composition and method of manufacture
EP3561093A1 (en) Ni-BASED HEAT-RESISTANT ALLOY
KR20210067133A (en) High entropy alloy and method for manufacturing the same
CN114774727B (en) Preparation method of nano zirconium dioxide reinforced NbMoTaW refractory high-entropy alloy
JP3894987B2 (en) Heat-resistant platinum material
EP0217304B1 (en) Tri-nickel aluminide compositions and their material processing to increase strength
Yang et al. Comparison about effects of Ce, Sn and Gd additions on as-cast microstructure and mechanical properties of Mg–3.8 Zn–2.2 Ca (wt%) magnesium alloy
US5397533A (en) Process for producing TiB2 -dispersed TiAl-based composite material
CN112435847B (en) Preparation method of high-performance magnetic ring
JP3803479B2 (en) Heat-resistant platinum material
CN113881868B (en) Improved method for eliminating solid solution strengthening type nickel-based alloy solidification cracks formed by SLM (selective laser melting)
CN115449684A (en) Magnesium alloy, preparation method thereof, magnesium alloy ingot and application
CN109097610B (en) Magnetic memory alloy with large strain and preparation method thereof
KR20220087349A (en) High-strength medium entropy alloy and manufacturing method for the same
EP4083248A1 (en) Aluminum alloy and preparation method thereof, and aluminum alloy structural member
JPH0841565A (en) Titanium alloy casting having high strength and high toughness
CN114959361B (en) TiAl alloy capable of precipitating a large amount of ordered omega phases and preparation method thereof
JP2629332B2 (en) Cu alloy for plastic molds
CN102485930A (en) Antioxidant low-expansion high-temperature alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees