JP3003062B2 - Heating method of billet in continuous heating furnace - Google Patents
Heating method of billet in continuous heating furnaceInfo
- Publication number
- JP3003062B2 JP3003062B2 JP5254154A JP25415493A JP3003062B2 JP 3003062 B2 JP3003062 B2 JP 3003062B2 JP 5254154 A JP5254154 A JP 5254154A JP 25415493 A JP25415493 A JP 25415493A JP 3003062 B2 JP3003062 B2 JP 3003062B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel input
- zone
- billet
- furnace
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Heat Treatment Processes (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続式加熱炉において
一部の鋼片の抽出温度を他の鋼片の抽出温度と異ならし
めて加熱抽出する際の鋼片の加熱方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of heating a steel slab in a continuous heating furnace, wherein the extraction temperature of some steel slabs is made different from the extraction temperature of other steel slabs.
【0002】[0002]
【従来の技術】周知のとおり、熱間圧延ラインの連続式
加熱炉の操業の際、異なった材料特性を得るために一部
の鋼片の加熱抽出温度をその他の鋼片の加熱抽出温度と
異なる温度とすることが行われている。従来、このよう
な加熱方法においては、鋼片の位置するゾーンの炉温を
変えることにより行われており、その影響が前後にある
鋼片に及ぶために、加熱温度が製品性能に影響しない
鋼片をダミー材として間に入れたり、抽出ピッチを変
更する方法(特開昭62−240717号)、抽出温
度が通板順になめらかに変化するように、鋼片の装入順
序をスケジューリングする方法(特開昭63−5321
6号)、あるいはまた、複数の加熱炉を使い分け、在
炉時間を炉毎に変えることにより加熱温度を変える方法
(特開昭58−48626号)が採られている。2. Description of the Related Art As is well known, when operating a continuous heating furnace in a hot rolling line, the heat extraction temperature of some steel slabs is set to the same as that of other steel slabs in order to obtain different material properties. Different temperatures are used. Conventionally, such a heating method is performed by changing the furnace temperature of the zone where the slab is located, and the influence is exerted on the slabs before and after, so that the heating temperature does not affect the product performance. A method of inserting a piece as a dummy material or changing the extraction pitch (Japanese Patent Laid-Open No. 62-240717), a method of scheduling the loading order of the steel pieces so that the extraction temperature smoothly changes in the passing order ( JP-A-63-5321
No. 6) or a method in which a plurality of heating furnaces are selectively used, and the heating temperature is changed by changing the furnace time for each furnace (Japanese Patent Laid-Open No. 58-48626).
【0003】[0003]
【発明が解決しようとする課題】しかしながら、これら
の方法では、鋼片在庫を多く必要(、)としたり、
鋼片の装入順序と抽出順序が異なるため、圧延スケジュ
ール上の制約を考慮した複雑なスケジューリング作業を
必要()とするなど、煩雑であり、また、圧延待ち時
間が発生()し、生産計画及び生産性の面で必ずしも
十分ではないといった課題があった。However, these methods require a large stock of billets (,),
Since the loading order and extraction order of the billet are different, complicated scheduling work taking into account the restrictions on the rolling schedule is required (). In addition, there was a problem that the productivity was not always sufficient.
【0004】本発明は、上記のような課題を解決するた
めになされたもので、簡単な方法でしかも能率的に、一
部の鋼片を異なった抽出温度に加熱抽出することができ
る連続式加熱炉における鋼片の加熱方法を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a continuous method capable of efficiently extracting some steel slabs to different extraction temperatures by a simple method and efficiently. An object of the present invention is to provide a method for heating a billet in a heating furnace.
【0005】[0005]
【課題を解決するための手段】本発明の連続式加熱炉に
おける鋼片の加熱方法は、下記の構成からなるものであ
る。すなわち、連続式加熱炉に連続的に装入された鋼片
群のうちの一部の鋼片を装入間隔を変えることなく他の
鋼片の抽出温度よりも高いまたは低い温度に加熱抽出す
る鋼片の加熱方法において、はじめに、全ての鋼片を抽
出温度θ1 に加熱するときの前記加熱炉のゾーン単位の
燃料投入量からなる定常燃料投入量パターンF1 と、全
ての鋼片を抽出温度θ2 に連続的に加熱するときの前記
加熱炉のゾーン単位の燃料投入量からなる定常燃料投入
量パターンF2 と、前記一部の鋼片を抽出温度θ1 から
抽出温度θ2に加熱するときの、F1 の全燃料投入量と
F2 の全燃料投入量の差に対するゾーン燃料投入量変更
割合ΔR(0<ΔRe、ΔRn<1、ただし、ΔRe≠
ΔRn、添字のeは対象鋼片が存在するゾーンの場合、
nは対象鋼片が存在するゾーンの前後の隣接ゾーンの場
合)を求めておく。したがって、炉内に存在する鋼片の
加熱抽出温度が全てθ1 のときは、各ゾーンの燃料投入
量は定常燃料投入量パターンF1 の燃料投入量に設定さ
れる。次に、操業の進行にともなって、抽出温度θ2 に
加熱する鋼片が前記加熱炉に装入されると、該鋼片の炉
内移動に合わせて、該鋼片の存在するゾーンのバーナシ
ステムへの燃料投入量をパターンF1 に対して、F1 の
全燃料投入量とF2 の全燃料投入量の差に前記ゾーン燃
料投入量変更割合(ΔRe)を乗じた分だけ増しまたは
減じた燃料投入量に設定、制御する。また、そのゾーン
の前後の隣接ゾーンのバーナシステムへの燃料投入量を
パターンF1 の該前後ゾーンの燃料投入量に対して、F
1 の全燃料投入量とF2 の全燃料投入量の差に前記ゾー
ン燃料投入量変更割合(ΔRn)を乗じた分だけ減じま
たは増した燃料投入量に設定変更し、さらにその他のゾ
ーンのバーナシステムへの燃料投入量は、パターンF1
の該他のゾーンの燃料投入量に保持した状態に、各ゾー
ンの燃料投入量を制御するものである。Means for Solving the Problems A method for heating a steel slab in a continuous heating furnace according to the present invention has the following constitution. That is, a part of the billet group continuously charged in the continuous heating furnace is heated and extracted to a temperature higher or lower than the extraction temperature of the other steel bill without changing the charging interval. In the method of heating a billet, first, a steady fuel injection amount pattern F1 consisting of a fuel injection amount per zone of the heating furnace when heating all the billets to an extraction temperature θ1, and an extraction temperature θ2 And a steady fuel input pattern F2 comprising the fuel input per zone of the heating furnace when heating is continuously performed to the heating furnace, and F1 when heating the partial steel slab from the extraction temperature θ1 to the extraction temperature θ2. Zone fuel input change ratio ΔR ( 0 <ΔRe, ΔRn <1, where ΔRe ≠) with respect to the difference between the total fuel input and the total fuel input of F2.
ΔRn, the subscript e is the zone where the target billet exists,
n is the field of the adjacent zone before and after the zone where the target billet exists.
Previously obtained a slip). Therefore, when the heating and extracting temperatures of the steel slabs present in the furnace are all θ1, the fuel input amount in each zone is set to the fuel input amount in the steady fuel input pattern F1. Next, with the progress of the operation, when the steel slab to be heated to the extraction temperature θ2 is charged into the heating furnace, the burner system in the zone where the steel slab is present is moved in accordance with the movement of the steel slab in the furnace. Fuel input to the pattern F1 by increasing or decreasing the difference between the total fuel input of F1 and the total fuel input of F2 by the zone fuel input change ratio (ΔRe) with respect to the pattern F1. Set and control. Further, the fuel input amount to the burner system in the adjacent zone before and after the zone is calculated by comparing the fuel input amount in the front and rear zones in the pattern F1 with F
The fuel injection amount is reduced or increased by an amount obtained by multiplying the difference between the total fuel injection amount of F1 and the total fuel injection amount of F2 by the above-mentioned zone fuel injection amount change ratio (ΔRn). The fuel input amount to the pattern F1
The fuel injection amount of each zone is controlled while maintaining the fuel injection amount of the other zone.
【0006】また、本発明における連続式加熱炉は、蓄
熱式交番燃焼バーナシステムを有するものとする。Further, the continuous heating furnace in the present invention has a regenerative alternating combustion burner system.
【0007】[0007]
【作用】本発明の燃料投入量制御方式による鋼片の加熱
方法では、鋼片の装入間隔を変えることなくその鋼片の
炉内移動とともに逐次各ゾーンの燃料投入量が変更され
る。いま、大部分の鋼片の加熱抽出温度θ1 よりも高い
(または低い)温度θ2に加熱抽出したい鋼片を大部分
の鋼片に続けて装入した場合、高い(または低い)温度
θ2 に加熱抽出したい鋼片が存在するゾーンの燃料投入
量を一定量だけ増加(または減少)させるように設定、
制御されるので、該鋼片への伝熱量は多く(または少な
く)なり、他の大部分の鋼片よりも高い(または低い)
所定の温度に加熱することが可能となる。また、その前
後の隣接ゾーンに位置する加熱抽出温度θ1 にしたい鋼
片は、高い(または低い)温度θ2 に加熱抽出したい鋼
片の存在するゾーンの燃料投入量を増加(または減少)
させることにより、その影響を受けて、該ゾーンからの
伝熱量が増加(または減少)するが、該隣接ゾーンの燃
料投入量は、鋼片を全量θ1 に加熱する燃料投入量パタ
ーンのゾーン燃料投入量よりも一定量だけ減少(または
増加)させるよう設定、制御されるので、この影響が存
在しても所定の温度θ1 に加熱される。結果として、連
続式加熱炉に連続的に装入した一部の鋼片を装入間隔を
変えることなく他の鋼片と異なった温度に加熱抽出(焼
分け)することができるのである。According to the method of heating a billet according to the fuel supply control method of the present invention, the amount of fuel supplied to each zone is sequentially changed as the billet is moved in the furnace without changing the charging interval of the billet. Now, if the steel slab to be heated and extracted to a temperature θ2 higher (or lower) than the heating and extraction temperature θ1 of most steel slabs is successively charged into the majority of the steel slabs, it will be heated to a high (or low) temperature θ2. Set to increase (or decrease) the fuel input of the zone where the billet to be extracted exists by a certain amount,
As controlled, the heat transfer to the billet is higher (or lower) and higher (or lower) than most other billets
It becomes possible to heat to a predetermined temperature. In addition, the billet to be set to the heating extraction temperature θ1 located in the adjacent zone before and after that increases or decreases the fuel input amount in the zone where the billet to be heated and extracted to the high (or low) temperature θ2 exists.
As a result, the amount of heat transferred from the zone increases (or decreases) under the influence of the influence, but the fuel input amount in the adjacent zone is changed according to the zone fuel input pattern of the fuel input amount pattern for heating the steel slab to the full amount θ1. Reduced by a certain amount (or
Is increased and increased, so that even if this effect exists, it is heated to a predetermined temperature θ1. As a result, the charging interval billet part that was continuously charged into the continuous heating furnace
It is possible to heat extract (burn) to a temperature different from other billets without changing .
【0008】本発明において、蓄熱式交番燃焼バーナシ
ステムを備えた連続式加熱炉を使用する理由は、蓄熱式
交番燃焼バーナシステムでは燃焼により発生した燃焼ガ
スのほとんどが蓄熱体を通して炉外に排気されるので、
各ゾーンから他のゾーンへ流出するガスが少なく、各ゾ
ーンの炉温と燃料投入量の相関が強く、ゾーン間の干渉
が少ないため、本発明の燃料投入量制御の効果が大きい
からである。したがって、焼分けの程度が多少悪化する
ものの従来のバーナ(蓄熱式交番燃焼バーナシステムで
ない)を有する連続式加熱炉にも本発明法を適用するこ
とができる。In the present invention, the reason why a continuous heating furnace provided with a regenerative alternating combustion burner system is used is that in the regenerative alternating combustion burner system, most of the combustion gas generated by combustion is exhausted outside the furnace through the regenerator. So
This is because the amount of gas flowing out from each zone to other zones is small, the correlation between the furnace temperature in each zone and the fuel input is strong, and the interference between the zones is small, so that the effect of the fuel input control of the present invention is large. Therefore, the method of the present invention can be applied to a continuous heating furnace having a conventional burner (not a regenerative alternating combustion burner system) although the degree of burning is somewhat deteriorated.
【0009】[0009]
【実施例】以下、本発明の一実施例を図に基づいて説明
する。図1は本発明の一実施例による連続式加熱炉の燃
料投入量制御方式の概略構成を示すブロック図である。
また、図2及び図3はその連続式加熱炉の単位炉毎に装
備された蓄熱式交番燃焼バーナシステムを示す概略構成
図であり、図2は単位炉の側面断面図、図3は単位炉の
正面図でもある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a fuel supply amount control method for a continuous heating furnace according to one embodiment of the present invention.
2 and 3 are schematic structural views showing a regenerative alternating combustion burner system provided for each unit furnace of the continuous heating furnace. FIG. 2 is a side sectional view of the unit furnace, and FIG. 3 is a unit furnace. It is also a front view.
【0010】連続式加熱炉1は、鋼片Wの装入口3と搬
出口4を有する単位炉2を複数個連結して構成したもの
である。実施例では8個の単位炉2からなっており、し
たがって鋼片を連続的に加熱する8個のゾーンを有す
る。単位炉2には、炉体の上部及び下部に、並びに各部
の左右に、それぞれ一対の蓄熱式燃焼バーナ9が炉長方
向に対向して設置されている。そして各バーナ9は、図
2、図3に示すように、燃料とバーナ本体に設けた蓄熱
体11を通して供給された燃焼用予熱空気とを混合する
空間10を有し、さらに各々一対のバーナ9は周期的に
交互に燃焼と排気を行うようになっており、一方のバー
ナ9が燃焼を停止し、一つの四方弁14で排気ガスをそ
のバーナの蓄熱体11を通して炉から引き出している間
に、他方のバーナ9が燃焼を開始し、高温の燃焼ガスを
炉内部に向けて吹き出すようになっている。なお、図3
において、12は押込みファン15により燃焼用空気を
供給する空気供給系、13は誘引ファン16により排気
ガスの排出を行う排気ガス排気系で、空気供給系12と
排気ガス排気系13に上記四方弁14を設けている。1
8は一つの三方弁17を介して燃料を供給する燃料供給
系である。また、図1、図2において、5は単位炉2毎
に設けた炉圧制御手段で、集合煙突8に連通するダクト
7に設けたダンパー6の開度を調節し、各ゾーンの炉圧
を一定に制御するものである。The continuous heating furnace 1 is constituted by connecting a plurality of unit furnaces 2 each having an inlet 3 for a billet W and an outlet 4. The embodiment consists of eight unit furnaces 2 and therefore has eight zones for continuously heating the billet. In the unit furnace 2, a pair of regenerative combustion burners 9 are installed on the upper and lower parts of the furnace body and on the left and right of each part, respectively, facing the furnace length direction. Each of the burners 9 has a space 10 for mixing fuel and preheated combustion air supplied through a heat storage body 11 provided in the burner main body, as shown in FIGS. Periodically and alternately performs combustion and exhaust, while one burner 9 stops combustion and exhaust gas is drawn out of the furnace through the regenerator 11 of the burner by one four-way valve 14. The other burner 9 starts burning and blows out high-temperature combustion gas toward the inside of the furnace. Note that FIG.
, 12 is an air supply system for supplying combustion air by a pushing fan 15, and 13 is an exhaust gas exhaust system for exhausting exhaust gas by an induction fan 16. The four-way valve is provided to the air supply system 12 and the exhaust gas exhaust system 13. 14 are provided. 1
Reference numeral 8 denotes a fuel supply system that supplies fuel through one three-way valve 17. In FIGS. 1 and 2, reference numeral 5 denotes furnace pressure control means provided for each unit furnace 2. The furnace pressure control means 5 adjusts the opening degree of a damper 6 provided in a duct 7 communicating with a collecting chimney 8, and reduces the furnace pressure in each zone. It is controlled to be constant.
【0011】以上のように構成された蓄熱式交番燃焼バ
ーナシステム100を少なくとも一対以上、単位炉2毎
に設置して、図1に示すように連続式加熱炉1を構成す
る。したがって、連続式加熱炉1の各ゾーンは単位炉2
毎に構成され、しかも蓄熱式交番燃焼バーナ9により前
後の隣接ゾーンへ排気ガスが流出することがほとんどな
く、ゾーン間の干渉が少ないものとなる。また、各ゾー
ン毎にバーナ9に供給する燃料を制御する燃料流量制御
装置101が蓄熱式交番燃焼バーナシステム100毎に
設けられている。燃料流量制御装置101は、燃料投入
設定手段102からの制御信号に基づき、蓄熱式交番燃
焼バーナシステム100に燃料流量制御信号を出力する
よう構成されている。At least one pair of the regenerative alternating combustion burner systems 100 configured as described above is installed for each unit furnace 2 to constitute a continuous heating furnace 1 as shown in FIG. Therefore, each zone of the continuous heating furnace 1 is a unit furnace 2
Exhaust gas hardly flows out to adjacent zones before and after by the regenerative alternating combustion burner 9, and interference between zones is reduced. Further, a fuel flow control device 101 for controlling the fuel supplied to the burner 9 for each zone is provided for each regenerative alternating combustion burner system 100. The fuel flow control device 101 is configured to output a fuel flow control signal to the regenerative alternating combustion burner system 100 based on a control signal from the fuel input setting means 102.
【0012】燃料投入設定手段102は、燃料投入パタ
ーン計算手段103と、鋼片炉内位置計算手段104
と、設定燃料流量計算手段105とから構成される。通
常の温度θ1 に加熱抽出する鋼片の情報106が燃料投
入パターン計算手段103に与えられると、燃料投入量
及びそのパターンと鋼片温度推移の関係を推定する燃料
投入パターン予測数式モデルにより、その鋼片を目標抽
出温度θ1 に加熱する定常燃料投入量パターンF1 が求
められ、連続式加熱炉1の各ゾーンは、鋼片炉内位置計
算手段104からの信号に基づき、燃料投入量パターン
F1 に基づく燃料投入量に逐次設定される。The fuel input setting means 102 includes a fuel input pattern calculating means 103 and a billet furnace position calculating means 104.
And a set fuel flow rate calculating means 105. When the information 106 of the steel slab to be heated and extracted to the normal temperature θ1 is given to the fuel injection pattern calculation means 103, the fuel injection amount and the fuel injection pattern prediction formula model for estimating the relationship between the pattern and the transition of the steel slab temperature are obtained by the fuel injection pattern calculation formula model. A steady fuel injection amount pattern F1 for heating the billet to the target extraction temperature θ1 is obtained. Each zone of the continuous heating furnace 1 is changed to the fuel injection amount pattern F1 based on a signal from the billet furnace position calculating means 104. It is sequentially set to the fuel input amount based on this.
