JPH10195545A - Preheating method for continuous annealing equipment - Google Patents

Preheating method for continuous annealing equipment

Info

Publication number
JPH10195545A
JPH10195545A JP8350103A JP35010396A JPH10195545A JP H10195545 A JPH10195545 A JP H10195545A JP 8350103 A JP8350103 A JP 8350103A JP 35010396 A JP35010396 A JP 35010396A JP H10195545 A JPH10195545 A JP H10195545A
Authority
JP
Japan
Prior art keywords
heat
heat storage
furnace
preheating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350103A
Other languages
Japanese (ja)
Inventor
Nobuyuki Eguchi
信之 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8350103A priority Critical patent/JPH10195545A/en
Publication of JPH10195545A publication Critical patent/JPH10195545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently heat a metallic strip by executing the change over of a heat reserve process and a heat radiating process to plural heat reservoirs in order in a regenerative heating device and controlling the pressure of hot blast blown to the metallic strip at the time of changing over. SOLUTION: Combustion exhaust gas in the heating furnace 1 for metallic strip 9 is introduced into the regenerative heating device 4 through a piping 3 to reserve the sensible heat of the exhaust gas. Atmosphere in a preheating furnace 5 is sucked with a circulating fan 6 and passed through the regenerative heating device 4 through a circulating gas piping 7, and the reserved sensible heat is received and introduced to the chamber 8 in the preheating furnace 5 and also, blown to the metallic strip 9 with the pressure of the circulating fan 6. In this constitution, plural heat reservoirs are provided as one set in the regenerative heating device 4 and the change over of the heat reserve process and the heat radiating process of each heat reservoir is executed in order by opening/closing the change over adjusting value. Further, at the time of changing over the heat reserve process and the heat radiating process of each heat reservoir, the variation of calory blown to the metallic strip 9 is compensated by controlling the blowing pressure of the circulating fan 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、連続焼鈍設備の
排ガス顕熱を利用して、焼鈍しようとする金属ストリッ
プを予熱する予備加熱方法、なかでも、蓄熱装置を有す
る熱交換設備によって予熱炉を通過中の金属ストリップ
を効率良く加温し、予熱炉出側の温度を高くし、かつス
トリップ長手方向に対して均一に加熱する連続焼鈍設備
の予備加熱方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preheating method for preheating a metal strip to be annealed by utilizing the sensible heat of exhaust gas from a continuous annealing facility, and more particularly, to a preheating furnace using a heat exchange facility having a heat storage device. The present invention relates to a preheating method for a continuous annealing facility that efficiently heats a passing metal strip, increases the temperature on the exit side of a preheating furnace, and uniformly heats the strip in the longitudinal direction.

【0002】[0002]

【従来の技術】金属ストリップの連続焼鈍設備において
は、加熱炉の負荷を下げ、燃料原単位やラジアントチュ
ーブの寿命延長や加熱炉設備効率の向上を目的に、金属
ストリップを加熱炉に導く前に予熱を行って、ある程度
板温を高めることが行われている。例えば従来から、加
熱炉の加熱に用いられた燃焼排ガスに含まれる廃熱を利
用し、この排ガス顕熱を熱交換器により前工程である予
熱炉の雰囲気ガスへ熱交換して回収し、これにより加熱
された雰囲気ガスを予熱炉内の金属ストリップ板面に向
け加圧して吹きつける方法が一般的に知られている。こ
の方法は、省エネルギーの観点からも有効である。
2. Description of the Related Art In continuous annealing equipment for metal strips, before the metal strip is introduced into the heating furnace for the purpose of lowering the load on the heating furnace, extending the life of the fuel consumption unit and the radiant tube, and improving the efficiency of the heating furnace equipment. Preheating is performed to increase the sheet temperature to some extent. For example, conventionally, waste heat contained in the combustion exhaust gas used for heating the heating furnace has been used, and the sensible heat of the exhaust gas has been exchanged by a heat exchanger into an atmosphere gas of a preheating furnace, which is a pre-process, and collected. There is generally known a method in which an atmospheric gas heated by a pressure is blown toward the surface of a metal strip plate in a preheating furnace under pressure. This method is also effective from the viewpoint of energy saving.

【0003】このような金属ストリップの予備加熱方法
においては、予熱炉を循環する雰囲気ガスに、加熱炉の
燃焼排ガスに含まれる熱量を効率良く享受させるため
に、まず、熱交換器の蓄熱体に燃焼排ガスを通入してこ
の蓄熱体を加熱し、蓄熱体が十分に加熱されたら、この
蓄熱体に予熱炉内を循環する雰囲気ガスを通入して、こ
の雰囲気ガスを加温するという、蓄熱式予熱方法が提案
されている。
In such a method for preheating a metal strip, in order to make the atmosphere gas circulating in the preheating furnace efficiently receive the heat contained in the combustion exhaust gas of the heating furnace, first, the heat storage body of the heat exchanger is used. Heating the regenerator by passing the combustion exhaust gas, and when the regenerator is sufficiently heated, passing the atmosphere gas circulating in the preheating furnace into the regenerator to heat the atmosphere gas. A regenerative preheating method has been proposed.

【0004】[0004]

【発明が解決しようとする課題】更に、この蓄熱式予熱
方法に関連して、蓄熱体の3個以上を一組として、各組
においては、それぞれの蓄熱体の、蓄熱帯を加温する蓄
熱過程及び蓄熱装置に蓄熱された熱を循環雰囲気ガスに
放出する放熱過程を、切替え弁の動作により時期をずら
して順次に行うようにして、燃焼排ガス・循環雰囲気ガ
スの流動をいずれも滞らせることなく操業できるように
した方法を、発明者らは、先に開発している。
Further, in connection with this regenerative preheating method, three or more regenerators are set as one set, and in each set, the regenerators for heating the regenerating tropics of the respective regenerators are provided. The process and the heat release process of releasing the heat stored in the heat storage device to the circulating atmosphere gas are sequentially performed with the timing shifted by the operation of the switching valve, so that the flow of both the combustion exhaust gas and the circulating atmosphere gas is delayed. The inventors have previously developed a method that allows operation without any problems.

【0005】上記した、蓄熱体の3個以上を一組とし
て、各組においては、それぞれの蓄熱体の、蓄熱帯を加
温する蓄熱過程及び蓄熱装置に蓄熱された熱を循環雰囲
気ガスに放出する放熱過程を、切替え弁の動作により時
期をずらして順次に行う方法によれば、金属ストリップ
に吹きつける熱量を平均化することができるので有利で
ある。但し、各蓄熱体の蓄熱−放熱過程の切り替え時や
放熱−蓄熱過程の切り替え時には循環する雰囲気ガスの
流量及び変動が生じることから、金属ストリップに吹き
つける熱量が変動し、そのため予熱炉出側板温に周期的
な変動を生じる場合があり、この点で改善の余地が残さ
れていた。
[0005] As described above, three or more of the heat storage elements are taken as a set, and in each set, the heat storage process of heating the heat storage area of each heat storage element and the heat stored in the heat storage device are released to the circulating atmosphere gas. According to a method in which the heat radiation process is sequentially performed at different times by the operation of the switching valve, the amount of heat blown to the metal strip can be averaged, which is advantageous. However, at the time of switching between the heat storage and heat dissipation processes or at the time of switching between the heat dissipation and heat storage processes, the flow rate and fluctuation of the circulating atmosphere gas occur, so that the amount of heat blown to the metal strip fluctuates. In some cases, there is room for improvement in this respect.

【0006】この発明は、上記の問題を有利に解決する
もので、蓄熱式予熱法における蓄熱体の切り替え時に生
じる金属ストリップの板温変動を最小限とし、これによ
り高効率の熱交換を保持しつつ、安定した品質の金属ス
トリップを得ることのできる連続焼鈍設備の予備加熱方
法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problem, and minimizes fluctuations in the sheet temperature of a metal strip caused when a heat storage element is switched in a heat storage type preheating method, thereby maintaining high-efficiency heat exchange. Another object of the present invention is to propose a preheating method for continuous annealing equipment capable of obtaining a metal strip of stable quality.

【0007】[0007]

【課題を解決するための手段】この発明は、連続焼鈍設
備における焼鈍炉より生じる燃焼排ガスを蓄熱式熱交換
装置に導いてこの排ガス顕熱を蓄積し、次いで該炉で使
用する炉内雰囲気ガスをこの蓄熱式熱交換装置に導いて
昇温させてから予備加熱炉に導き、この炉内を通板させ
る金属ストリップ表面に吹きつけて予備加熱する方法で
あって、上記蓄熱式熱交換装置は複数の蓄熱体を1組と
して、各蓄熱体の蓄熱過程,放熱過程の切替えを順次に
行うとともに、この各蓄熱体の蓄熱過程,放熱過程の切
替え時には、金属ストリップに吹きつける熱量の変動を
補償する吹きつけ圧力制御を行うことを特徴とする連続
焼鈍設備の予備加熱方法である。ここに、炉内雰囲気ガ
スの温度と吹きつけ圧力を測定し、各蓄熱体の蓄熱過
程、放熱過程への切替え時には、この炉内雰囲気ガスの
温度変化量と吹きつけ圧力から演算した循環ファンの回
転数制御を行って吹きつけ圧力を補正することが好まし
く、また、この発明の方法は、焼鈍炉の予熱帯での予備
加熱に適用した場合に有効である。
SUMMARY OF THE INVENTION According to the present invention, a combustion exhaust gas generated from an annealing furnace in a continuous annealing facility is led to a regenerative heat exchange device to accumulate the sensible heat of the exhaust gas, and then a furnace atmosphere gas used in the furnace is used. Is introduced into the regenerative heat exchange device to raise the temperature, then led to a preheating furnace, and sprayed on the surface of the metal strip to be passed through the furnace to perform preheating, wherein the regenerative heat exchange device is A plurality of heat storage elements are set as a set, and the heat storage process and the heat radiation process of each heat storage material are sequentially switched, and at the time of switching between the heat storage process and the heat radiation process of each heat storage material, the fluctuation of the amount of heat blown to the metal strip is compensated. This is a method for preheating the continuous annealing equipment, characterized by performing spray pressure control. Here, the temperature and blowing pressure of the atmosphere gas in the furnace were measured, and when switching to the heat storage process and the heat radiation process of each heat storage body, the circulation fan of the circulation fan calculated from the temperature change amount of the furnace atmosphere gas and the blowing pressure was used. It is preferable to control the rotation speed to correct the blowing pressure, and the method of the present invention is effective when applied to preheating in a pre-tropical zone of an annealing furnace.

【0008】[0008]

【発明の実施の形態】この発明の連続焼鈍設備の予備加
熱方法においては、通常は予熱炉出側における金属スト
リップの板温に基づいたフィードバック制御により、炉
内雰囲気ガスの吹きつけるための循環ファンの回転数制
御を行うことを基調としながらも、各蓄熱体の蓄熱過
程、放熱過程の切替え時には、この蓄熱体を経て加熱、
加圧された循環ガスを再び予熱炉を通板中の鋼板ストリ
ップに吹きつける直前の、該ガスの圧力及び温度を測定
することにより、切り替え時の熱量変動を補償するよう
に吹き込み圧力であるチャンバー圧力をシフトさせるこ
とで、予熱炉出側板温の変動を小さくしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a method for preheating a continuous annealing equipment according to the present invention, a circulation fan for blowing atmospheric gas in a furnace is usually controlled by feedback control based on a sheet temperature of a metal strip at a preheating furnace exit side. While performing the control of the number of revolutions, the heat storage process of each heat storage body, when switching the heat dissipation process, heating through this heat storage body,
Immediately before spraying the pressurized circulating gas onto the steel strip being passed through the preheating furnace again, the pressure and temperature of the gas are measured so that the chamber is at a blowing pressure so as to compensate for fluctuations in the calorific value at the time of switching. By shifting the pressure, the fluctuation of the sheet temperature on the exit side of the preheating furnace is reduced.

【0009】かくして、この発明によれば、蓄熱体利用
の熱交換器による蓄熱過程の切替えにおいて変動する循
環ガスの流量と熱量の変動を考慮して、チャンバー圧力
を変更して、予熱炉出側の板温変動を小さくすることに
より、加熱炉における鋼板ストリップの進入温度の変動
及び加熱炉出側の板温変動も小さくなり、予熱炉の熱交
換効率を高めながら安定した品質の鋼板を製造すること
がで可能になる。
Thus, according to the present invention, the chamber pressure is changed in consideration of the fluctuation of the flow rate and heat quantity of the circulating gas which fluctuates in the switching of the heat storage process by the heat exchanger utilizing the heat storage body, and the preheating furnace exit side is changed. By reducing the sheet temperature fluctuations in the heating furnace, the fluctuations in the entry temperature of the steel strip in the heating furnace and the fluctuations in the sheet temperature on the exit side of the heating furnace are also reduced, thereby producing a stable quality steel sheet while increasing the heat exchange efficiency of the preheating furnace. It becomes possible with that.

【0010】[0010]

【実施例】以下、図面を用いてこの発明の予備加熱方法
をより具体的に説明する。図1に、この発明の方法を適
用する予熱炉の熱交換システムの一例の模式図を示す。
図中1は金属ストリップの加熱炉であり、この加熱炉1
には金属ストリップを昇温させる加熱手段としての複数
のラジアントチューブ群2を配置し、このラジアントチ
ューブ内で燃料を燃焼させることで、加熱炉内を燃焼排
ガスで汚染することなく輻射熱により金属ストリップを
加熱する。このラジアントチューブ2を経た燃焼排ガス
を排ガス配管3で集合させて図中4で示す蓄熱式熱交換
装置に誘導して排ガス顕熱を蓄熱させる。この蓄熱式熱
交換装置については、複数個を配設することができる。
そして、この熱交換装置4を出た排ガスを排ガスファン
10により吸引し、排ガス配管3′、煙突11を経由し
て適切な処理の後に大気に放出させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preheating method of the present invention will be described more specifically with reference to the drawings. FIG. 1 shows a schematic diagram of an example of a heat exchange system of a preheating furnace to which the method of the present invention is applied.
In the figure, reference numeral 1 denotes a heating furnace for a metal strip.
A plurality of radiant tube groups 2 as heating means for raising the temperature of the metal strip are arranged, and by burning the fuel in the radiant tube, the metal strip is radiated by the radiant heat without contaminating the inside of the heating furnace with the combustion exhaust gas. Heat. The combustion exhaust gas passing through the radiant tube 2 is collected in an exhaust gas pipe 3 and guided to a regenerative heat exchange device indicated by 4 in the figure to store sensible heat of the exhaust gas. A plurality of heat storage type heat exchange devices can be provided.
Then, the exhaust gas that has exited the heat exchange device 4 is sucked by an exhaust gas fan 10 and discharged to the atmosphere after appropriate treatment via an exhaust gas pipe 3 ′ and a chimney 11.

【0011】一方、図中5は加熱炉1よりもラインの上
流側に設けた予熱炉であり、この予熱炉5中の炉内雰囲
気を循環ファン6により吸引し、循環ガス配管7を経由
して蓄熱式熱交換装置4に通過させる。かくして熱交換
装置4に蓄積された排ガス顕熱を受け取った循環ガス
を、予熱炉5内のチャンバ8に導くとともに、前記循環
ファン6により加圧して予熱炉5内を通過する金属スト
リップ9に吹きつける。
On the other hand, in the figure, reference numeral 5 denotes a preheating furnace provided upstream of the heating furnace 1 in the line. The atmosphere in the furnace in the preheating furnace 5 is sucked by a circulation fan 6 and passed through a circulation gas pipe 7. Through the regenerative heat exchanger 4. The circulating gas that has received the sensible heat of the exhaust gas thus accumulated in the heat exchanger 4 is guided to the chamber 8 in the preheating furnace 5 and blown onto the metal strip 9 passing through the preheating furnace 5 by being pressurized by the circulating fan 6. Put on.

【0012】このような、排ガス顕熱を利用した予熱炉
における金属ストリップ昇温のシステムそのものは従来
どおりであり、高温の雰囲気ガスによる対流熱伝達によ
って加熱炉出側での金属ストリップを急速に昇温させる
ことができ、結果的にそれまで加熱炉で要求されていた
設定温度を低くでき、ひいてはラジアントチューブの高
温寿命を向上させることが可能となる。かかる予熱方法
においては、一組の熱交換システムにつき蓄熱体を3個
以上設け、蓄熱体への蓄熱段階、及び循環雰囲気ガスへ
の放熱段階の時期を蓄熱体のそれぞれで順次にずらすこ
とにより、予熱炉において金属ストリップに吹きつける
雰囲気ガス温度を、金属ストリップの送給方向に平均化
しようとすることも行われている。
Such a system for raising the temperature of the metal strip in the preheating furnace utilizing the sensible heat of the exhaust gas is the same as the conventional one, and the metal strip on the exit side of the heating furnace is rapidly raised by convective heat transfer by a high-temperature atmosphere gas. The radiant tube can be heated, and as a result, the set temperature required in the heating furnace can be reduced, and the high-temperature life of the radiant tube can be improved. In such a preheating method, three or more heat storage bodies are provided for one set of heat exchange systems, and the heat storage stage for the heat storage body and the heat release stage for the circulation atmosphere gas are sequentially shifted in each of the heat storage bodies. Attempts have been made to average the temperature of the atmosphere gas blown to the metal strip in the preheating furnace in the direction of feeding the metal strip.

【0013】すなわち図2に、蓄熱体を3個使用した場
合の蓄熱式熱交換装置の配管系統の要部を示すように、
3台の蓄熱体のうち少なくとも1台は加熱炉からの燃焼
排ガス顕熱で昇温(蓄熱状態)され、他の蓄熱体のいず
れか少なくとも1台は保熱された蓄熱体に予熱炉の循環
ガスが送給され、蓄熱体の熱を享受した循環ガスを予熱
炉に吹き込んでいる(放熱状態)。そして、その状態を
保ちながら、もう一台が放熱状態から蓄熱状態へ又は蓄
熱状態から放熱状態へと切り換えられるといった過程を
循環しながら行う。
That is, FIG. 2 shows a main part of a piping system of a regenerative heat exchanger when three heat storage bodies are used.
At least one of the three regenerators is heated (heat storage state) by the sensible heat of the combustion exhaust gas from the heating furnace, and at least one of the other regenerators is circulated through the preheated furnace to the retained regenerator. The gas is supplied, and the circulating gas having enjoyed the heat of the heat storage body is blown into the preheating furnace (radiation state). Then, while maintaining that state, the process is performed while circulating a process in which another unit is switched from the heat radiation state to the heat storage state or from the heat storage state to the heat radiation state.

【0014】これらの制御は、図2に示した配管系統に
おいては、切替え調整弁の開閉によって行う。すなわ
ち、図中の図中A系の蓄熱体で代表させて蓄熱放熱サイ
クルの制御を説明すると、まず蓄熱体に蓄熱させるに
は、排ガス吸入弁13a及び排ガス排出弁14aを開
け、循環ガス吸入弁15a及び循環ガス排出弁16aを
閉じた状態とする。これにより排ガスファン10を作動
させて吸引することにより加熱炉からの高温排ガスを蓄
熱体12aに送給して排ガス中の熱を回収して蓄熱す
る。次に蓄熱過程から放熱過程への切替えの際は、排ガ
ス吸入弁13aを閉じ、循環ガス吸入弁15aを開けて
予熱炉5の循環ガスを一時的に蓄熱体12aに導き、蓄
熱体中の排ガスを追い出す。次いで、排ガス排出弁14
aを閉じるとともに循環ガス吸入弁16aを開けて 循
環ファン6により予熱炉内の循環ガスを蓄熱体12aに
導いて蓄熱体12aの熱を回収し、予熱炉5内のチャン
バ8に供給するのである。更に、放熱状態から蓄熱状態
への切替えの際は、循環ガス吸入弁15a及び循環ガス
排出弁16aを閉じ、排ガス吸入弁13a及び排ガス排
出弁14aを開ける。以上のような切替え調節弁の開閉
動作を繰り返すことで各蓄熱体における蓄熱−放熱サイ
クル制御を行う。他の蓄熱体の蓄熱−放熱サイクル制御
も同じである。
In the piping system shown in FIG. 2, these controls are performed by opening and closing a switching adjustment valve. That is, the control of the heat storage / radiation cycle will be described by typifying the heat storage body of the A system in the figure. First, in order to store heat in the heat storage body, the exhaust gas intake valve 13a and the exhaust gas discharge valve 14a are opened, and the circulation gas intake valve is opened. 15a and the circulation gas discharge valve 16a are closed. Thus, the exhaust gas fan 10 is operated and sucked to supply the high-temperature exhaust gas from the heating furnace to the heat storage unit 12a to collect and store heat in the exhaust gas. Next, when switching from the heat storage process to the heat release process, the exhaust gas suction valve 13a is closed, the circulating gas suction valve 15a is opened, and the circulating gas of the preheating furnace 5 is temporarily led to the heat storage body 12a. Drive out. Next, the exhaust gas discharge valve 14
Then, the circulating gas suction valve 16a is opened and the circulating gas in the preheating furnace is guided to the regenerator 12a by the circulating fan 6 to recover the heat of the regenerator 12a and supplied to the chamber 8 in the preheating furnace 5. . Further, when switching from the heat radiation state to the heat storage state, the circulation gas intake valve 15a and the circulation gas discharge valve 16a are closed, and the exhaust gas intake valve 13a and the exhaust gas discharge valve 14a are opened. By repeating the opening and closing operation of the switching control valve as described above, the heat storage-radiation cycle control in each heat storage body is performed. The same applies to the heat storage-radiation cycle control of other heat storage bodies.

【0015】そして、各蓄熱体A,B及びCにおける切
替え調整弁を切替えるタイミングを互いに一致しないよ
うにずらす。これにより金属ストリップに吹きつける温
度が平均化され、金属ストリップの温度バラツキを抑制
することが可能となる。しかし、この放熱と蓄熱の状態
が切り替わるときには循環ガスの流量と熱量が顕著に変
動することから、かかる方法ではこの切替え時に対応す
る吹きつけ時に金属ストリップの温度のバラツキが生じ
ていたのである。
The switching timings of the switching adjustment valves in the heat storage units A, B and C are shifted so that they do not coincide with each other. Thereby, the temperature applied to the metal strip is averaged, and it is possible to suppress the temperature variation of the metal strip. However, when the state of the heat release and the state of heat storage are switched, the flow rate and the amount of heat of the circulating gas fluctuate remarkably. Therefore, in this method, the temperature of the metal strip varies at the time of spraying corresponding to the switching.

【0016】そこで、この発明では、各蓄熱体の蓄熱過
程,放熱過程の切替え時には、金属ストリップに吹きつ
ける熱量の変動を補償する吹きつけ圧力制御を行って予
熱炉出側での板温の変動を小さくするのである。
Therefore, according to the present invention, when switching between the heat storage process and the heat radiation process of each heat storage body, the blowing pressure control for compensating the fluctuation of the amount of heat blown to the metal strip is performed to change the sheet temperature on the exit side of the preheating furnace. Is to make it smaller.

【0017】図3に、かかる制御を行うための計装フロ
ーの構成の一例を模式図で示す。図中、蓄熱式熱交換装
置4,予熱炉5,循環ファン6,循環ガス配管7,チャ
ンバー8,金属ストリップ9は図1と同じものである。
かかる計装フローにおいて、21を含む複数のロールに
よって予熱炉から引き出された金属ストリップ9の表面
温度を、この予熱炉出側に設けた板温計22により逐次
測定する。その一方、循環ファン6で予熱炉5内のチャ
ンバー8に押し込まれた循環ガスの圧力を、このチャン
バーに設けた圧力計23で測定し、また、蓄熱式熱交換
装置4を経て加熱された循環ガス温度を、チャンバー8
に吹き込まれる直前に配設した温度計24によって測定
する。これらの予熱炉出側の金属ストリップ表面温度、
チャンバー内圧力、循環ガス温度データを基に、各蓄熱
体の蓄熱過程,放熱過程の切替え時における循環ガス温
度の変動にともなう熱量変化を打ち消すようなチャンバ
ー圧力値を演算し、循環ファン回転数を制御する。
FIG. 3 is a schematic diagram showing an example of the configuration of an instrumentation flow for performing such control. In the drawing, a regenerative heat exchange device 4, a preheating furnace 5, a circulation fan 6, a circulation gas pipe 7, a chamber 8, and a metal strip 9 are the same as those in FIG.
In such an instrumentation flow, the surface temperature of the metal strip 9 drawn out of the preheating furnace by a plurality of rolls including 21 is sequentially measured by a sheet thermometer 22 provided on the exit side of the preheating furnace. On the other hand, the pressure of the circulating gas pushed into the chamber 8 in the preheating furnace 5 by the circulating fan 6 is measured by a pressure gauge 23 provided in the chamber, and the circulating gas heated via the regenerative heat exchanger 4 is heated. Gas temperature in chamber 8
The temperature is measured by a thermometer 24 disposed immediately before the air is blown into the air. Metal strip surface temperature at the exit of these preheating furnaces,
Based on chamber pressure and circulating gas temperature data, calculate the chamber pressure value to cancel the change in the amount of heat due to fluctuations in the circulating gas temperature when switching between the heat storage process and the heat radiation process of each heat storage unit, and calculate the circulation fan speed. Control.

【0018】このような、この発明の方法を適用するこ
とによる有利な効果を、予熱炉出側の金属ストリップの
表面温度の変動状況を、従来法との対比により明らかに
する。図4に通常の板温制御のみの制御を継続した場合
による予熱炉出側の板温のタイムチャートを、循環ガス
温度及び循環ファン回転数のタイムチャートと併せて示
す。同図において、例えば図2で示すA系の蓄熱体が蓄
熱状態から放熱状態に切り替わった瞬間は、循環ガスの
流量も熱量も豊富な状態である。そのため、通常行われ
ている予熱炉出側板温からのフィードバック制御では、
一旦板温が急激に上昇した後に循環ファンの回転数を下
げることで板温を目標に合わせようとする。次に別の系
(C系)が放熱状態から蓄熱状態に切り替わった瞬間
は、弱に循環ガスの流量及び熱量が下がり、予熱炉出側
の板温が低下する。これらの切替え時の板温変動は、フ
ィードバック制御では十分に追随できなかったのであ
る。なお、A系の蓄熱体が蓄熱状態から放熱状態に切り
替わってから、C系が放熱状態から蓄熱状態に切り替わ
るまでの間の時期(X)部においては、徐々に蓄熱体の
熱量が失われるため、循環ファンの回転数は上昇してい
くが、この間は、板温フィードバックの追従が可能であ
る。
The advantageous effects obtained by applying the method of the present invention will be clarified by comparing the state of fluctuation of the surface temperature of the metal strip on the exit side of the preheating furnace with the conventional method. FIG. 4 shows a time chart of the sheet temperature on the exit side of the preheating furnace in a case where the control of only the normal sheet temperature control is continued, together with a time chart of the circulation gas temperature and the circulation fan rotation speed. In the same figure, for example, at the moment when the A-system heat storage unit shown in FIG. 2 is switched from the heat storage state to the heat release state, the circulating gas flow rate and the amount of heat are abundant. Therefore, in the feedback control usually performed from the preheating furnace exit side sheet temperature,
Once the plate temperature has risen rapidly, the number of revolutions of the circulating fan is reduced to try to match the plate temperature to the target. Next, at the moment when another system (system C) switches from the heat radiation state to the heat storage state, the flow rate and heat amount of the circulating gas decrease slightly, and the sheet temperature on the exit side of the preheating furnace decreases. These sheet temperature fluctuations at the time of switching could not be sufficiently followed by the feedback control. In addition, in the period (X) between the time when the heat storage body of the A system switches from the heat storage state to the heat dissipation state and the time when the system C switches from the heat dissipation state to the heat storage state, the heat amount of the heat storage body is gradually lost. The rotation speed of the circulation fan increases, but during this time, the sheet temperature feedback can be followed.

【0019】そこで、この発明においては、蓄熱から放
熱へ、放熱から蓄熱への切替え過程の瞬間において、板
温フィードバック制御を止め、チャンバー圧力を以下の
ように修正することで予熱炉出側板温を補償する。
Therefore, in the present invention, at the moment of the switching process from heat storage to heat dissipation and from heat dissipation to heat storage, the sheet temperature feedback control is stopped and the chamber pressure is corrected as follows to reduce the sheet temperature on the exit side of the preheating furnace. Compensate.

【0020】ガスジェットによる熱伝達のモデルは、一
般的に次の式で示される。
A model of heat transfer by a gas jet is generally expressed by the following equation.

【数1】 (Equation 1)

【0021】したがって、この発明では、蓄熱体の蓄熱
−放熱又は放熱−蓄熱への切替え直前に圧力計23と温度
計24で測定した循環ガス圧力P1 と循環ガス温度Tg1
記録しておく。次に、蓄熱体の蓄熱過程,放熱過程の切
替え時には、蓄熱式熱交換装置の切替え信号により、切
替え調節弁の開閉を行うと同時に板温フィードバック制
御による循環ファンの回転数制御を停止する。
[0021] Thus, in the present invention, thermal storage of the heat storage body - is recorded and the circulation gas pressure P 1 measured by the pressure gauge 23 and thermometer 24 immediately before switching to the heat storage circulation gas temperature Tg 1 - heat radiation or heat block . Next, at the time of switching between the heat storage process and the heat release process of the heat storage body, the switching control valve is opened and closed by the switching signal of the heat storage type heat exchange device, and at the same time, the rotation speed control of the circulation fan by the plate temperature feedback control is stopped.

【0022】そして、かかる蓄熱体の蓄熱過程,放熱過
程の切替えにより循環ガスの温度がTg1からTg2(Tg2
=Tg1+ΔTg )に変わったものとすると、上記(1) 式
より循環ガスの温度が変わった前後でもTi 及びTo が
同じになるように熱伝達率を変化させたいところから、
The temperature of the circulating gas is changed from Tg 1 to Tg 2 (Tg 2
= Tg 1 + ΔTg). From the above equation (1), we want to change the heat transfer coefficient so that Ti and To become the same before and after the temperature of the circulating gas changes.

【数2】 となるだけのa2 を導くことになる。(Equation 2) It will lead to a 2 of only becomes.

【0023】一方、チャンバー圧力Pは一般に、 P=ka1/2 …(3) (ここに、k:比例定数)で示されるから、この(2) 、
(3) 式より、 P2 =P1(a2 /a1)1/2 =P1 1/2 ……(4) の関係が得られる。
On the other hand, the chamber pressure P is generally expressed by P = ka 1/2 (3) (where k is a proportional constant).
From the equation (3), the following relationship is obtained: P 2 = P 1 (a 2 / a 1 ) 1/2 = P 1 Q 1/2 .

【0024】この(4) 式に基づいて、制御に必要な圧力
値P2 を演算し、制御信号を循環ファンの調節端に入力
して回転数を変更し、一定期間チャンバー圧力をP1
らP 2 にシフトする圧力制御を行う。この方法では蓄熱
体切替え直前のチャンバー圧力と比較するため実際の熱
伝達率は計算不要であり、学習係数も不要である。一定
期間終了後は再びフィードバック制御による板温制御を
実行する。
Based on the equation (4), the pressure required for control
Value PTwoAnd input the control signal to the adjustment end of the circulation fan
To change the number of revolutions and increase the chamber pressure to P for a certain period.1Or
R TwoPressure control to shift to. In this way heat storage
Actual heat to compare with chamber pressure just before body switch
The transmission rate does not need to be calculated, and no learning coefficient is required. Constant
After the period is over, control the sheet temperature by feedback control again.
Execute.

【0025】かかるこの発明の圧力制御過程を含めた、
循環ファン回転数制御のタイムチャートを、予熱炉出側
板温及び循環ガス温度の経時変化と併せて図5に示す。
同図から、この発明に従う予熱方法は、図4に示した板
温フィードバック制御のみの場合と比べて、予熱炉出側
の板温変動が効果的に抑制されていることが明らかであ
る。以上、この発明を図面に基づいて説明したが、この
発明の連続焼鈍設備の予備加熱方法は、この図示した例
に限定されるものではない。例えば、連続焼鈍炉の均熱
帯に適用することができる。また、蓄熱過程,放熱過程
への切替え手段は、バルブに限らず、例えばロータリー
式切替え手段であってよい。
Including such a pressure control process of the present invention,
FIG. 5 shows a time chart of the circulation fan rotation speed control together with the changes over time of the preheating furnace outlet plate temperature and the circulation gas temperature.
It is apparent from the figure that the preheating method according to the present invention effectively suppresses the sheet temperature fluctuation on the exit side of the preheating furnace as compared with the case of only the sheet temperature feedback control shown in FIG. As described above, the present invention has been described based on the drawings. However, the method for preheating the continuous annealing equipment of the present invention is not limited to the illustrated example. For example, the present invention can be applied to a soaking zone in a continuous annealing furnace. The means for switching between the heat storage process and the heat release process is not limited to a valve, and may be, for example, a rotary switching device.

【0026】[0026]

【発明の効果】この発明においては、排ガス顕熱を利用
の熱交換装置として、複数の蓄熱体を1式とすること
で、排ガス及び循環ガスのいずれの流れをも阻害するこ
となく、蓄熱と放熱の切替えを実現することができる蓄
熱式熱交換装置を利用する予熱炉設備において、切替え
弁の切替え時に発生する循環ガスの受け取る熱量・流量
の変化に起因する、予熱炉を通過中の金属ストリップの
板温の変化を、循環ファンの回転数を強制的に補正する
ことで極小化することができるようになった。
According to the present invention, as a heat exchange device utilizing sensible heat of exhaust gas, a plurality of heat accumulators are provided as a single unit, so that the flow of heat is prevented without obstructing any flow of the exhaust gas and the circulating gas. In preheating furnace equipment that uses a regenerative heat exchange device that can switch heat radiation, metal strips passing through the preheating furnace due to changes in the amount of heat and flow of circulating gas generated when switching the switching valve Can be minimized by forcibly correcting the rotation speed of the circulation fan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法を適用する予熱炉の熱交換シス
テムの一例の模式図である。
FIG. 1 is a schematic diagram of an example of a heat exchange system of a preheating furnace to which the method of the present invention is applied.

【図2】蓄熱式熱交換装置の配管系統の一例を示す図FIG. 2 is a diagram showing an example of a piping system of a regenerative heat exchange device.

【図3】この発明の方法を適用するための計装フロー構
成の一例を示す図である。
FIG. 3 is a diagram showing an example of an instrumentation flow configuration for applying the method of the present invention.

【図4】板温制御のみの制御を継続した場合の予熱炉出
側板温変化を示す図である。
FIG. 4 is a diagram showing a change in sheet temperature on the exit side of a preheating furnace when control of only sheet temperature control is continued.

【図5】この発明の方法を適用した場合の予熱炉出側板
温変化を示す図である。
FIG. 5 is a diagram showing a change in sheet temperature on the exit side of a preheating furnace when the method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 ラジアントチューブ群 3 排ガス配管 4 蓄熱式加熱装置 5 予熱炉 6 循環ファン 7 循環ガス配管 8 チャンバ 9 金属ストリップ 10 排ガスファン Reference Signs List 1 heating furnace 2 radiant tube group 3 exhaust gas pipe 4 regenerative heating device 5 preheating furnace 6 circulation fan 7 circulation gas pipe 8 chamber 9 metal strip 10 exhaust gas fan

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続焼鈍設備における焼鈍炉より生じる
燃焼排ガスを蓄熱式熱交換装置に導いてこの排ガス顕熱
を蓄積し、次いで該炉で使用する炉内雰囲気ガスをこの
蓄熱式熱交換装置に導いて昇温させてから焼鈍炉に導
き、この炉内を通板させる金属ストリップ表面に吹きつ
けて予備加熱する方法であって、 上記蓄熱式熱交換装置は複数の蓄熱体を1組として、各
蓄熱体の蓄熱過程,放熱過程の切替えを順次に行うとと
もに、この各蓄熱体の蓄熱過程,放熱過程の切替え時に
は、金属ストリップに吹きつける熱量の変動を補償する
吹きつけ圧力制御を行うことを特徴とする連続焼鈍設備
の予備加熱方法。
1. An exhaust gas generated from an annealing furnace in a continuous annealing facility is guided to a regenerative heat exchange device to accumulate the sensible heat of the exhaust gas, and then an atmosphere gas in the furnace used in the furnace is supplied to the regenerative heat exchange device. It is a method of preheating by conducting to the annealing furnace after guiding and raising the temperature and spraying the surface of the metal strip through which the inside of the furnace is pre-heated, wherein the heat storage type heat exchange device includes a plurality of heat storage bodies as one set. The switching of the heat storage process and the heat radiation process of each heat storage element is performed sequentially, and the blowing pressure control for compensating the fluctuation of the amount of heat blown to the metal strip is performed at the time of the switching of the heat storage process and the heat radiation process of each heat storage element. Characteristic preheating method for continuous annealing equipment.
【請求項2】 炉内雰囲気ガスの温度と吹きつけ圧力を
測定し、各蓄熱体の蓄熱過程、放熱過程への切替え時に
は、この炉内雰囲気ガスの温度変化量と吹きつけ圧力か
ら演算した循環ファンの回転数制御を行って吹きつけ圧
力を補正することを特徴とする請求項1記載の連続焼鈍
設備の予備加熱方法。
2. The temperature and the blowing pressure of the atmosphere gas in the furnace are measured, and when switching between the heat storage process and the heat radiation process of each heat storage element, a circulation calculated from the temperature change amount of the furnace atmosphere gas and the blowing pressure. 2. The preheating method for continuous annealing equipment according to claim 1, wherein the blowing pressure is corrected by controlling the rotation speed of the fan.
【請求項3】 焼鈍炉の予熱帯での予備加熱に適用した
ことを特徴とする請求項1又は2記載の連続焼鈍設備の
予備加熱方法。
3. The method for preheating a continuous annealing facility according to claim 1, wherein the method is applied to preheating in a pre-tropical zone of an annealing furnace.
JP8350103A 1996-12-27 1996-12-27 Preheating method for continuous annealing equipment Pending JPH10195545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350103A JPH10195545A (en) 1996-12-27 1996-12-27 Preheating method for continuous annealing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350103A JPH10195545A (en) 1996-12-27 1996-12-27 Preheating method for continuous annealing equipment

Publications (1)

Publication Number Publication Date
JPH10195545A true JPH10195545A (en) 1998-07-28

Family

ID=18408259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350103A Pending JPH10195545A (en) 1996-12-27 1996-12-27 Preheating method for continuous annealing equipment

Country Status (1)

Country Link
JP (1) JPH10195545A (en)

Similar Documents

Publication Publication Date Title
CA1246338A (en) Method and apparatus for heating a strip of metallic material in a continuous annealing furnace
JPS5924166B2 (en) Method for controlling plate temperature during continuous heating of strip
RU73665U1 (en) DEVICE FOR HEATING GLASS PANELS
FI86407B (en) FOERFARANDE OCH ANORDNING FOER ATT UTJAEMNA TEMPERATURPROFILEN I GLASSKIVOR I EN MED VALSAR FOERSEDD UGN I EN HORISONTALHAERDNINGSANORDNING.
CN109055713A (en) A kind of double-regenerative heating furnace board briquette and method for controlling furnace temperature
US6007761A (en) Heat treating furnace for a continously supplied metal strip
JPH10195545A (en) Preheating method for continuous annealing equipment
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
US4877013A (en) Hot blast stove installation
JP4110584B2 (en) Continuous heat treatment equipment for metal strip
JP3909549B2 (en) Temperature control method for heat exchanger and heat exchanger
JP3328456B2 (en) Operating method of heating furnace
JPH0987750A (en) Method and device for heating strip
JP3767029B2 (en) Continuous heat treatment equipment for metal strip
JPH0390521A (en) Method for float-supporting metal strip
JPH11323432A (en) Heating furnace device
JPH05239558A (en) Traveling furnace hearth type continuous heat treatment apparatus
JP2001131633A (en) Method for regulating heating temperature of atmospheric gas and heating temperature regulator
JPS6345454B2 (en)
JP3050674B2 (en) Temperature control method for continuous furnace
JPS6411693B2 (en)
JPS5831371B2 (en) How to operate a continuous heat treatment furnace
JPS61207504A (en) Method for controlling combustion in hot stove
JPS5812325B2 (en) Control method for continuous heating furnace