JPS5831371B2 - How to operate a continuous heat treatment furnace - Google Patents

How to operate a continuous heat treatment furnace

Info

Publication number
JPS5831371B2
JPS5831371B2 JP4878777A JP4878777A JPS5831371B2 JP S5831371 B2 JPS5831371 B2 JP S5831371B2 JP 4878777 A JP4878777 A JP 4878777A JP 4878777 A JP4878777 A JP 4878777A JP S5831371 B2 JPS5831371 B2 JP S5831371B2
Authority
JP
Japan
Prior art keywords
furnace
steel plate
temperature
heat treatment
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4878777A
Other languages
Japanese (ja)
Other versions
JPS53133513A (en
Inventor
典男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4878777A priority Critical patent/JPS5831371B2/en
Publication of JPS53133513A publication Critical patent/JPS53133513A/en
Publication of JPS5831371B2 publication Critical patent/JPS5831371B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、急速加熱炉長部と燃焼加熱炉長部とを備えた
連続式熱処理炉の操業方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a continuous heat treatment furnace equipped with a rapid heating furnace length section and a combustion heating furnace length section.

熱処理とは鋼を適当な温度に加熱したのち所要の冷却速
度で冷却し、目的の性質を与える操作であり、熱処理は
ノルマライジング、クエンチング、テンパーリングに分
類され、熱処理炉の役割は圧延製造された鋼材を所定の
温度まで再加熱することにある。
Heat treatment is an operation in which steel is heated to an appropriate temperature and then cooled at the required cooling rate to give it the desired properties.Heat treatment is classified into normalizing, quenching, and tempering, and the role of the heat treatment furnace is in rolling manufacturing. The purpose is to reheat the steel material to a predetermined temperature.

連続式熱処理炉の形式は、ラジアントチューブ内で燃料
を燃焼させて鋼材を間接的に加熱するラジアントチュー
ブ形及び燃料バーナによる燃焼ガス中で直接的に鋼材を
加熱する直火形がある。
There are two types of continuous heat treatment furnaces: the radiant tube type, which indirectly heats the steel material by burning fuel in a radiant tube, and the direct-fired type, which heats the steel material directly in combustion gas from a fuel burner.

又誘導加熱式連続熱処理炉もあるが、これは設備費が高
価であるため、誘導加熱装置或は噴流加熱装置等の急速
加熱手段を有する急速加熱炉長部と、上記ラジアントチ
ューブ或は燃料バーナー等の燃焼加熱手段を有する燃焼
加熱炉長部とからなる連続式熱処理炉が提案されている
There is also an induction heating type continuous heat treatment furnace, but since the equipment cost is expensive, it is necessary to have a rapid heating furnace length section with a rapid heating means such as an induction heating device or a jet heating device, and the radiant tube or fuel burner mentioned above. A continuous heat treatment furnace consisting of a combustion heating furnace length section having a combustion heating means has been proposed.

例えば厚板鋼板を処理対象とする従来のラジアントチュ
ーブ形成は直火形連続式熱処理炉の操業方法は、熱処理
の種類によって鋼板の要求温度が決まると上記炉の加熱
帯均熱帯の雰囲気温度を設定し、鋼板の板厚に応じて在
炉時間を求め、鋼板の炉内搬送速度を設定し、所定の鋼
板要求温度に昇温し均熱するものである。
For example, in conventional radiant tube formation for thick steel plates, the method of operating a direct-fired continuous heat treatment furnace is to determine the required temperature of the steel plate depending on the type of heat treatment, and then set the ambient temperature in the heating zone and soaking zone of the furnace. Then, the time in the furnace is determined according to the thickness of the steel plate, the conveyance speed of the steel plate in the furnace is set, and the temperature of the steel plate is raised to a predetermined required temperature and soaked.

例えば厚板鋼板の実際の熱処理操業に於ては、処理温度
(炉抽出温度)が、ノルマライジングやクエンチングの
熱処理種類によって異なり、又テンパーリングの中でも
処理後の要求材質により処理温度基準が500〜700
℃の範囲にわたっている。
For example, in actual heat treatment operations for thick steel plates, the treatment temperature (furnace extraction temperature) differs depending on the type of heat treatment such as normalizing and quenching, and even in tempering, the treatment temperature standard varies depending on the required material after treatment. ~700
over a range of °C.

更に処理される鋼板板厚は10〜100mmの範囲にわ
たっている。
Furthermore, the thickness of the steel plate to be treated ranges from 10 to 100 mm.

又コールドストリップの熱処理(焼鈍)に於ても、処理
温度が700〜950℃、鋼板厚みは0.3〜3.0m
/mの範囲にわたっている。
Also, in the heat treatment (annealing) of cold strip, the treatment temperature is 700-950℃, and the steel plate thickness is 0.3-3.0m.
/m range.

従って熱処理前に、熱処理温度別に処理鋼板を区分する
Therefore, before heat treatment, treated steel sheets are classified according to heat treatment temperature.

更に上記熱処理温度別に区分された鋼板群を板厚毎に区
分する。
Furthermore, the steel plate groups classified according to the heat treatment temperature are classified according to plate thickness.

連続式熱処理炉に、上記要求温度及び又は板厚の異なる
鋼板群を順次装入する場合、上記鋼板群の装入毎に炉温
の設定替え及び又は炉内搬送速度の設定替えをしなけれ
ばならない。
When sequentially charging groups of steel plates with different required temperatures and/or thicknesses into a continuous heat treatment furnace, the furnace temperature setting and/or in-furnace conveyance speed settings must be changed each time the above steel plate groups are charged. No.

若しくは後続鋼板群が、先行鋼板群と同一要求温度であ
っても板厚が異なる場合、後続鋼板群の装入時、炉内搬
送速度を修正しなければならず、一方後続鋼板群が先行
鋼板群と同一板厚であっても、要求温度が異なる場合、
後続鋼板群の装入時、炉温の設定替えが必要である。
Alternatively, if the subsequent steel plate group has the same required temperature as the preceding steel plate group but has a different plate thickness, the conveyance speed in the furnace must be corrected when charging the subsequent steel plate group, while the subsequent steel plate group has the same required temperature as the preceding steel plate group. Even if the plate thickness is the same as that of the group, if the required temperature is different,
When charging the subsequent steel plate group, it is necessary to change the furnace temperature setting.