【0013】異なる加熱抽出温度θ2 の鋼片の情報が燃
料投入パターン計算手段103に与えられると、その鋼
片を目標抽出温度θ2 に加熱する定常燃料投入量パター
ンF2 と、F1 の全燃料投入量とF2 の全燃料投入量と
の差を基準にした異温度抽出のためのゾーン燃料投入量
変更割合ΔRが求められる。燃料投入設定手段102は
周期的に起動され、鋼片炉内位置計算手段104からの
信号に基づいて燃料流量制御信号を出力する。異なる加
熱抽出温度が通常の加熱抽出温度よりも高い(または低
い)場合は、異なる加熱抽出温度θ2 の鋼片の位置する
ゾーンの燃料投入量は、F1 に対して、F1 の全燃料投
入量とF2 の全燃料投入量との差の一定割合(ゾーン燃
料投入量変更割合)ΔRの燃料投入量だけ増し(または
減じ)た燃料投入量に変更され、前後のゾーンの燃料投
入量は、燃料投入量パターンF1に基づく燃料投入量に
対して、F1 の全燃料投入量とF2 の全燃料投入量との
差の一定割合(ゾーン燃料投入量変更割合)ΔRの燃料
投入量を減じた(または増した)量に変更設定される。When the information of the billet having different heating extraction temperature θ2 is given to the fuel injection pattern calculation means 103, a steady fuel injection amount pattern F2 for heating the steel billet to the target extraction temperature θ2, and a total fuel injection amount of F1. Then, a zone fuel input change ratio .DELTA.R for extracting a different temperature based on the difference between the total fuel input of F2 and F2 is determined. The fuel input setting means 102 is periodically activated and outputs a fuel flow control signal based on a signal from the in-slab furnace position calculating means 104. If the different hot-extraction temperatures are higher (or lower) than the normal hot-extraction temperature, the fuel input of the zone where the billet with different hot-extraction temperatures θ2 is located will be the total fuel input of F1 with respect to F1. The fuel input amount is increased (or decreased) by a certain ratio of the difference between the total fuel input amount of F2 and the fuel input amount of ΔR (zone fuel input change ratio) ΔR. With respect to the fuel input amount based on the amount pattern F1, the fuel input amount of a constant ratio (zone fuel input change ratio) ΔR of the difference between the total fuel input amount of F1 and the total fuel input amount of F2 is reduced (or increased). Changed) to the amount.
【0014】さらに、具体例を上げて説明する。鋼片22
0mm ×1125mm×8800mmを常温30℃で装入し、加熱抽出
温度1230℃に加熱能率200T/Hrで加熱操業し
ている上記燃料投入量制御方式の連続式加熱炉(炉長3
6m、8ゾーン)において、加熱能率を変えることな
く、8本の鋼片(2ゾーン相当)を1270℃に加熱抽
出した後、再び加熱抽出温度1230℃に加熱する操業
について、本発明法に基づいて実施した試験における鋼
片抽出温度の推移を示したものが図6である。このとき
の燃料投入パターン予測数式モデルにより推定されたF
1 、F2 は図4、図5のようであり、それぞれ全燃料投
入量は、54.6×106 kcal/Hr、57.0×
106 kcal/Hrであった。Further, a specific example will be described. Billet 22
0 mm x 1125 mm x 8800 mm is charged at normal temperature of 30 ° C, and heating operation is performed at a heating extraction temperature of 1230 ° C with a heating efficiency of 200 T / Hr.
6 mm, 8 zones), without changing the heating efficiency, after heating and extracting eight steel slabs (corresponding to 2 zones) to 1270 ° C., and then heating again to the heating and extracting temperature of 1230 ° C. based on the method of the present invention. FIG. 6 shows the transition of the billet extraction temperature in the test performed. At this time, F estimated by the fuel injection pattern prediction formula model
1 and F2 are as shown in FIGS. 4 and 5, and the total fuel input amounts are 54.6 × 10 6 kcal / Hr and 57.0 ×, respectively.
Was 10 6 kcal / Hr.
【0015】1270℃に加熱する鋼片の位置する2ゾ
ーンの燃料投入量は次のように求められる。図7の鋼片
加熱抽出温度差ΔTとゾーン燃料投入量変更割合ΔRの
関係から、1270℃に加熱する鋼片の位置する2ゾー
ンのうち、装入口寄りのゾーン(●印)の場合、ゾーン
燃料投入量変更割合は、ΔR=0.57、抽出口寄りの
ゾーン(○印)の場合、ΔR=0.49である。このと
き、該ゾーンの燃料投入量の変更量は、F1 の全燃料投
入量とF2 の全燃料投入量との差2.4×106kca
l/HrにΔRを乗じた値であり、それぞれ1.4×1
06kcal/Hr、1.2×106kcal/Hrとな
る。そこで、F1 の該ゾーンの燃料投入量にこの変更量
を増した燃料投入量に燃料投入設定手段102を設定変
更する。同時に1270℃に加熱する鋼片の位置する2
ゾーンに隣接した装入口寄りの1ゾーンの燃料投入量
は、図7の△印で示すΔR=−0.47によって、F1
の該ゾーンの燃料投入量から1.1×106kcal/
Hrだけ減じるよう燃料投入設定手段102を設定す
る。また、1270℃に加熱する鋼片の位置する2ゾー
ンに隣接した抽出口寄りの1ゾーンは、同様に、図7の
□印で示すΔR=−0.31によって、0.7×106
kcal/HrだけF1 の該ゾーンの燃料投入量から減
じた燃料投入量に燃料投入設定手段102を設定し、燃
料投入量を制御した。その結果は図6のとおりであり、
図6から鋼片が2つの異なった温度に焼き分けられてい
ることがわかる。The fuel input amount in the two zones where the steel slab to be heated to 1270 ° C. is located is determined as follows. From the relationship between the billet heating extraction temperature difference ΔT and zones fuel input amount change rate ΔR of FIG 7, of the two zones located billet heating to 1270 ° C., when the spout side of the zone (● mark), Zone The change rate of the fuel injection amount is ΔR = 0.57, and ΔR = 0.49 in the zone near the extraction port (indicated by a circle). At this time, the change amount of the fuel input amount of the zone is a difference of 2.4 × 10 6 kca between the total fuel input amount of F1 and the total fuel input amount of F2.
1 / Hr multiplied by ΔR, each being 1.4 × 1
0 6 kcal / Hr, a 1.2 × 10 6 kcal / Hr. Therefore, the setting of the fuel injection setting means 102 is changed to the fuel injection amount obtained by increasing this change amount to the fuel injection amount of the zone of F1. Simultaneously heating to 1270 ° C. 2
The fuel input amount in one zone near the charging port adjacent to the zone is expressed by F1 according to ΔR = −0.47 indicated by a mark in FIG.
1.1 × 10 6 kcal /
The fuel input setting means 102 is set so as to reduce by Hr. Similarly, one zone near the extraction port adjacent to the two zones where the steel slab to be heated to 1270 ° C. is located is 0.7 × 10 6 by ΔR = −0.31 indicated by the square in FIG.
The fuel injection setting means 102 was set to a fuel injection amount that was subtracted from the fuel injection amount of the zone of F1 by kcal / Hr, and the fuel injection amount was controlled. The result is as shown in FIG.
It can be seen from FIG. 6 that the billet was burnt to two different temperatures.
【0016】また、加熱抽出温度1270℃に加熱能率
200T/Hrで加熱操業している連続式加熱炉で加熱
能率を変えることなく、8本の鋼片を1230℃に加熱
抽出した後、再び加熱抽出温度1270℃に加熱するべ
く、本発明による設定、制御をしたときの鋼片抽出温度
の推移を示したものが図8であるが、やはり目標通り鋼
片は加熱されている。以上のように、本発明では複雑な
制御を実施することなく、鋼片の炉内移動に合わせて燃
料投入量を一定量増減させるだけで異なる温度での加熱
抽出が実現可能である。Further, eight steel slabs were heated and extracted at 1230 ° C. without changing the heating efficiency in a continuous heating furnace operating at a heating and extraction temperature of 1270 ° C. at a heating efficiency of 200 T / Hr, and then heated again. FIG. 8 shows the transition of the billet extraction temperature when the setting and control according to the present invention are performed to heat the billet to the extraction temperature of 1270 ° C. Also, the billet is heated as intended. As described above, in the present invention, heating and extraction at different temperatures can be realized only by increasing or decreasing the fuel input amount by a certain amount in accordance with the movement of the billet in the furnace without performing complicated control.
【0017】[0017]
【発明の効果】本発明は以上説明したとおり、一部の鋼
片を他の鋼片の加熱抽出温度θ1 よりも高い(または低
い)温度θ2 に加熱抽出するに際して、全ての鋼片をθ
1 に加熱する燃料投入量パターンF1 とθ2 に加熱する
燃料投入量パターンF2 を求め、他の鋼片に比して高温
(または低温)に加熱する鋼片の炉内移動に合わせて、
該鋼片の存在するゾーンのバーナシステムへの燃料投入
量を、パターンF1 によるゾーン燃料投入量に対して、
F1 の全燃料投入量とF2 の全燃料投入量の差の一定割
合だけ増す(または減ずる)とともに、その前後の隣接
ゾーンのバーナシステムへの燃料投入量を、パターンF
1 によるゾーン燃料投入量に対して、F1の全燃料投入
量とF2 の全燃料投入量の差の一定割合だけ減じ(また
は増し)、その他のゾーンの燃料投入量をF1 の該他の
ゾーンの燃料投入量とするように、各ゾーンの燃料投入
量を設定、制御することにより、連続式加熱炉に連続的
に装入した一部の鋼片を他の鋼片と異なった温度に加熱
抽出することができる。また、上記バーナシステムを蓄
熱式交番燃焼バーナシステムとすることにより、排気ガ
スのゾーン間の干渉が少なくなり、本発明の効果が良好
に発揮される。As described above, according to the present invention, when some of the steel slabs are heated and extracted to a temperature θ2 higher (or lower) than the heating extraction temperature θ1 of the other steel slabs, all the steel slabs are subjected to θ.
The fuel input pattern F1 to be heated to 1 and the fuel input pattern F2 to be heated to θ2 are determined, and the steel slab heated to a higher temperature (or lower temperature) than the other steel slabs is moved in the furnace.
The fuel input amount to the burner system in the zone where the billet is present is calculated as follows with respect to the zone fuel input amount according to the pattern F1.
In addition to increasing (or decreasing) a certain percentage of the difference between the total fuel input amount of F1 and the total fuel input amount of F2, the fuel input amount to the burner system in the adjacent zone before and after that is determined by the pattern F
1 is reduced (or increased) by a certain percentage of the difference between the total fuel input of F1 and the total fuel input of F2, and the fuel input of the other zones is reduced by that of the other zones of F1. By setting and controlling the amount of fuel input in each zone so as to obtain the amount of fuel input, some steel slabs continuously charged into the continuous heating furnace are heated and extracted to a temperature different from other steel slabs. can do. In addition, by using the regenerative alternating combustion burner system as the burner system, the interference between the zones of the exhaust gas is reduced, and the effect of the present invention is sufficiently exhibited.
【0018】さらに、本発明によれば、上記のように各
ゾーンの燃料投入量を制御するだけであるので、抽出ピ
ッチの変更や加熱能率の低下をもたらすことがなく、ス
ケジューリング作業も極めて簡単なため、熱間圧延ライ
ンの操業上優れた効果を有する。Further, according to the present invention, since only the fuel injection amount in each zone is controlled as described above, there is no change in the extraction pitch or the decrease in the heating efficiency, and the scheduling operation is extremely simple. Therefore, it has an excellent effect on the operation of the hot rolling line.
【図1】本発明の一実施例による連続式加熱炉の燃料投
入量制御方式の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a fuel injection amount control method of a continuous heating furnace according to one embodiment of the present invention.
【図2】蓄熱式交番燃焼バーナシステムを備えた連続式
加熱炉の単位炉の断面側面図である。FIG. 2 is a sectional side view of a unit furnace of a continuous heating furnace provided with a regenerative alternating combustion burner system.
【図3】上記単位炉の正面図である。FIG. 3 is a front view of the unit furnace.
【図4】加熱抽出温度1230℃のときの燃料投入量パ
ターンを示す図である。FIG. 4 is a diagram showing a fuel input amount pattern at a heating extraction temperature of 1230 ° C.
【図5】加熱抽出温度1270℃のときの燃料投入量パ
ターンを示す図である。FIG. 5 is a diagram showing a fuel input amount pattern at a heating extraction temperature of 1270 ° C.
【図6】鋼片の抽出温度の推移図である。FIG. 6 is a transition diagram of an extraction temperature of a billet.
【図7】鋼片の抽出温度差と燃料投入量の変化割合の関
係を示す図である。FIG. 7 is a diagram showing a relationship between a difference in extraction temperature of a billet and a change rate of a fuel input amount.
【図8】鋼片の抽出温度の推移図である。FIG. 8 is a transition diagram of an extraction temperature of a billet.
1 連続式加熱炉 2 単位炉 3 装入口 4 搬出口 9 蓄熱式燃焼バーナ 100 蓄熱式交番燃焼バーナシステム 101 燃料流量制御装置 102 燃料投入設定手段 DESCRIPTION OF SYMBOLS 1 Continuous heating furnace 2 Unit furnace 3 Loading 4 Loading / unloading 9 Regenerative combustion burner 100 Regenerative alternating combustion burner system 101 Fuel flow control device 102 Fuel input setting means
フロントページの続き (72)発明者 石岡 宗浩 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 藤井 良基 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 松尾 護 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 須藤 淳 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (56)参考文献 特公 平4−78691(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 11/00 102 C21D 9/00 101 C21D 1/52 C21D 1/00 112 Continued on the front page (72) Inventor Munehiro Ishioka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Ryoki Fujii 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Ryoichi Tanaka 2-1-153 Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Inside (72) Inventor Mamoru Matsuo 2-1-153 Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Inside the Company (72) Inventor Atsushi Sudo 2-1-153 Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Inside the Furnace Industry Co., Ltd. (56) References JP 4-78691 (JP, B2) (58) Field (Int.Cl. 7 , DB name) C21D 11/00 102 C21D 9/00 101 C21D 1/52 C21D 1/00 112
Claims (2)
群のうちの一部の鋼片を装入間隔を変えることなく他の
鋼片の抽出温度よりも高いまたは低い温度に加熱抽出す
る鋼片の加熱方法において、 全ての鋼片を抽出温度θ1 に加熱するときの前記加熱炉
のゾーン毎の燃料投入量パターンF1 と、全ての鋼片を
抽出温度θ2 に加熱するときの前記加熱炉のゾーン毎の
燃料投入量パターンF2 と、前記一部の鋼片を抽出温度
θ1 から抽出温度θ2 に加熱するときの、F1 の全燃料
投入量とF2の全燃料投入量の差に対するゾーン燃料投
入量変更割合ΔR(0<ΔRe、ΔRn<1、ただし、
ΔRe≠ΔRn、添字のeは対象鋼片が存在するゾーン
の場合、nは対象鋼片が存在するゾーンの前後の隣接ゾ
ーンの場合)を求めておき、 前記一部の鋼片の炉内移動に合わせて、該鋼片の存在す
るゾーンのバーナシステムへの燃料投入量をパターンF
1 の燃料投入量に対して、F1 の全燃料投入量とF2の
全燃料投入量の差に前記ゾーン燃料投入量変更割合(Δ
Re)を乗じた分だけ増しまたは減じ、 そのゾーンの前後の隣接ゾーンのバーナシステムへの燃
料投入量をパターンF1 の燃料投入量に対して、F1 の
全燃料投入量とF2 の全燃料投入量の差に前記ゾーン燃
料投入量変更割合(ΔRn)を乗じた分だけ減じまたは
増し、 その他のゾーンのバーナシステムへの燃料投入量をパタ
ーンF1 の燃料投入量にすることを特徴とする連続式加
熱炉における鋼片の加熱方法。1. A method in which a part of a group of billets continuously charged into a continuous heating furnace is heated to a temperature higher or lower than an extraction temperature of other billets without changing a charging interval. In the heating method of the steel slab to be heated and extracted, the fuel input pattern F1 for each zone of the heating furnace when all the steel slabs are heated to the extraction temperature θ1 and the fuel injection pattern when all the steel slabs are heated to the extraction temperature θ2 The fuel input pattern F2 for each zone of the heating furnace and the difference between the total fuel input of F1 and the total fuel input of F2 when heating a part of the steel slab from the extraction temperature θ1 to the extraction temperature θ2. Zone fuel input change rate ΔR ( 0 <ΔRe, ΔRn <1, where
ΔRe ≠ ΔRn, subscript e is the zone where the target billet exists
In the case of n, adjacent zones before and after the zone where the target billet exists
In the case of the burner system, the amount of fuel input to the burner system in the zone where the billet is present is determined in accordance with the pattern F in accordance with the movement of the billet in the furnace.