要求温度で炉温か決定されるが、例えば要求温度で区別
された鋼板群で板厚が変わると、在炉時間Tを第(1式
で求めて炉内搬送速度を鋼板厚み毎に設定変更する。
The furnace temperature is determined by the required temperature, but for example, if the thickness changes in a group of steel plates separated by the required temperature, the in-furnace time T is calculated using equation 1 and the in-furnace conveyance speed is changed for each steel plate thickness. .

更に、後続鋼板群が先行鋼板群と要求温度及び板厚が異
なる場合には、後続鋼板群の装入時、炉温及び炉内搬送
速度を設定変更しなければならない。
Furthermore, if the subsequent steel plate group has a different required temperature and plate thickness from the preceding steel plate group, the furnace temperature and in-furnace conveyance speed must be changed when charging the subsequent steel plate group.

炉内に先行鋼板群の鋼板が残っている状態で、炉温や炉
内搬送速度を後続鋼板群用に設定変更すると、先行鋼板
群の鋼板温度に影響を与えるので、先行鋼板群の最後尾
の鋼板が炉内より抽出されるまで、上記炉温、上記速度
の設定変更及び後続鋼板群の炉内への装入を行なわず、
空炉状態にて操炉され、上記最後尾の鋼板が抽出されて
、設定変更し、引続いて上記鋼板群を装入する操業方法
がとられている。
If the furnace temperature or conveyance speed in the furnace is changed for the following steel plate group while there are still steel plates from the preceding steel plate group in the furnace, the temperature of the steel plates in the preceding steel plate group will be affected. The above-mentioned furnace temperature and speed settings are not changed and subsequent steel plates are not charged into the furnace until the following steel plates are extracted from the furnace.
The furnace is operated in an empty state, the last steel plate is extracted, the settings are changed, and the steel plate group is subsequently charged.

従って上記空炉の操業時間分だけ処理速度T/Hrが低
下し、炉の保熱エネルギの無駄となる。
Therefore, the processing speed T/Hr decreases by the operating time of the empty furnace, and the heat retention energy of the furnace is wasted.

又コールドストリップの熱処理(焼鈍)でも調整用のダ
ミー鋼板を連結するような方法をとったりしているが、
熱エネルギーの無駄を生じることはさけられない。
Also, in heat treatment (annealing) of cold strips, methods such as connecting dummy steel plates for adjustment are used.
It is inevitable that thermal energy will be wasted.

要求温度毎及び板厚毎の専用炉を所有すれば前記問題を
解消できるが、設備費が高価となるので採用できない。
The above problem could be solved by having a dedicated furnace for each required temperature and sheet thickness, but this cannot be used because of the high equipment cost.

従来のラジアントチューブ形成は直火形連続式熱処理炉
の他に、前述の様1こ誘導加熱装置或は噴流加熱装置等
の急速加熱手段を有する急速加熱炉長部分と上記ラジア
ントチューブ或は燃料バーナー等の燃焼加熱手段を有す
る燃焼加熱炉長部分とからなる連続式熱処理炉が提案さ
れているが、従来の上記熱処理炉の操業法の問題点を解
消する具体的な操業方法については伺ら提案されていな
い。
Conventional radiant tube formation involves a direct-fired continuous heat treatment furnace, as well as a rapid heating furnace length section having a rapid heating means such as an induction heating device or a jet heating device as described above, and the radiant tube or fuel burner. A continuous heat treatment furnace consisting of a combustion heating furnace length section having a combustion heating means such as It has not been.

本発明は上記実状に鑑みてなされたもので、従来の熱処
理炉に於て、鋼板寸法、熱処理温度の相違によって生じ
る空炉状態を減少させ、処理速度の向上並びに省エネル
ギーを計った、急速加熱炉長部分と燃焼加熱炉長部分と
を備えた連続式熱処理炉の操業方法を提供することを目
的とする。
The present invention was made in view of the above-mentioned circumstances, and is a rapid heating furnace that reduces the empty furnace state caused by differences in steel plate dimensions and heat treatment temperatures in conventional heat treatment furnaces, improves processing speed, and saves energy. An object of the present invention is to provide a method for operating a continuous heat treatment furnace equipped with a long section and a combustion heating furnace long section.

以下本発明の熱処理炉の操業方法を図面により鋼板の場
合を例にして説明する。
The operating method of the heat treatment furnace of the present invention will be explained below with reference to the drawings, taking the case of steel plates as an example.

第1図は、鋼板装入側の炉長部分に誘導加熱装置1を設
けた急速加熱炉長部分2と残炉長部にラジアントチュー
ブ3を設けた燃焼加熱炉長部4とから構成され、テーブ
ルローラ6により鋼板7,8が移送される連続式熱処理
炉5を示したものである。
Fig. 1 is composed of a rapid heating furnace length section 2 in which an induction heating device 1 is provided in the furnace length section on the steel plate charging side, and a combustion heating furnace length section 4 in which a radiant tube 3 is provided in the remaining furnace length section. This figure shows a continuous heat treatment furnace 5 in which steel plates 7 and 8 are transferred by table rollers 6.

上記誘導加熱装置1はコイル1aと温度コントローラ1
bとから構成される。
The induction heating device 1 includes a coil 1a and a temperature controller 1.
It consists of b.

9及び10は上記燃焼加熱炉長部4の加熱帯及び均熱帯
で、11及び12は上記帯9及び10の炉温検出器、1
3は加熱帯9の出口で鋼板温度を検出する温度計、14
は熱処理炉5の装入口直前に配置した、鋼板装入検知機
能と装入鋼板の温度検知機能(鋼板がホットな状態で挿
入される場合に装入鋼板温度を検知する)を兼ね備えた
検出器、15は計算機で、16及び17は加熱帯9及び
均熱帯10のラジアントチューブ3への燃料量を独立し
て調節する制御弁、18及び19は計算機15からの指
◆により弁16及び17を制御する温度コントローラで
ある。
9 and 10 are heating zones and soaking zones of the combustion heating furnace length section 4; 11 and 12 are furnace temperature detectors for the zones 9 and 10;
3 is a thermometer that detects the temperature of the steel plate at the outlet of the heating zone 9; 14;
is a detector located just before the charging port of the heat treatment furnace 5 that has both a steel plate charging detection function and a charging steel plate temperature detection function (detects the temperature of the charged steel plate when the steel plate is inserted in a hot state). , 15 are calculators, 16 and 17 are control valves that independently adjust the amount of fuel to the radiant tubes 3 in the heating zone 9 and the soaking zone 10, and 18 and 19 are control valves 16 and 17 by instructions ◆ from the computer 15. It is a temperature controller to control.

まずはじめに鋼板要求温度が一定の種々の厚みの鋼板を
連続的に装入し、熱処理する場合の操業方法について説
明する。
First, an operating method will be described in which steel plates of various thicknesses with a constant required steel plate temperature are continuously charged and heat treated.

この操業方法は、ノルマライジング、クエンチングの様
に処理後の要求材質による処理温度(要求温度)範囲が
小さい熱処理や、要求温度別の専用炉に於て最も有効で
ある。
This operating method is most effective in heat treatments such as normalizing and quenching where the processing temperature (required temperature) range is small depending on the required material after treatment, and in dedicated furnaces for different required temperatures.

図示しない情報入力装置から処理予定の鋼板の寸法情報
を与えられた計算機15はまず、鋼板要求温度が一定の
種々の厚み鋼板の中で最も加熱されやすい最小板厚の鋼
板(基準鋼板)7について、急速加熱炉長部2の誘導加
熱装置1により加熱しないで(或は加熱しても一定の加
熱度を与えるようにして)燃焼加熱炉長部4で昇温する
として上記鋼板要求温度より炉温θmを求める。
The calculator 15, which has been given dimensional information of the steel plate to be processed from an information input device (not shown), first calculates the minimum thickness steel plate (reference steel plate) 7 that is most likely to be heated among various thickness steel plates with a constant required steel plate temperature. Assuming that the temperature is raised in the combustion heating furnace long section 4 without being heated by the induction heating device 1 of the rapid heating furnace long section 2 (or by giving a constant heating degree even if heated), the steel sheet temperature is lower than the above-mentioned required temperature in the furnace. Find the temperature θm.

次に上記炉温θmと上記最小板厚の鋼板板厚tと第(1
)式から燃焼加熱炉長部4の在炉時間Tを求め、炉内搬
送速度■を決定する。
Next, the above furnace temperature θm, the above minimum steel plate thickness t, and the (1st
) is used to find the furnace residence time T of the combustion heating furnace length section 4, and determine the in-furnace conveyance speed (2).

そして計算機15は、テーブルローラ6の図示しないテ
ーブル速度コントローラに上記炉内搬送速度を目標値と
して与え、上記炉温θmを温度コントローラ18゜19
に目標値として与える。
Then, the calculator 15 gives the above-mentioned furnace conveyance speed as a target value to a table speed controller (not shown) of the table roller 6, and sets the above-mentioned furnace temperature θm to a table speed controller (not shown) of the table roller 6.
is given as the target value.

温度コントローラ18.19によってラジアントチュー
ブ3に燃料制御弁16.17を介して燃料が送り込まれ
、燃焼し、又、炉温が炉温検出器11,12で検出され
温度コントローラ18.19にフィードバックされ、炉
温か目標値に制御される。
Fuel is fed into the radiant tube 3 via the fuel control valve 16.17 by the temperature controller 18.19 and combusted, and the furnace temperature is detected by the furnace temperature detectors 11 and 12 and fed back to the temperature controller 18.19. , the furnace temperature is controlled to the target value.

この状態で順次連続的に炉5内へ装入された上記鋼板7
,7.7は急速加熱炉長部2で加熱されることなく炉長
部長4で所定の要求温度まで加熱され、順次抽出される
The steel plates 7 are successively charged into the furnace 5 in this state.
, 7.7 are heated to a predetermined required temperature in the furnace length section 4 without being heated in the rapid heating furnace length section 2, and are sequentially extracted.

次に検出器14で、要求温度が鋼板1と同一であるが板
厚が大きい鋼板8が確認されても、搬送速度■を変更す
ることなく一定にしておき、鋼板8の燃焼加熱炉長部分
4での在炉時間Tを固定しておく。
Next, even if the detector 14 confirms that the steel plate 8 has the same required temperature as the steel plate 1 but is thicker, the conveyance speed (■) is kept constant without changing, and the long portion of the combustion heating furnace of the steel plate 8 is The in-furnace time T at 4 is fixed.

又炉温θmも固定しておく。Furnace temperature θm is also fixed.

このまま鋼板8を炉内に挿入しても炉出口で要求温度に
達しないので検出器14で鋼板8が確認されると、計算
機15が炉温θmの炉長部4を速度Vで搬送して要求温
度にするために必要な鋼板8の急速加熱炉長部分2での
加熱度(昇温量)を下記第(2)式より演算する。
Even if the steel plate 8 is inserted into the furnace as it is, the required temperature will not be reached at the furnace outlet, so when the steel plate 8 is confirmed by the detector 14, the calculator 15 transports the furnace length section 4 at the furnace temperature θm at a speed V. The degree of heating (amount of temperature rise) of the steel plate 8 in the rapid heating furnace length portion 2 required to reach the required temperature is calculated from the following equation (2).

ここで在炉時間Tは先に第(1)式で求められた一定値
で、伝熱条件αの函数式の鋼板板厚t、比熱Cp、密度
ρは、計算機15に情報として入力され、伝熱係数りは
過去の実績データより適切な値が、板厚別或は炉温別に
求められ、計算機15に記憶されている。
Here, the in-furnace time T is a constant value previously determined by equation (1), and the steel plate thickness t, specific heat Cp, and density ρ in the functional equation of the heat transfer condition α are input as information to the calculator 15. Appropriate values for the heat transfer coefficient are determined from past performance data for each plate thickness or furnace temperature, and are stored in the computer 15.

なお急速加熱炉長部2で一定の加熱度を与えている場合
も同様に演算される。
Note that the same calculation is performed when a constant heating degree is applied in the rapid heating furnace length section 2.

この様に計算機15に於て急速加熱炉長部2の出口或は
燃焼加熱炉長部4の入口での必要鋼板温度θ。
In this way, the computer 15 calculates the required steel plate temperature θ at the outlet of the rapid heating furnace long section 2 or the inlet of the combustion heating furnace long section 4.

が求められると、計算機15は、鋼板6の寸法、移動速
度■、鋼板6の急速加熱炉長部への装入温度及び温度θ
Once obtained, the calculator 15 calculates the dimensions of the steel plate 6, the moving speed (■), the charging temperature of the steel plate 6 to the long part of the rapid heating furnace, and the temperature θ.
.

より誘導加熱コイル1aの投入電力を演算し、電力基準
信号を温度コンl−。
The input power of the induction heating coil 1a is calculated from the above, and the power reference signal is sent to the temperature controller 1-.

−ラ1bに与え、これにより誘導加熱装置1は鋼板6を
温度θ。
-ra 1b, whereby the induction heating device 1 heats the steel plate 6 to a temperature θ.

になる様誘導加熱する。この様に鋼板要求温度が一定の
種々の厚みの鋼板を連続的に装入し熱処理するに際し、
鋼板要求温度から燃焼加熱炉長部の炉温を決定し、又装
入予定の鋼板の中で最小板厚の鋼板寸法と上記炉温とか
ら炉内搬送速度を決定し、上記炉温並びに上記搬送速度
を固定して、鋼板板厚に応じて急速加熱炉長部での加熱
量を調整する操業方法によれば、炉内搬送速度一定にて
連続的に板厚が異なっても挿入できるので、板厚変更時
の搬送速度設定替えのための、板厚の異なる鋼板間の間
隔或は板厚の異なる鋼板群間の先行鋼板群の最後尾鋼板
と後続鋼板群の最先端鋼板との間隔をとる必要がなく、
保熱がなくなり、その間の無駄なエネルギーロスがなく
なり、省エネルギーとなる。
Induction heating is performed to achieve the desired temperature. In this way, when continuously charging and heat-treating steel plates of various thicknesses with a constant required steel plate temperature,
Determine the furnace temperature of the long part of the combustion heating furnace from the required temperature of the steel sheet, and determine the conveyance speed in the furnace from the minimum thickness steel sheet dimension among the steel sheets scheduled to be charged and the above furnace temperature. According to the operation method of fixing the conveyance speed and adjusting the amount of heating at the long part of the rapid heating furnace according to the thickness of the steel plate, it is possible to continuously insert sheets of different thicknesses at a constant conveyance speed in the furnace. , the interval between steel plates with different thicknesses, or the interval between the last steel plate of the preceding steel plate group and the most advanced steel plate of the following steel plate group between steel plate groups of different plate thicknesses, for changing the conveyance speed setting when changing the plate thickness. There is no need to take
Heat retention is eliminated, and unnecessary energy loss during that time is eliminated, resulting in energy savings.

又装入予定の鋼板の内、最小板厚の鋼板を基準に炉内搬
送速度を決定するとともに前記鋼板間の間隔をとる必要
がないので、処理速度T/Hrも向上し、この結果鋼板
単位重量当りの熱効率も向上し、熱量原単位も向上する
In addition, since the conveyance speed in the furnace is determined based on the steel plate with the minimum thickness among the steel plates scheduled to be charged, and there is no need to maintain a gap between the steel plates, the processing speed T/Hr is also improved, and as a result, the processing speed T/Hr is improved. Thermal efficiency per weight is also improved, and the unit heat consumption is also improved.

以上は鋼板要求温度が一定で、種々の厚みの鋼板を連続
的に装入する際の操業方法について述べたものであるが
、以下例えばテンパーリングの様に、鋼板板厚が変化す
るのみならず、鋼板要求温度も要求材質によって変更し
なければならない場合、即ち鋼板要求温度が異なる種々
の厚みの複数の鋼板から構成され、上記要求温度の異な
る複数の鋼板群を順次連続的に挿入し熱処理する場合の
連続式熱処理炉の操業方法について説明する。
The above describes the operation method when steel plates of various thicknesses are continuously charged while the required steel plate temperature is constant. , When the required temperature of the steel plate must also be changed depending on the required material, that is, the steel plate is composed of multiple steel plates of various thicknesses with different required temperatures, and a plurality of groups of steel plates with different required temperatures are successively inserted and heat treated. We will explain how to operate a continuous heat treatment furnace in this case.

この操業方法の特徴は急速加熱部と、加熱帯及び均熱帯
からなる燃焼加熱炉長部とを備えた連続式熱処理炉に於
て、鋼板要求温度が異なる種々の厚みの複数の鋼板から
構成され、上記要求温度の異なる複数の鋼板群を順次挿
入し熱処理するに際し、上記燃焼炉長部の加熱帯の炉温
を上記装入予定の複数の鋼板群の最高要求温度より決定
し、上記炉温と上記最低要求温度の鋼板群中の最小板厚
の鋼板寸法より炉内搬送速度を決定し、上記炉温及び搬
送速度を一定に保ち、上記鋼板群の要求温度に応じて上
記燃焼加熱炉長部の均熱帯の炉温を調整すると共に、鋼
板群中の鋼板板厚に応じて急速加熱炉長部での加熱量を
調整することにある。
The feature of this operating method is that the continuous heat treatment furnace is equipped with a rapid heating section and a long section of the combustion heating furnace consisting of a heating zone and a soaking zone. When the plurality of steel plate groups having different required temperatures are sequentially inserted and heat treated, the furnace temperature of the heating zone of the combustion furnace length is determined from the maximum required temperature of the plurality of steel plate groups to be charged, and the above furnace temperature is determined. The conveyance speed in the furnace is determined based on the minimum thickness steel sheet size in the group of steel sheets with the minimum required temperature, the furnace temperature and conveyance speed are kept constant, and the length of the combustion heating furnace is determined according to the required temperature of the group of steel sheets. In addition to adjusting the furnace temperature in the soaking zone of the rapid heating furnace, the amount of heating in the long section of the rapid heating furnace is adjusted according to the thickness of the steel plates in the steel plate group.

以上本操業法を第1図にもとすいて説明する。The present operating method will be explained above with reference to FIG.

第1図に於て、装入予定されている処理鋼板群に関する
処理温度、板厚等の情報が、図示しない入力装置より与
えられる。
In FIG. 1, information such as processing temperature and plate thickness regarding a group of treated steel plates to be charged is given from an input device (not shown).

すると計算機15は、装入予定の鋼板群の中で最低処理
温度の鋼板群と最高処理温度の鋼板群を選ぶと共に、上
記最低処理温度の鋼板群の中で板厚最小の鋼板を選ぶ。
Then, the calculator 15 selects the steel plate group having the lowest treatment temperature and the steel plate group having the highest treatment temperature among the steel plate group to be charged, and also selects the steel plate with the minimum thickness among the steel plate group having the minimum treatment temperature.

そして上記最高処理温度から決る燃焼加熱炉長部4の均
熱帯10の炉温と同等か或はそれ以上の適切な値を選定
し、これを上記炉長部4の加熱帯9の炉温として固定す
る。
Then, select an appropriate value equal to or higher than the furnace temperature of the soaking zone 10 of the combustion heating furnace length section 4 determined from the maximum processing temperature, and set this as the furnace temperature of the heating zone 9 of the furnace length section 4. Fix it.

この炉温は、上記装入予定の処理鋼板群の装入作業中変
更しない。
This furnace temperature is not changed during the charging operation of the group of treated steel sheets scheduled to be charged.

続いて上記帯9の炉温と、上記最低処理温度の鋼板群の
中で上記炉長部4の在炉時間が最小となる最小板厚の鋼
板(基準鋼板)寸法とより、第(1)式にもとすき上記
鋼板の在炉時間を求め、これから炉内搬送速度即ちテー
ブルローラ6のテーブル速度を決定する。
Next, from the furnace temperature of the zone 9 and the dimensions of the steel plate (reference steel plate) with the minimum thickness that minimizes the in-furnace time of the furnace length section 4 among the steel plate group with the minimum treatment temperature, the (1) The time in the furnace of the above-mentioned steel plate is calculated using the formula, and the conveyance speed in the furnace, that is, the table speed of the table roller 6 is determined from this.

この炉内搬送速度は、上記装入予定の処理鋼板群の装入
処理作業中変更しない。
This in-furnace conveyance speed is not changed during the charging process of the group of treated steel plates scheduled to be charged.

一方上記炉長部4の均熱帯10の炉温は上記各鋼板群の
処理温度より決るので、鋼板群の処理温度毎に設定変更
する。
On the other hand, since the furnace temperature of the soaking zone 10 of the furnace length section 4 is determined by the processing temperature of each steel plate group, the setting is changed for each steel plate group.

この設定変更タイミングについては後述する。The timing of this setting change will be described later.

さて同一処理温度の鋼板群の中で板厚の大きな鋼板につ
いては急速加熱炉長部2で加熱しないと炉長部4で在炉
時間の延長が必要であるが、炉内搬送速度、炉長部4の
加熱帯均熱帯の炉温を固定して、炉の抽出口或は加熱帯
出口で上記同一処理温度にするのに上記炉長部2の出口
で必要な鋼板温度を、第(2)式にもとすいて計算する
Now, if a steel plate with a large thickness is heated in a group of steel plates treated at the same processing temperature, unless it is heated in the rapid heating furnace length section 2, it will be necessary to extend the furnace time in the furnace length section 4. The steel plate temperature required at the outlet of the furnace length section 2 in order to fix the furnace temperature in the heating zone soaking zone of section 4 and achieve the above-mentioned same treatment temperature at the extraction port or heating zone outlet of the furnace is determined by ) and calculate it by substituting the formula.

そして鋼板の寸法移動速度、上記必要温度より誘導加熱
コイルの投入電力を計算する。
Then, the power input to the induction heating coil is calculated from the dimensional movement speed of the steel plate and the above-mentioned required temperature.

この計算は各処理温度でまとめた鋼板群の各鋼板毎に行
なう。
This calculation is performed for each steel plate in the steel plate group grouped at each treatment temperature.

又この計算タイミングは、上記炉温、並びに搬送速度計
算時に行なっても良いし、装入直前に各鋼板群について
行なっても良い。
Further, this calculation timing may be performed at the time of calculating the above-mentioned furnace temperature and conveyance speed, or may be performed for each steel plate group immediately before charging.

そして同一処理温度の鋼板群の各鋼板に対して急速加熱
炉部2の誘導加熱装置1が所定の加熱度を与える。
The induction heating device 1 of the rapid heating furnace section 2 applies a predetermined heating degree to each steel plate in the group of steel plates treated at the same processing temperature.

今第1図に於て先行鋼板群eと後続鋼板群fとは処理温
度が異なるとする。
In FIG. 1, it is assumed that the preceding steel plate group e and the succeeding steel plate group f have different processing temperatures.

そして後続鋼板群fの最先の鋼板8が検出器14で検知
されると、前記設定搬送速度と炉長部4の加熱帯9の炉
温は変更することなく、上記速度と均熱帯10の炉温の
設定替え必要時間とより、先行鋼板群eの最後尾の鋼板
と後続鋼板群fの先頭鋼板との必要最小限の板間隙を設
けるべく、前記設定替え必要時間だけ上記鋼板群fの先
頭鋼板を炉5の装入側テーブル上に停止する。
Then, when the first steel plate 8 of the subsequent steel plate group f is detected by the detector 14, the set conveyance speed and the furnace temperature of the heating zone 9 of the furnace length section 4 are not changed, and the speed and the soaking zone 10 are the same. Based on the time required to change the setting of the furnace temperature, in order to provide the minimum necessary gap between the last steel plate of the preceding steel plate group e and the leading steel plate of the succeeding steel plate group f, the steel plate group f is changed for the necessary time to change the setting. The leading steel plate is stopped on the charging side table of the furnace 5.

なおこの均熱帯10の炉温設定替え時間は、設定替え温
度差が最小となる様に、装入予定の鋼板群の装入スケジ
ュールを、最小処理温度の鋼板群から、最高処理温度の
鋼板群へ至る様にすれば、設定替え時間が最小となり、
空炉長が最小となる。
The furnace temperature setting change time of this soaking zone 10 is such that the charging schedule for the steel plate groups to be charged is changed from the steel plate group with the minimum processing temperature to the steel plate group with the highest processing temperature so that the difference in setting temperature is minimized. If you do this, the setting change time will be minimized, and
The empty furnace length is minimized.

なお炉温の変化は炉温を下げるよりも上げる方が早い。Note that it is faster to raise the furnace temperature than to lower it.

そして前記設定替え必要時間が経過すると、後続鋼板群
fの先頭鋼板が先行鋼板群eの後尾鋼板と前記間隙を保
って炉内に挿入され、以下引続いて鋼板群fの各鋼板を
順次挿入する。
When the required time for setting changes has elapsed, the leading steel plate of the succeeding steel plate group f is inserted into the furnace while maintaining the gap with the trailing steel plate of the preceding steel plate group e, and each steel plate of the steel plate group f is successively inserted thereafter. do.

そして鋼板群fの板厚の異なる各鋼板は、均熱帯10の
入口で処理温度になる様に急速加熱炉長部2の誘導加熱
装置1で昇温される。
The steel plates of different thicknesses of the steel plate group f are heated by the induction heating device 1 of the rapid heating furnace long section 2 so as to reach the processing temperature at the entrance of the soaking zone 10.

間隙を保ちながら炉内を通過して先行鋼板群eの後尾鋼
板が均熱帯10を通過し抽出されると、ただちに均熱帯
10の炉温を、後続鋼板群f用の炉温に設定替えを行な
う。
When the trailing steel plate of the preceding steel plate group e passes through the furnace while maintaining a gap and passes through the soaking zone 10 and is extracted, the furnace temperature of the soaking zone 10 is immediately changed to the furnace temperature for the succeeding steel plate group f. Let's do it.

これは計算機5が温度コントローラ19に信号を与えて
実行される。
This is executed by the computer 5 giving a signal to the temperature controller 19.

以下処理温度の異なる鋼板群の接続部については同様の
操作を行ない、処理温度の最高の鋼板群まで順次装入し
、在炉時間一定のもとで操業できる。
Similar operations are performed for the joints of steel plate groups having different treatment temperatures, and the steel plate groups with the highest treatment temperature are sequentially charged, allowing operation with a constant furnace time.

以上の様に鋼板群の板厚変化に応じて急速加熱炉長部の
加熱量を調整し、又鋼板群の処理温度の変化に応じて均
熱帯の炉温を調整することにより、各鋼板の在炉時間が
一定となり、かつ上記在炉時間は、装入予定の複数の鋼
板群の最高処理温度より決定した加熱帯の炉温と、最低
処理温度の鋼板群の最小板厚の鋼板寸法とより定めた最
小時間であるから、処理速度T/Hrが向上すると共に
、又最小の空炉間隙しか生じせしめないので、省エネル
ギとなる。
As described above, by adjusting the heating amount in the long part of the rapid heating furnace according to the change in the thickness of the steel sheet group, and adjusting the furnace temperature in the soaking zone according to the change in the processing temperature of the steel sheet group, each steel sheet can be heated. The in-furnace time is constant, and the above-mentioned in-furnace time is determined by the furnace temperature of the heating zone determined from the maximum processing temperature of the plurality of steel plate groups scheduled to be charged, and the steel plate size of the minimum thickness of the steel plate group with the lowest processing temperature. Since the minimum time is more defined, the processing speed T/Hr is improved, and since only the minimum air gap is created, energy is saved.

以上詳述した操業方法は省エネルギー、処理速度の向上
の効果の他に次の効果がある。
The operating method detailed above has the following effects in addition to the effects of energy saving and improvement of processing speed.

■ 炉の保熱時、急速加熱炉長部のエネルギー損失は零
にできる。
■ When retaining heat in the furnace, energy loss in the rapid heating furnace length can be reduced to zero.

■ 炉長が短かくて良く設備費が安くなる。■ The furnace length is short and equipment costs are low.

■ テンパーリンク、ノルマライジンク、クエンチング
等の熱処理全てを一基の炉で、実施容易であり、文士な
い1数で全ての熱処理を行なうことができる。
■ All heat treatments such as temper linking, normalizing zinc, and quenching can be easily carried out in one furnace, and all the heat treatments can be carried out by a single person without the need of a skilled worker.

■ 熱処理温度別及び鋼板寸法別の区分数が減少し、処
理前の鋼板山積み等が容易となる。
■ The number of classifications by heat treatment temperature and steel plate size is reduced, making it easier to pile up steel plates before treatment.

以上の実施例の説明では基準となる鋼板に関しては、急
速加熱炉長部では加熱しないという条件下の操業形態を
説明したが、基準となる鋼板について一定の加熱度を与
える、つまり全ての鋼板に対して−・定加熱度を与える
という条件下でも同様に操業可能である。
In the explanation of the above examples, the operation mode was explained under the condition that the standard steel plate is not heated in the long part of the rapid heating furnace, but the standard steel plate is heated to a constant degree, that is, all the steel plates are On the other hand, it can be similarly operated under the condition of providing a constant heating degree.

又実施例は、急速加熱手段として誘導加熱装置を使用し
た連続式熱処理炉で説明したが、低温ではスケールの発
生がないので第2図の様に急速加熱手段として噴流加熱
装置gを用いた連続式熱処理炉に於ても同様に本発明の
操業方法が適用できる。
In addition, although the embodiment has been explained using a continuous heat treatment furnace that uses an induction heating device as a rapid heating means, since there is no scale generation at low temperatures, a continuous heat treatment furnace using a jet heating device g as a rapid heating means is used as shown in Fig. 2. The operating method of the present invention can be similarly applied to a type heat treatment furnace.

なお実施例に於て急速加熱炉長部の急速加熱手段の加熱
能力をこえる鋼板については、燃焼加熱炉長部或は該炉
長部の加熱帯の炉温及び炉内搬送速度を固定する鋼板グ
ループの鋼板或は鋼板群として加えないことは勿論であ
って、他の鋼板グループとして別途取り扱う。
In addition, in the examples, for steel plates whose heating capacity exceeds the heating capacity of the rapid heating means of the rapid heating furnace long section, a steel plate that fixes the furnace temperature and in-furnace conveyance speed of the combustion heating furnace long section or the heating zone of the furnace long section is used. Of course, it is not added as a steel plate group or steel plate group, but is handled separately as another steel plate group.

次に急速加熱部を燃焼加熱部の出口側(後段)に設けた
場合について説明する。
Next, a case where the rapid heating section is provided on the outlet side (later stage) of the combustion heating section will be described.

この急速加熱部に誘導加熱装置か噴流加熱装置を用いる
ことは前記同様である。
As described above, an induction heating device or a jet heating device is used for this rapid heating section.

急速加熱部を出口側に設けた連続式熱処理炉のメリット
は前記同様この急速加熱部で鋼材の厚み変化、要求温度
変化に対応して温度制御することによってテーブル速度
や燃焼加熱部の設定炉温を一定にでき、無駄時間が少な
くなり、生産性の向上や省エネルギーになることは熱論
のことである。
As mentioned above, the advantage of a continuous heat treatment furnace with a rapid heating section installed on the exit side is that this rapid heating section can control the temperature in response to changes in the thickness of the steel material and changes in the required temperature, thereby controlling the table speed and the set furnace temperature of the combustion heating section. It is a hot topic that it can be made constant, reducing wasted time, improving productivity and saving energy.

それ以外に、後段が燃焼式加熱炉長部である組合せ連続
式熱処理炉や従来の全炉が燃焼式炉長である連続式熱処
理炉では鋼材の昇温状態が昇温初期には単位時間当りの
昇温量が比較的大きいが、昇温後期には単位時間当りの
昇温量が小さくて加熱時間が長くなっている。
In addition, in combination continuous heat treatment furnaces in which the latter stage is a combustion-type heating furnace length, and in conventional continuous heat treatment furnaces in which all furnaces are combustion-type furnace lengths, the temperature of the steel material is increased per unit time at the initial stage of temperature rise. The amount of temperature increase is relatively large, but in the latter half of the temperature increase, the amount of temperature increase per unit time is small and the heating time becomes long.

したがって昇温後期に急速加熱することによって全体の
昇温時間を短縮でき、生産性が一層向上する、または単
位生産量当りの炉長が短くできる。
Therefore, by performing rapid heating in the latter half of the temperature rise, the overall temperature rise time can be shortened, productivity can be further improved, or the furnace length per unit production can be shortened.

これらのことは省エネルギーにもなる。These things also save energy.

以下後段に急速加熱設備を設けた連続式熱処理炉の操業
法について説明する。
A method of operating a continuous heat treatment furnace equipped with rapid heating equipment in the latter stage will be described below.

今、要求温度及び又は厚みの異なる鋼板を含む鋼板グル
ープ例えば、要求温度並びに厚みの異なる複数の鋼板か
らなる鋼板グループの各鋼板を順次連続的に挿入するに
際して、まず前記熱処理炉の炉内搬送速度、燃焼加熱炉
長部の炉温を設定固定する。
Now, when sequentially and continuously inserting each steel plate group including steel plates with different required temperatures and/or thicknesses, for example, a steel plate group consisting of a plurality of steel plates with different required temperatures and thicknesses, first, the in-furnace conveyance speed of the heat treatment furnace is , the furnace temperature of the combustion heating furnace length is set and fixed.

この鋼板グループの横取の仕方と、上記速度及び炉温の
設定固定の仕方は次の通りである。
The method of intercepting this steel plate group and the method of setting and fixing the speed and furnace temperature are as follows.

このテーブル速度は鋼板グループの薄い板厚の在炉時間
からおおよそ決定し、又炉温も処理すべき鋼板グループ
中の鋼板の最終要求温度値位におおよそ設定されるが、
テーブル速度、設定炉温は鋼板グループの各鋼板の厚み
、初期温度、最終要求温度、及び急速加熱部の加熱能力
との相互関係から最終的には決定される。
This table speed is roughly determined from the furnace time of the thin steel plate group, and the furnace temperature is also set approximately to the final required temperature value of the steel plates in the steel plate group to be processed.
The table speed and set furnace temperature are ultimately determined from the interrelationship with the thickness of each steel plate in the steel plate group, initial temperature, final required temperature, and heating capacity of the rapid heating section.

ここでこれらの相互関係からテーブル速度と設定炉温を
一定にして熱処理できる鋼板を予測計算して鋼板グルー
プとしてグループ化していることは勿論である。
Of course, based on these mutual relationships, steel plates that can be heat treated with a constant table speed and set furnace temperature are predicted and grouped into steel plate groups.

上記固定した速度と炉温で熱処理不可能な鋼板について
は別の鋼板グループとして取り扱う。
Steel plates that cannot be heat treated at the fixed speed and furnace temperature mentioned above are treated as a separate steel plate group.

今前記特定された設定炉温とテーブル速度下の操業で前
記鋼板グループ様の特定板厚すの鋼板が急速加熱炉長部
で加熱することなく処理可能であるとする。
Now, it is assumed that the steel plates of the specified thickness of the steel plate group can be processed without being heated in the long part of the rapid heating furnace by operating under the specified furnace temperature and table speed.

本発明では鋼板グループ中の前記板厚すより大きい鋼板
が入ってきてもテーブル速度と炉温は一定にしておくが
、この条件下では燃焼加熱炉長部では前記鋼板は昇温し
きらないので急速加熱部入口温度を検出するか、または
燃焼加熱部の在炉時間、炉温、鋼材寸法より予測計算し
て求め、即ち急速加熱部入口温度を検知し急速加熱部の
在炉時間、出口要求温度より急速加熱部で温度制御を行
う。
In the present invention, the table speed and furnace temperature are kept constant even if a steel plate with a thickness greater than the thickness of the steel plate in the steel plate group comes in, but under these conditions, the temperature of the steel plate cannot be raised completely in the long part of the combustion heating furnace. The inlet temperature of the rapid heating section is detected, or it is determined by predictive calculation based on the in-furnace time of the combustion heating section, furnace temperature, and steel material dimensions.In other words, the inlet temperature of the rapid heating section is detected, and the in-furnace time of the rapid heating section and the outlet demand are calculated. Temperature control is performed in the rapid heating section.

このようにして燃焼加熱部の入側に急速加熱部を設けた
前記実施例の場合と同様に板厚変化に伴うテーブル速度
変更や炉温変更に伴う無駄時間がなくなり、生産性の向
上や省エネルギーが計れる。
In this way, as in the case of the previous embodiment in which the rapid heating section was provided on the inlet side of the combustion heating section, there is no wasted time due to changes in table speed or furnace temperature due to changes in plate thickness, improving productivity and saving energy. can be measured.

なお要求温度及び又は厚みの異なる鋼板を含む鋼板グル
ープがあげられ、これらの鋼板グループについても同様
の操業形態をとりうる。
Note that there are steel plate groups including steel plates with different required temperatures and/or thicknesses, and the same operation mode can be adopted for these steel plate groups.

以上の具体的説明では厚板鋼板を例にして行ったが、鋼
板厚みの小さいコールドスリップの熱処理(焼鈍)の場
合でも鋼板長さが長くなるだけで本発明の考え方が同様
に採用できる。
Although the above specific explanation has been made using a thick steel plate as an example, the concept of the present invention can be similarly adopted even in the case of cold slip heat treatment (annealing) of a small steel plate, just by increasing the length of the steel plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は、本発明の操業方法の説明図である。 1・・・・・・誘導加熱装置、2・・・・・・急速加熱
炉長部、3・・・・・・ラジアントチューブ、4・・・
・・・燃料加熱炉長部、5・・・・・・連続式熱処理炉
、6・・・・・・テーブルローラ、7,8・・・・・・
鋼板、9・・・・・・加熱帯、10・・・・・・均熱帯
、11,12・・・・・・炉温検出器、13・・・・・
・鋼板温度計、14・・・・・・検出器、15・・・・
・・計算機、16゜17・・・・・・制御弁、18,1
9・・・・・・温度コントローフ、 20・・・・・・噴流加熱装置、 21・・・・・・バーナー。
Figure 1.2 is an explanatory diagram of the operating method of the present invention. 1...Induction heating device, 2...Rapid heating furnace length, 3...Radiant tube, 4...
... Fuel heating furnace length section, 5 ... Continuous heat treatment furnace, 6 ... Table roller, 7, 8 ...
Steel plate, 9... Heating zone, 10... Soaking zone, 11, 12... Furnace temperature detector, 13...
・Steel plate thermometer, 14...Detector, 15...
... Computer, 16°17 ... Control valve, 18,1
9...Temperature controller, 20...Jet heating device, 21...Burner.

Claims (1)

【特許請求の範囲】[Claims] 1 急速加熱炉長部と、燃焼加熱炉長部とを備えた連続
式熱処理炉に於て、鋼板要求温度が一定の種々の厚みの
鋼板を連続的に装入し熱処理するに際し、上記要求温度
から上記燃焼加熱炉長部の炉温を設定し、装入予定の鋼
板群の中で、最小板厚の鋼板寸法と、上記炉温とより炉
内搬送速度を設定し、上記鋼板群の各鋼板の厚みに応じ
て上記急速加熱炉長部での加熱量を調整することを特徴
とする連続式熱処理炉の操業方法。
1 In a continuous heat treatment furnace equipped with a rapid heating furnace length section and a combustion heating furnace length section, when steel plates of various thicknesses with a constant required steel plate temperature are continuously charged and heat treated, the above required temperature is Set the furnace temperature of the long part of the above-mentioned combustion heating furnace from the above, set the steel plate dimension of the minimum thickness among the steel plate groups to be charged, and the furnace conveyance speed based on the above furnace temperature, and set the furnace conveyance speed for each of the above steel plate groups. A method for operating a continuous heat treatment furnace, characterized in that the amount of heating in the rapid heating furnace length is adjusted according to the thickness of the steel plate.
JP4878777A 1977-04-27 1977-04-27 How to operate a continuous heat treatment furnace Expired JPS5831371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4878777A JPS5831371B2 (en) 1977-04-27 1977-04-27 How to operate a continuous heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4878777A JPS5831371B2 (en) 1977-04-27 1977-04-27 How to operate a continuous heat treatment furnace

Publications (2)

Publication Number Publication Date
JPS53133513A JPS53133513A (en) 1978-11-21
JPS5831371B2 true JPS5831371B2 (en) 1983-07-05

Family

ID=12812935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4878777A Expired JPS5831371B2 (en) 1977-04-27 1977-04-27 How to operate a continuous heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS5831371B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107088A (en) * 1984-10-29 1986-05-24 日立プラント建設株式会社 Continuous type heating furnace
WO2013147155A1 (en) * 2012-03-29 2013-10-03 日立金属株式会社 Method for producing carbon tool steel strip
JP6252833B2 (en) * 2013-09-30 2017-12-27 日立金属株式会社 Method for producing martensitic stainless steel strip

Also Published As

Publication number Publication date
JPS53133513A (en) 1978-11-21

Similar Documents

Publication Publication Date Title
JP2006281300A (en) Cooling control method, device, and computer program
JPS5831371B2 (en) How to operate a continuous heat treatment furnace
JP2002294347A (en) Method and device for jet preheating strip continuous annealing facility
JPH08246058A (en) Automatic combustion control method in continuous type heating furnace
JP3945161B2 (en) Heat treatment method for thick steel plate
JPS61201735A (en) Method and apparatus for annealing steel strip continuously
JPS5812325B2 (en) Control method for continuous heating furnace
JPS5848010B2 (en) Heating furnace automatic combustion control method
JP3003062B2 (en) Heating method of billet in continuous heating furnace
JPH07126759A (en) Method for heating metallic strip and device therefor
JPS6345454B2 (en)
JPS5916615A (en) Rolling method of thick plate
JPS5662928A (en) Furnace temperature setting method of heating zone in a continuous annealing furnace
TWI225100B (en) Method for manufacturing steel product and facilities therefor
JPS61257430A (en) Method and installation for continuous heating of steel strip
JP3945212B2 (en) Heat treatment apparatus and method for thick steel plate
JPH0160528B2 (en)
JPS5826415B2 (en) Plate temperature control method
JP2733885B2 (en) Continuous heat treatment of steel strip
JP3176085B2 (en) Sheet temperature control device in continuous annealing furnace
JP2635960B2 (en) Heating material extraction pitch determination method for continuous heating furnace
JP2000034523A (en) Continuous heat treatment method for metallic strip
JP2000034524A (en) Heat treatment method for metallic strip
JPH0273922A (en) Method for controlling furnace temperature in continuous heat treatment furnace
JPH03140420A (en) Method for preventing buckling of band steel