For the fuel input of No. 1, the difference between the total fuel input of F1 and the total fuel input of F2 is calculated as the zone fuel input change ratio (Δ
Re) is increased or decreased by the amount multiplied by Re), and the amount of fuel input to the burner system in the adjacent zone before and after the zone is calculated based on the total fuel input of F1 and the total fuel input of F2 with respect to the fuel input of pattern F1. Continuous heating, wherein the fuel injection amount to the burner system in the other zones is set to the fuel injection amount of the pattern F1 by increasing or decreasing the difference between the fuel injection amount and the zone fuel injection amount change ratio (ΔRn). How to heat the billet in the furnace.
連続式加熱炉を使用することを特徴とする請求項1記載
の連続式加熱炉における鋼片の加熱方法。2. The method for heating a steel slab in a continuous heating furnace according to claim 1, wherein a continuous heating furnace having a regenerative alternating combustion burner system is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5254154A JP3003062B2 (en) | 1993-10-12 | 1993-10-12 | Heating method of billet in continuous heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5254154A JP3003062B2 (en) | 1993-10-12 | 1993-10-12 | Heating method of billet in continuous heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07109531A JPH07109531A (en) | 1995-04-25 |
JP3003062B2 true JP3003062B2 (en) | 2000-01-24 |
Family
ID=17260981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5254154A Expired - Fee Related JP3003062B2 (en) | 1993-10-12 | 1993-10-12 | Heating method of billet in continuous heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3003062B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102474417B1 (en) * | 2020-10-19 | 2022-12-07 | 주식회사 한화 | Heat Treatment Furnace with Gas Burner Device |
-
1993
- 1993-10-12 JP JP5254154A patent/JP3003062B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07109531A (en) | 1995-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101196369A (en) | Heat accumulation-exchange type heating stove and heating method thereof | |
JPH09126665A (en) | Recovering method of waste heat of steel heating furnace and facility therefor | |
CA1175649A (en) | Method and system for controlling multi-zone reheating furnaces | |
US6183246B1 (en) | Method of heating a continuously charged furnace particularly for steel-making products, and continuously charged heating furnace | |
EA016077B1 (en) | Method of reheating in a furnace using a fuel of low calorific power, and furnace using this method | |
JP3003062B2 (en) | Heating method of billet in continuous heating furnace | |
JP3078434B2 (en) | Heating equipment and heating method using the same | |
JP4987689B2 (en) | Direct-fired type roller hearth continuous heat treatment furnace | |
JP3356595B2 (en) | Heating furnace combustion control method | |
JPH11323431A (en) | Method and device for controlling temperature of heating furnace | |
JP3328471B2 (en) | Heating furnace combustion control method | |
JP2936449B2 (en) | Furnace operation method of heating furnace provided with regenerative alternating combustion burner system | |
CN101435018B (en) | Hot dip galvanizing annealing process and high temperature annealing furnace | |
GB1600441A (en) | Furnace arrangement for the heating of slabs | |
JPH06200329A (en) | Operation of continuous heating furnace having regenerative type burner | |
JP3387376B2 (en) | Modification method of heating furnace and heating furnace | |
CN201149427Y (en) | Heat-accumulation heat-exchange type heating furnace | |
JP3067465B2 (en) | Continuous heating furnace | |
JP3982042B2 (en) | Combustion control method for continuous heating furnace | |
JPH09272919A (en) | Continuous heating method and apparatus therefor | |
JP2000273530A (en) | Continuous heating apparatus for steel material | |
JP2746011B2 (en) | Heating furnace combustion control method | |
JP3174148B2 (en) | Furnace equipment for heating and soaking high-temperature slabs | |
JP2755089B2 (en) | Combustion method for continuous heating furnace with regenerative burner | |
JPH08319520A (en) | Continuous annealing furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111119 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111119 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121119 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |