JPH10195454A - Fluid catalytic decomposition of oil - Google Patents

Fluid catalytic decomposition of oil

Info

Publication number
JPH10195454A
JPH10195454A JP9327167A JP32716797A JPH10195454A JP H10195454 A JPH10195454 A JP H10195454A JP 9327167 A JP9327167 A JP 9327167A JP 32716797 A JP32716797 A JP 32716797A JP H10195454 A JPH10195454 A JP H10195454A
Authority
JP
Japan
Prior art keywords
oil
catalyst
zone
reaction
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9327167A
Other languages
Japanese (ja)
Other versions
JP3724934B2 (en
Inventor
Yuichiro Fujiyama
優一郎 藤山
Tomoaki Adachi
倫明 足立
Shunichi Yamamoto
駿一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP32716797A priority Critical patent/JP3724934B2/en
Publication of JPH10195454A publication Critical patent/JPH10195454A/en
Application granted granted Critical
Publication of JP3724934B2 publication Critical patent/JP3724934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid catalytic decomposition method of oil capable of suppressing hydrogen transfer reaction after decomposition reaction of heavy fuel oil and excessive decomposition of light olefin, etc., and capable of obtaining light olefin oil in high yield. SOLUTION: When decomposing oil by bringing the oil into contact with a catalyst by using a fluid catalytic reactor equipped with a lower counter-current type reaction zone area, a separation zone, a stripping zone, a catalyst regenerating zone and a distillation zone, (1) a contact time in the reaction zone is 0.1-3.0sec and outlet temperature in the reaction zone is 530-700 deg.C and catalyst/oil ratio is 10-50 and (2) 1-50wt.% (based on oil) residual oil content comprising a hydrocarbon obtained by distilling a mixture of a decomposition product obtained by catalytically decomposing in a reaction zone with unreacted product and having >=300 deg.C boiling point is introduced into the outlet part of the reaction zone, and temperature of mixture of the decomposition product with the unreacted material and the catalyst is lowered by 1-100 deg.C, compared with temperature before introducing the residual oil content to produce light olefin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は油の流動接触分解方
法に関し、詳しくは重質油からエチレン、プロピレン、
ブテン、ペンテン等の軽質オレフィンを高収率で得るた
めの流動接触分解(FCC)方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid catalytic cracking method for oil, and more particularly, to a method for converting ethylene, propylene,
The present invention relates to a fluid catalytic cracking (FCC) method for obtaining light olefins such as butene and pentene in high yield.

【0002】[0002]

【従来の技術】通常の接触分解は、石油系炭化水素を触
媒と接触させて分解し、主生成物としてのガソリンと少
量のLPGと分解軽油等を得、さらに触媒上に堆積した
炭素質(コ−ク)を空気で燃焼除去して触媒を循環再使
用するものである。
2. Description of the Related Art In general catalytic cracking, petroleum hydrocarbons are decomposed by contact with a catalyst to obtain gasoline as a main product, a small amount of LPG, cracked gas oil, and the like. The catalyst is circulated and reused by burning and removing coke by air.

【0003】しかしながら最近では、流動接触分解装置
をガソリン製造装置としてではなく石油化学原料として
の軽質オレフィン製造装置として利用していこうという
動きがある。このような流動接触分解装置の利用法は、
石油精製と石油化学工場が高度に結びついた精油所にお
いて特に経済的なメリットがある。また一方、環境問題
への関心の高まりから、自動車ガソリン中のオレフィ
ン、芳香族含有量の規制あるいは含酸素基材(MTBE
等)添加の義務づけ等が施行され始めている。これによ
りFCCガソリン、接触改質ガソリンに替わる高オクタ
ン価ガソリン基材としてアルキレート、MTBEの需要
が増大することが予想される。従ってそれら基材の原料
であるプロピレン、ブテンの増産が必要となる。
However, recently, there has been a movement to utilize a fluid catalytic cracking unit not as a gasoline production unit but as a light olefin production unit as a petrochemical raw material. The use of such a fluid catalytic cracker is
There are particular economic benefits in refineries where petroleum refining and petrochemical plants are highly linked. On the other hand, due to growing interest in environmental issues, regulations on olefin and aromatic contents in automobile gasoline or oxygen-containing base materials (MTBE)
Etc.) Mandatory addition has begun to take effect. This is expected to increase the demand for alkylate and MTBE as high-octane gasoline base materials to replace FCC gasoline and catalytic reforming gasoline. Therefore, it is necessary to increase the production of propylene and butene, which are the raw materials for these substrates.

【0004】重質油の流動接触分解により軽質オレフィ
ンを製造する方法としては、例えば高温で反応を行う方
法(米国特許第4,980,053号)、触媒と原料油
の接触時間を短くする方法(米国特許第4,419,2
21号、米国特許第3074878号、米国特許第54
62652号、ヨーロッハ゜公開特許第315179A
号)等が挙げられる。
As a method for producing a light olefin by fluid catalytic cracking of heavy oil, for example, a method in which a reaction is carried out at a high temperature (US Pat. No. 4,980,053), a method in which the contact time between a catalyst and a feed oil is shortened (U.S. Pat. No. 4,419,2)
21, U.S. Pat. No. 3,074,878, and U.S. Pat.
No. 62652, European Patent Publication No. 315179A
No.) and the like.

【0005】しかしこれらの方法に共通する問題点とし
て、反応帯域を出てからの過分解や水素移行反応により
軽質オレフィン収率が下がってしまうという点があっ
た。
However, a problem common to these methods is that the yield of light olefins is reduced due to over-decomposition or hydrogen transfer reaction after leaving the reaction zone.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、重質
油の分解反応後の水素移行反応や、軽質オレフィン等の
過分解を抑制し、エチレン、プロピレン、ブテン、ペン
テン等の軽質オレフィンを高収率で得ることのできる油
の流動接触分解方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to suppress the hydrogen transfer reaction after heavy oil cracking reaction and the overcracking of light olefins and the like to reduce light olefins such as ethylene, propylene, butene and pentene. An object of the present invention is to provide a fluid catalytic cracking method for oil which can be obtained in a high yield.

【0007】[0007]

【課題を解決するための手段】本発明者等は、高温にお
ける油の流動接触分解方法において、重質成分の分解率
を上げつつ重質油の分解反応後の水素移行反応、軽質オ
レフィン等の過分解を抑制し、軽質オレフィンを高収率
で得ることを主眼に鋭意研究を行った。その結果、特定
の温度、触媒/油比、反応温度、反応形式、接触時間を
採用し、なおかつ分解生成物および未反応物の混合物を
蒸留して得られる残渣油分の一定量を、反応帯域出口に
リサイクルして導入することにより、上記目的が達成で
きることを見いだし本発明を完成するに至った。
Means for Solving the Problems In the fluid catalytic cracking method of oil at a high temperature, the present inventors have developed a hydrogen transfer reaction after cracking reaction of heavy oil, light olefins and the like while increasing the cracking rate of heavy components. Intensive research has been conducted with a view to suppressing over-decomposition and obtaining light olefins in high yield. As a result, the specific temperature, the catalyst / oil ratio, the reaction temperature, the reaction type, and the contact time are employed, and a certain amount of the residual oil obtained by distilling the mixture of the decomposition product and the unreacted product is supplied to the reaction zone outlet. It has been found that the above object can be achieved by recycling and introducing the present invention, and the present invention has been completed.

【0008】すなわち本発明である油の流動接触分解方
法は、下向流型反応帯域、分離帯域、ストリッピング帯
域、触媒再生帯域および蒸留帯域を具備する流動接触分
解反応装置を用いて、油を触媒と接触させて分解するに
あたり、 1)前記反応帯域における接触時間を0.1〜3.0
秒、反応帯域出口温度を530〜700℃、触媒/油比
を10〜50とし、 2)前記反応帯域で接触分解して得られた分解生成物お
よび未反応物の混合物を蒸留して得られた沸点300℃
以上の炭化水素から成る残渣油分を、油に対して1〜5
0重量%の量を反応帯域出口部分に導入することによ
り、分解生成物、未反応物および触媒の混合物の温度を
残渣油分を導入する前に比べて1〜100℃低下させる
ことにより、軽質オレフィンを製造することを特徴とす
る。
[0008] That is, the fluid catalytic cracking method of the oil of the present invention comprises the use of a fluid catalytic cracking reactor having a downflow type reaction zone, a separation zone, a stripping zone, a catalyst regeneration zone and a distillation zone. In decomposing by contact with a catalyst, 1) the contact time in the reaction zone is 0.1 to 3.0.
The reaction zone outlet temperature is 530 to 700 ° C., the catalyst / oil ratio is 10 to 50, and 2) a mixture of a decomposition product and an unreacted product obtained by catalytic cracking in the reaction zone is obtained by distillation. Boiling point 300 ° C
The residual oil composed of the above hydrocarbons is
By introducing an amount of 0% by weight into the outlet of the reaction zone, the temperature of the mixture of decomposition products, unreacted materials and catalyst is reduced by 1 to 100 ° C. as compared with before the introduction of the residual oil, so that light olefins can be obtained. Is manufactured.

【0009】[0009]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0010】本発明で用いる原料油は主として重質油で
ある。重質油としては、減圧軽油(VGO)、常圧残
油、減圧残油、熱分解軽油およびこれらを水素化精製し
た重質油等が例示できる。これらの重質油をそれぞれ単
独で用いてもよいし、これら重質油の混合物あるいはこ
れら重質油に一部軽質油を混合したものも用いることが
できる。
[0010] The feedstock oil used in the present invention is mainly heavy oil. Examples of the heavy oil include a vacuum gas oil (VGO), an atmospheric residue, a vacuum residue, a pyrolysis gas oil, and a heavy oil obtained by hydrotreating these. Each of these heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils and a partly light oil can also be used.

【0011】本発明で使用する流動接触分解反応装置
は、再生帯域(再生塔)、下向流(ダウンフロー)形式
反応帯域(反応塔)、分離帯域(分離器)、ストリッピ
ング帯域および蒸留帯域(精留塔)を有する装置であ
る。
The fluidized catalytic cracking reactor used in the present invention comprises a regeneration zone (regeneration tower), a downflow type reaction zone (reaction tower), a separation zone (separator), a stripping zone and a distillation zone. (Rectification tower).

【0012】本発明でいう流動接触分解とは、前記した
重質油原料を流動状態に保持されている触媒と前記特定
運転条件で連続的に接触させ、重質原料油を軽質オレフ
ィンを主体とした軽質な炭化水素に分解することであ
る。通常の流動接触分解では触媒と原料油が共に管中を
上昇するいわゆるライザ−クラッキングが採用される。
本発明においては触媒/油比が通常の流動接触分解方法
に比べて極端に大きいため、触媒と原料油が共に管中を
降下するダウンフロークラッキングを採用して逆混合を
避けるということも特徴の一つである。
The fluid catalytic cracking referred to in the present invention means that the above-mentioned heavy oil feedstock is brought into continuous contact with the catalyst maintained in a fluidized state under the above-mentioned specific operating conditions, and the heavy feedstock is mainly made of light olefin. Is to decompose into light hydrocarbons. In ordinary fluid catalytic cracking, so-called riser-cracking in which both the catalyst and the feed oil rise in the tube is employed.
In the present invention, since the catalyst / oil ratio is extremely large as compared with the ordinary fluid catalytic cracking method, it is also characterized by adopting a down flow cracking in which both the catalyst and the feed oil descend in the tube to avoid back mixing. One.

【0013】原料油である重質油は反応帯域内で高温で
大量の触媒と接触することにより、高収率で軽質オレフ
ィンに分解される。しかし分解反応に引き続き、パラフ
ィン、ナフテン、芳香族類から軽質オレフィンが水素を
引き抜き、好ましくない生成物である軽質パラフィンに
転化してしまう水素移行反応と呼ばれる現象や、好まし
い生成物である軽質オレフィンがさらに分解を受け、水
素ガス、メタンガス、エタンガス等のドライガスが増加
する過分解と呼ばれる現象が一般に発生する。特に本発
明のように通常の流動接触分解方法に比べて高温、高い
触媒/油比を採用する場合はこの現象が顕著に起こって
しまう。このため短時間の接触分解反応後速やかに反応
を停止させることが重要となる。
The heavy oil, which is the feedstock, is decomposed into light olefins in high yield by contact with a large amount of catalyst at a high temperature in the reaction zone. However, following the cracking reaction, light olefins extract hydrogen from paraffins, naphthenes, and aromatics, and are converted into light paraffins, which are undesirable products. In addition, a phenomenon called over-decomposition in which dry gas such as hydrogen gas, methane gas, ethane gas, and the like increases due to further decomposition generally occurs. In particular, when a high temperature and a high catalyst / oil ratio are employed as compared with the ordinary fluid catalytic cracking method as in the present invention, this phenomenon occurs remarkably. Therefore, it is important to stop the reaction immediately after the catalytic cracking reaction for a short time.

【0014】反応を急速に停止する方法としては分解生
成物、未反応物および触媒の混合物に、クエンチオイル
またはクエンチガスを混合し、分解生成物、未反応物お
よび触媒の混合物を急冷する方法が知られている。この
方法で確かに水素移行反応、過分解反応等をある程度停
止させることはできるが、該反応を十分に停止させるた
めには分解生成物、未反応物および触媒の混合物を50
0℃以下にまで冷却する必要があり、本発明のように反
応帯域出口温度が530〜700℃と高い場合は、大量
のクエンチオイルまたはクエンチガスが必要になり経済
的に好ましくない。また、分解生成物、未反応物および
触媒の混合物を過度に冷却することにより、再生帯域温
度を、コークの燃焼に必要な650℃以上に維持するた
めに必要なコークの量が大きくなりすぎ、熱バランスを
保つことが困難になる等の不都合が発生する。
As a method for rapidly stopping the reaction, there is a method in which a quench oil or a quench gas is mixed with a mixture of the decomposition product, the unreacted product and the catalyst, and the mixture of the decomposition product, the unreacted product and the catalyst is quenched. Are known. Although the hydrogen transfer reaction and the over-decomposition reaction can be stopped to some extent by this method, the mixture of the decomposition products, unreacted products and the catalyst is required to stop the reaction sufficiently.
It is necessary to cool the reaction zone to 0 ° C. or lower, and when the outlet temperature of the reaction zone is as high as 530 to 700 ° C. as in the present invention, a large amount of quench oil or quench gas is required, which is not economically preferable. Also, by excessively cooling the mixture of decomposition products, unreacted materials and catalyst, the amount of coke required to maintain the regeneration zone temperature above 650 ° C. required for combustion of coke becomes too large, Inconveniences such as difficulty in maintaining heat balance occur.

【0015】前記クエンチガスとしては、スチームある
いは、例えばメタン、エタン、プロパン、ブタン、ペン
タン、ヘキサン等の炭素数1〜6のパラフィン系炭化水
素およびこれらの混合物など、注入する温度、圧力で気
体として存在できる物質が好ましく用いられる。
The quench gas may be steam or a gas at a temperature and pressure to be injected, such as a paraffinic hydrocarbon having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane and hexane, and a mixture thereof. Substances that can be present are preferably used.

【0016】本発明においてクエンチオイルとして用い
るオイルは、原料油を接触分解して得られる分解生成
物、未反応物の混合物を蒸留して得られる沸点300℃
以上、芳香族分が60重量%以上、好ましくは70重量
%以上含有する炭化水素からなる残渣油分が挙げられ
る。芳香族分が60重量%未満あるいは、沸点が300
℃未満では、過分解、水素移行等の反応を十分停止でき
ないため好ましくない。具体的には、未分解油等が挙げ
られる。
The oil used as the quench oil in the present invention has a boiling point of 300 ° C. obtained by distilling a mixture of a decomposition product obtained by catalytically cracking a raw oil and an unreacted product.
As described above, the residual oil component consisting of a hydrocarbon containing 60% by weight or more, preferably 70% by weight or more of an aromatic component is exemplified. The aromatic content is less than 60% by weight or the boiling point is 300
If the temperature is lower than ℃, it is not preferable because reactions such as over-decomposition and hydrogen transfer cannot be stopped sufficiently. Specifically, uncracked oils and the like are mentioned.

【0017】この残渣油分の特徴として、原料油が高
温、高い触媒/油比の反応条件下で接触分解を受けた後
に分解されずに残った難分解性の成分を含み、芳香族分
を非常に高く含有する炭化水素であるという点があげら
れる。
As a characteristic of the residual oil, the raw oil contains a hardly decomposable component which remains without being decomposed after being subjected to catalytic cracking under high temperature, high catalyst / oil ratio reaction conditions, and has an extremely high aromatic content. In that it is a highly contained hydrocarbon.

【0018】反応帯域から取り出された分解生成物、未
反応物および触媒の混合物を分離帯域に導入して触媒を
取り除いた後、分解生成物および未反応物の混合物は、
精留塔に導入され、蒸留が行われる。蒸留して得られた
残渣油分は精留塔から取り出され、少なくとも一部が反
応帯域出口部分に導入される。
After removing the catalyst by introducing a mixture of decomposition products, unreacted products and catalyst taken out of the reaction zone into the separation zone, the mixture of decomposition products and unreacted products is
It is introduced into a rectification column and distillation is performed. The residual oil obtained by distillation is removed from the rectification column, and at least a part is introduced into the outlet of the reaction zone.

【0019】本発明において該反応帯域出口部分(出口
部直後)に導入する前記残渣油分の量は、原料油に対し
て1〜50重量%、好ましくは2〜30重量%、より好
ましくは3〜20重量%である。1重量%未満では、反
応が十分停止しないため好ましくない。また、50重量
%を超えると分解生成物、未反応物および触媒の混合物
中の触媒を過度に冷却することにより再生帯域温度が下
がるため好ましくない。
In the present invention, the amount of the residual oil introduced into the outlet of the reaction zone (immediately after the outlet) is 1 to 50% by weight, preferably 2 to 30% by weight, more preferably 3 to 3% by weight based on the feedstock oil. 20% by weight. If it is less than 1% by weight, the reaction does not stop sufficiently, which is not preferable. On the other hand, when the content exceeds 50% by weight, the temperature of the regeneration zone is lowered by excessively cooling the catalyst in the mixture of the decomposition product, the unreacted product and the catalyst, which is not preferable.

【0020】前記残渣油分を前記反応帯域出口部分に供
給することにより、分解生成物、未反応物および触媒の
混合物の温度を1〜100℃、好ましくは1〜50℃、
より好ましくは1〜30℃低下させる。
By supplying the residual oil to the outlet of the reaction zone, the temperature of the mixture of the decomposition product, the unreacted product and the catalyst is 1 to 100 ° C., preferably 1 to 50 ° C.
More preferably, the temperature is lowered by 1 to 30 ° C.

【0021】ダウンフロー形式反応帯域において、原料
油と流動状態に保持されている触媒との接触分解によっ
て得られた分解生成物、未反応物および触媒の混合物
は、上記残渣油分を導入して冷却された後、分離帯域に
送られる。
In the downflow type reaction zone, a mixture of cracked products, unreacted materials and catalyst obtained by catalytic cracking of the raw oil and the catalyst kept in a fluidized state is cooled by introducing the above residual oil. After that, it is sent to the separation band.

【0022】分離帯域において分解生成物、未反応物お
よび触媒の混合物から分離された触媒は、触媒ストリッ
ピング帯域に送られ、触媒から分解生成物、未反応物等
の炭化水素類の大部分が除去される。炭素質および一部
重質の炭化水素類が付着した触媒は、ストリッピング帯
域からさらに触媒再生帯域に送られる。触媒再生帯域に
おいては、炭素質の付着した触媒の酸化処理がほどこさ
れる。酸化処理としては、燃焼等の処理が挙げられる。
この酸化処理を受けた触媒が再生触媒であり、触媒上に
沈着した炭素質および炭化水素類がほとんど除去された
ものである。この再生触媒は前記反応帯域に連続的に循
環される。
The catalyst separated from the mixture of the decomposition products, unreacted products and the catalyst in the separation zone is sent to the catalyst stripping zone, and most of the hydrocarbons such as decomposition products and unreacted products are separated from the catalyst. Removed. The catalyst to which carbonaceous and partially heavy hydrocarbons are attached is sent from the stripping zone to the catalyst regeneration zone. In the catalyst regeneration zone, oxidation treatment of the catalyst to which carbonaceous materials are attached is performed. Examples of the oxidation treatment include a treatment such as combustion.
The catalyst that has undergone this oxidation treatment is a regenerated catalyst, from which carbonaceous materials and hydrocarbons deposited on the catalyst have been almost removed. This regenerated catalyst is continuously circulated to the reaction zone.

【0023】分離帯域としては、サイクロン分離帯域や
高速分離帯域等が使用される。本発明でいう高速分離帯
域とは、分離効率がサイクロン分離帯域に比べて低い代
わりにガスの滞留時間が短く、滞留時間分布も短いもの
を指す。高速分離帯域としては、ボックス型、Uベント
型等が例として挙げられる。分離帯域から取り出された
分解生成物と、未反応物は蒸留帯域に送られる。
As the separation band, a cyclone separation band, a high-speed separation band, or the like is used. In the present invention, the high-speed separation zone refers to a zone in which the separation efficiency is lower than that of the cyclone separation zone but the residence time of the gas is short and the residence time distribution is short. Examples of the high-speed separation band include a box type and a U-vent type. Decomposition products removed from the separation zone and unreacted products are sent to a distillation zone.

【0024】本発明においては、再生帯域として通常の
流動接触分解反応装置で用いられる濃厚流動床型再生帯
域の他に、稀薄移動床の上昇管であるライザー型再生帯
域を用いることができる。また、複数の濃厚流動床型再
生塔とライザー型再生塔を直列に組み合わせて用いるこ
ともできる。
In the present invention, a riser type regeneration zone, which is a riser of a lean moving bed, can be used as a regeneration zone in addition to a thick fluidized bed type regeneration zone used in a usual fluid catalytic cracking reactor. Further, a plurality of thick fluidized bed type regenerators and a riser type regenerator can be combined in series and used.

【0025】本発明でいう反応帯域出口温度とは、ダウ
ンフロー形式流動床型反応塔の出口温度のことであり、
分解生成物が急冷あるいは触媒と分離される前の温度で
ある。本発明において反応帯域出口温度は530〜70
0℃であり、好ましくは540〜650℃、より好まし
くは550〜620℃である。530℃より低い温度で
は高い収率で軽質オレフィンを得ることができず、70
0℃より高い温度では熱分解が顕著になりドライガス発
生量が多くなるため好ましくない。
The reaction zone outlet temperature in the present invention refers to the outlet temperature of a down-flow type fluidized bed reactor.
This is the temperature before the decomposition products are quenched or separated from the catalyst. In the present invention, the reaction zone outlet temperature is 530-70.
It is 0 degreeC, Preferably it is 540-650 degreeC, More preferably, it is 550-620 degreeC. If the temperature is lower than 530 ° C., a light olefin cannot be obtained in a high yield.
If the temperature is higher than 0 ° C., thermal decomposition is remarkable, and the amount of dry gas generated is not preferable.

【0026】本発明でいう触媒/油比とは、触媒循環量
(ton/h)と原料油供給速度(ton/h)の比で
あり、本発明において該触媒/油比は10〜50であ
り、好ましくは15〜30である。本発明では短い接触
時間で接触分解反応を行うため、触媒/油比が10より
小さい場合、接触分解反応が十分起こらず好ましくな
い。また触媒/油比が50より大きい場合、触媒循環量
が大きく、再生帯域の温度が低くなり炭素質の燃焼が十
分に起こらないか、または触媒再生に必要な触媒滞留時
間が長くなりすぎ好ましくない。
The term "catalyst / oil ratio" as used in the present invention refers to the ratio between the amount of circulating catalyst (ton / h) and the feed rate of feed oil (ton / h). And preferably 15 to 30. In the present invention, since the catalytic cracking reaction is performed in a short contact time, if the catalyst / oil ratio is less than 10, the catalytic cracking reaction does not sufficiently occur, which is not preferable. When the catalyst / oil ratio is larger than 50, the circulation amount of the catalyst is large, and the temperature of the regeneration zone is lowered, so that carbonaceous combustion does not sufficiently occur, or the catalyst residence time required for catalyst regeneration is undesirably too long. .

【0027】本発明でいう反応帯域における接触時間と
は、再生触媒と原料油が接触してから分解生成物、未反
応物および触媒の混合物が反応帯域出口における該残渣
油分の導入点に達するまでの時間あるいは急冷されるま
での時間を示す。本発明において接触時間は0.1〜
3.0秒、好ましくは0.1〜2.0秒、より好ましく
は0.3〜1.5秒、さらに好ましくは0.3〜1.0
秒の範囲が選択される。接触時間が0.1秒未満の場合
は反応が十分進行する前に原料が反応帯域を出てしまう
ため好ましくない。接触時間が3.0秒を超えるときは
分解反応に引き続いておきる水素移行反応、過分解によ
り軽質オレフィンが軽質パラフィン等に転化する割合が
増加するので好ましくない。
The term "contact time in the reaction zone" as used in the present invention refers to the time from when the regenerated catalyst comes into contact with the raw material oil until the mixture of cracked products, unreacted materials and catalyst reaches the point of introduction of the residual oil at the outlet of the reaction zone. Or the time until it is quenched. In the present invention, the contact time is 0.1 to
3.0 seconds, preferably 0.1 to 2.0 seconds, more preferably 0.3 to 1.5 seconds, even more preferably 0.3 to 1.0 seconds
A range of seconds is selected. If the contact time is less than 0.1 second, the raw material leaves the reaction zone before the reaction proceeds sufficiently, which is not preferable. If the contact time exceeds 3.0 seconds, the rate of conversion of light olefins to light paraffin or the like due to a hydrogen transfer reaction or overcracking that follows the cracking reaction is not preferred.

【0028】本発明でいう再生帯域触媒濃厚相の温度
(以下、再生帯域温度と称する)とは、触媒再生帯域に
おいて濃厚状態で流動している触媒が再生帯域を出る直
前の部分の温度を指す。本発明において再生帯域温度は
650〜800℃であり、好ましくは680〜740℃
である。650℃より低い温度では触媒上に堆積した炭
素質の燃焼が遅くなり、炭素質が十分に取り除かれず触
媒活性を維持できないか、もしくは炭素質を十分に除去
するためには再生帯域内の触媒の滞留時間を非常に大き
くする必要があり、再生帯域が大きくなりすぎ経済的に
好ましくない。一方、800℃より高い温度では触媒が
水熱劣化を受ける上、触媒が再生帯域から反応帯域に持
ち込む熱量が大きくなりすぎ、反応帯域の温度を好まし
い温度に保てないため経済的に好ましくない。
In the present invention, the temperature of the catalyst rich phase in the regeneration zone (hereinafter, referred to as regeneration zone temperature) refers to the temperature of the portion of the catalyst regeneration zone immediately before the catalyst flowing in the rich state exits the regeneration zone. . In the present invention, the regeneration zone temperature is 650 to 800 ° C, preferably 680 to 740 ° C.
It is. At a temperature lower than 650 ° C., the combustion of the carbonaceous material deposited on the catalyst becomes slow, and the carbonaceous material is not sufficiently removed to maintain the catalytic activity, or the catalyst in the regeneration zone is required to sufficiently remove the carbonaceous material. It is necessary to make the residence time very long, and the reproduction band becomes too large, which is not economically preferable. On the other hand, if the temperature is higher than 800 ° C., the catalyst undergoes hydrothermal degradation, and the amount of heat that the catalyst brings from the regeneration zone to the reaction zone becomes too large, so that the temperature of the reaction zone cannot be maintained at a preferable temperature, which is economically undesirable.

【0029】本発明の流動接触分解反応装置の操作条件
のうち、上記以外については特に限定されないが、反応
圧力1〜3kg/cm2 Gで好ましく運転される。
The operating conditions of the fluid catalytic cracking reactor of the present invention are not particularly limited except for the above, but the reactor is preferably operated at a reaction pressure of 1 to 3 kg / cm 2 G.

【0030】本発明で使用する触媒は特に限定されない
が、通常、石油類の流動接触分解反応に用いられる触媒
が使用できる。特に活性成分としての超安定Y型ゼオラ
イトとその支持母体であるマトリックスを含む触媒が好
ましく用いられる。マトリックスとしては、カオリン、
モンモリロナイト、ハロイサイト、ベントナイト等の粘
土類、アルミナ、シリカ、ボリア、クロミア、マグネシ
ア、ジルコニア、チタニア、シリカ・アルミナ等の無機
多孔性酸化物、およびこれらの混合物が挙げられる。触
媒中の超安定Y型ゼオライト含有量は2〜60重量%、
好ましくは15〜45重量%である。
The catalyst used in the present invention is not particularly limited, but a catalyst generally used for a fluid catalytic cracking reaction of petroleum can be used. In particular, a catalyst containing a superstable Y-type zeolite as an active ingredient and a matrix as a supporting base thereof is preferably used. As the matrix, kaolin,
Examples include clays such as montmorillonite, halloysite, and bentonite; inorganic porous oxides such as alumina, silica, boria, chromia, magnesia, zirconia, titania, and silica-alumina; and mixtures thereof. The ultra-stable Y-type zeolite content in the catalyst is 2 to 60% by weight,
Preferably it is 15 to 45% by weight.

【0031】前記超安定Y型ゼオライトに加えて、Y型
ゼオライトよりも細孔径の小さい結晶性アルミノシリケ
ートあるいはシリコアルミノフォスフェート(SAP
O)を含む触媒も好ましく用いることができる。このよ
うなゼオライトあるいはSAPOとして、ZSM−5、
SAPO−5、SAPO−11、SAPO−34等が例
示できる。これらのゼオライトあるいはSAPOは、超
安定Y型ゼオライトを含む触媒粒子中に含まれていても
よいし、別粒子に含まれていてもよい。
In addition to the ultra-stable Y-type zeolite, crystalline aluminosilicate or silicoaluminophosphate (SAP) having a smaller pore diameter than Y-type zeolite
A catalyst containing O) can also be preferably used. As such a zeolite or SAPO, ZSM-5,
SAPO-5, SAPO-11 and SAPO-34 can be exemplified. These zeolites or SAPO may be contained in the catalyst particles containing the ultra-stable Y-type zeolite, or may be contained in other particles.

【0032】触媒粒子のかさ密度は0.5〜1.0g/
ml、平均粒径は50〜90μm、表面積は50〜35
0m2 /g、細孔容積は0.05〜0.5ml/gの範
囲であるのが好ましい。
The bulk density of the catalyst particles is 0.5 to 1.0 g /
ml, average particle size 50-90 μm, surface area 50-35
0 m 2 / g and the pore volume are preferably in the range of 0.05 to 0.5 ml / g.

【0033】本発明で使用する触媒は、通常の方法によ
り製造できる。例えば、硫酸中へ水硝子の希釈溶液(S
iO2 濃度=8〜13%)を滴下し、pH2.0〜4.
0のシリカゾルを得る。このシリカゾル全量中へ超安定
Y型ゼオライトとカオリンを加え混練し、200〜30
0℃の熱風で噴霧乾燥する。こうして得られた噴霧乾燥
品を50℃、0.2%硫酸アンモニウムで洗浄した後、
80〜150℃のオーブン中で乾燥し、さらに400〜
700℃で焼成して触媒を得る。
The catalyst used in the present invention can be produced by a usual method. For example, a diluted solution of water glass (S
iO 2 concentration = 8 to 13%) was added dropwise, pH2.0~4.
A silica sol of 0 is obtained. Ultra-stable Y-type zeolite and kaolin were added to the total amount of the silica sol and kneaded.
Spray dry with hot air at 0 ° C. After washing the spray-dried product thus obtained with 50 ° C. and 0.2% ammonium sulfate,
Dried in an oven at 80-150 ° C, then 400-
Calcination at 700 ° C. gives a catalyst.

【0034】[0034]

【実施例】次に本発明の実施例等について説明するが本
発明はこれに限定されるものではない。
Next, embodiments of the present invention will be described, but the present invention is not limited thereto.

【0035】実施例1 流動接触分解反応装置として、断熱型のダウンフロー形
式反応帯域を有するFCCパイロット装置(Xytel
社製)を用い、中東系の脱硫VGOの分解を行った。
Example 1 As a fluid catalytic cracking reactor, an FCC pilot device (Xytel) having an adiabatic down-flow type reaction zone was used.
(Manufactured by the company) was used to decompose the Middle Eastern desulfurized VGO.

【0036】40%の硫酸3370g中へ水硝子の希釈
溶液(SiO2 濃度=11.6%)21550gを滴下
し、pH3.0のシリカゾルを得た。このシリカゾル全
量中へ超安定Y型ゼオライト(東ソー(株)製:HSZ
−370HUA)3000gとカオリン4000gを加
え混練し、250℃の熱風で噴霧乾燥した。こうして得
られた噴霧乾燥品を50℃、0.2%硫酸アンモニウム
で洗浄した後、110℃のオーブン中で乾燥し、さらに
600℃で焼成して触媒を得た。この触媒中の超安定Y
型ゼオライト含有量は30重量%であった。なお、この
ときの触媒粒子のかさ密度は、0.7g/ml、平均粒
径は71μm、表面積は180m2 /g、細孔容積は
0.12ml/gであった。
21550 g of a diluted solution of water glass (SiO 2 concentration = 11.6%) was dropped into 3370 g of 40% sulfuric acid to obtain a silica sol having a pH of 3.0. Ultra-stable Y-type zeolite (manufactured by Tosoh Corporation: HSZ)
(-370HUA) 3000 g and kaolin 4000 g were added, kneaded, and spray-dried with hot air at 250 ° C. The spray-dried product thus obtained was washed with 0.2% ammonium sulfate at 50 ° C., dried in an oven at 110 ° C., and calcined at 600 ° C. to obtain a catalyst. Ultrastable Y in this catalyst
The type zeolite content was 30% by weight. At this time, the bulk density of the catalyst particles was 0.7 g / ml, the average particle size was 71 μm, the surface area was 180 m 2 / g, and the pore volume was 0.12 ml / g.

【0037】こうして得られた触媒を、上記装置に供給
する前に、800℃で6時間、100%スチーミング処
理により疑似平衡化させた。このとき装置規模は、イン
ベントリー(触媒量)2kg、フィード量1kg/hで
あり、運転条件は触媒/油比20、反応帯域出口温度6
00℃、接触時間0.5秒とした。反応帯域で接触分解
して得られた分解生成物、未反応物の混合物を蒸留して
得られた沸点343℃以上の残渣油分(芳香族分83重
量%)のうち、50g/h(原料油に対して5重量%)
をリサイクルし、反応帯域出口部直後に導入した。残り
の前記残渣油分は生成油として取り出した。このため残
渣油分導入後の分解生成物、未反応物および触媒粒子の
混合物の温度は反応帯域出口温度より4℃低い596℃
となった。このときの分解物収率を表1に示す。
The thus obtained catalyst was pseudo-equilibrated by a 100% steaming treatment at 800 ° C. for 6 hours before being supplied to the above apparatus. At this time, the equipment scale was 2 kg of inventory (catalyst amount) and 1 kg / h of feed amount. The operating conditions were a catalyst / oil ratio of 20 and a reaction zone outlet temperature of 6
The temperature was set to 00 ° C. and the contact time was set to 0.5 seconds. Of the residual oil having a boiling point of 343 ° C. or higher (aromatic component: 83% by weight) obtained by distilling a mixture of a decomposition product and an unreacted product obtained by catalytic cracking in a reaction zone, 50 g / h (raw oil) 5% by weight)
Was recycled and introduced immediately after the outlet of the reaction zone. The remaining residue was removed as product oil. For this reason, the temperature of the mixture of the decomposition product, unreacted matter and catalyst particles after the introduction of the residual oil is 596 ° C. lower than the reaction zone outlet temperature by 4 ° C.
It became. Table 1 shows the decomposition product yield at this time.

【0038】実施例2 接触時間を1.5秒にした以外は実施例1と同様に接触
分解を行った。
Example 2 Catalytic cracking was carried out in the same manner as in Example 1 except that the contact time was changed to 1.5 seconds.

【0039】比較例1 残渣油分のリサイクルをしなかった以外は実施例1と全
く同様の実験を行った。このときの分解物収率を表1に
示す。
Comparative Example 1 The same experiment as in Example 1 was carried out except that the residual oil was not recycled. Table 1 shows the decomposition product yield at this time.

【0040】比較例2 実施例1と同様の装置規模、触媒、原料油を用い、反応
条件も実施例1と同様にして分解を行った。ただし、残
渣油分をリサイクルする代わりに、ドライガス100g
/h(原料油に対して10重量%)をリサイクルして、
反応帯域出口部直後に導入した。このため残渣油分導入
後の分解生成物、未反応物および触媒の混合物の温度は
反応帯域出口温度より8℃低い592℃となった。この
ときの分解物収率を表1に示す。
COMPARATIVE EXAMPLE 2 Decomposition was carried out in the same manner as in Example 1, using the same apparatus scale, catalyst and raw material oil as in Example 1, under the same reaction conditions as in Example 1. However, instead of recycling the residual oil, dry gas 100g
/ H (10% by weight based on the feed oil)
It was introduced immediately after the outlet of the reaction zone. For this reason, the temperature of the mixture of the decomposition product, the unreacted product, and the catalyst after the introduction of the residual oil was 592 ° C., which was 8 ° C. lower than the reaction zone outlet temperature. Table 1 shows the decomposition product yield at this time.

【0041】比較例3 反応塔形式をアップフロー形式にした以外は、残渣油分
のリサイクルを含めて全て実施例1と同じ条件で反応を
行った。残渣油分導入後の分解生成物、未反応物および
触媒粒子の混合物の温度は反応帯域出口温度より4℃低
い596℃となった。このときの分解物収率を表1に示
す。
Comparative Example 3 The reaction was carried out under the same conditions as in Example 1 except for the recycling of the residual oil, except that the reaction tower was changed to the upflow type. After the introduction of the residual oil, the temperature of the mixture of the decomposition product, the unreacted product, and the catalyst particles was 596 ° C., which was 4 ° C. lower than the reaction zone outlet temperature. Table 1 shows the decomposition product yield at this time.

【0042】[0042]

【表1】 上記表中、C1 はメタンガス、C2 はエタンガスを示
し、転化率は原料油から分解生成物への転化率を示す。
また、LCOはライトサイクルオイルを、HCOはヘビ
ーサイクルオイルを示す。
[Table 1] In the above table, C 1 indicates methane gas, C 2 indicates ethane gas, and the conversion indicates the conversion from feedstock to cracked products.
LCO indicates light cycle oil, and HCO indicates heavy cycle oil.

【0043】以上の結果から、残渣油分をリサイクル
し、反応帯域出口部に導入することにより、残渣油分を
リサイクルしない場合(比較例1)や、残渣油分の代わ
りにドライガスをリサイクルした場合(比較例2)、反
応塔をアップフローにした場合(比較例3)に比べて水
素移行反応、過分解反応を抑制することができ、高い軽
質オレフィン収率を得られることがわかる。
From the above results, the case where the residual oil was not recycled (Comparative Example 1) or the case where the dry gas was recycled instead of the residual oil (Comparative Example 1) Example 2) It can be seen that the hydrogen transfer reaction and the over-decomposition reaction can be suppressed, and a high light olefin yield can be obtained, as compared with the case where the reaction tower is set up flow (Comparative Example 3).

【0044】ドライガス等によるクエンチでも上記混合
物の温度を下げることにより、水素移行反応、過分解反
応を抑制できるが、本発明においては分解率、軽質オレ
フィン収率を高める目的で触媒/油比が通常の接触分解
方法に比べて大きいため、クエンチガスの量が残渣油分
に比べて大きいわりに温度があまり低下せず、反応を停
止させる効果は残渣油に比べて小さいことがわかる。
By lowering the temperature of the above mixture by quenching with dry gas or the like, the hydrogen transfer reaction and the over-decomposition reaction can be suppressed, but in the present invention, the catalyst / oil ratio is increased in order to increase the decomposition rate and the light olefin yield. Since the amount of the quench gas is larger than that of the residual oil, the temperature does not decrease so much as compared with the ordinary catalytic cracking method, and the effect of stopping the reaction is smaller than that of the residual oil.

【0045】[0045]

【発明の効果】以上説明したように、本発明で設定した
範囲内の触媒/油比、反応帯域出口温度および接触時間
と、ダウンフロー形式反応帯域の組み合わせに加えて、
分解生成物、未反応物および触媒の混合物の一部を蒸留
して得られる残渣油分の一定量をリサイクルして、前記
混合物を急冷することにより、重質油の分解反応後の水
素移行反応や、軽質オレフィン等の過分解を抑制し、エ
チレン、プロピレン、ブテン、ペンテン等の軽質オレフ
ィンを高収率で得ることができる。
As described above, in addition to the combination of the catalyst / oil ratio, the reaction zone outlet temperature and the contact time within the ranges set in the present invention, and the downflow type reaction zone,
By recycling a certain amount of residual oil obtained by distilling a part of the mixture of the cracked product, unreacted product and catalyst, and quenching the mixture, the hydrogen transfer reaction after the cracking reaction of heavy oil and In addition, light decomposition of light olefins and the like can be suppressed, and light olefins such as ethylene, propylene, butene and pentene can be obtained in high yield.

フロントページの続き (72)発明者 山本 駿一 神奈川県横浜市中区千鳥町8番地日本石油 株式会社中央技術研究所内Continued on the front page (72) Inventor Shunichi Yamamoto 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Japan Oil Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下向流型反応帯域、分離帯域、ストリッ
ピング帯域、触媒再生帯域および蒸留帯域を具備する流
動接触分解反応装置を用いて、油を触媒と接触させて分
解するにあたり、 1)前記反応帯域における接触時間を0.1〜3.0
秒、反応帯域出口温度を530〜700℃、触媒/油比
を10〜50とし、 2)前記反応帯域で接触分解して得られた分解生成物お
よび未反応物の混合物を蒸留して得られた沸点300℃
以上の炭化水素から成る残渣油分を、油に対して1〜5
0重量%の量を反応帯域出口部分に導入することによ
り、分解生成物、未反応物および触媒の混合物の温度を
残渣油分を導入する前に比べて1〜100℃低下させる
ことにより、軽質オレフィンを製造することを特徴とす
る油の流動接触分解方法。
1. An oil is brought into contact with a catalyst by using a fluidized catalytic cracking reactor having a down-flow type reaction zone, a separation zone, a stripping zone, a catalyst regeneration zone, and a distillation zone. The contact time in the reaction zone is 0.1 to 3.0.
The reaction zone outlet temperature is 530 to 700 ° C., the catalyst / oil ratio is 10 to 50, and 2) a mixture of a decomposition product and an unreacted product obtained by catalytic cracking in the reaction zone is obtained by distillation. Boiling point 300 ° C
The residual oil composed of the above hydrocarbons is
By introducing an amount of 0% by weight into the outlet of the reaction zone, the temperature of the mixture of decomposition products, unreacted materials and catalyst is reduced by 1 to 100 ° C. as compared with before the introduction of the residual oil, so that light olefins can be obtained. And a fluid catalytic cracking method for oil.
JP32716797A 1996-11-15 1997-11-13 Fluid catalytic cracking method of oil Expired - Lifetime JP3724934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32716797A JP3724934B2 (en) 1996-11-15 1997-11-13 Fluid catalytic cracking method of oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-318618 1996-11-15
JP31861896 1996-11-15
JP32716797A JP3724934B2 (en) 1996-11-15 1997-11-13 Fluid catalytic cracking method of oil

Publications (2)

Publication Number Publication Date
JPH10195454A true JPH10195454A (en) 1998-07-28
JP3724934B2 JP3724934B2 (en) 2005-12-07

Family

ID=26569439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32716797A Expired - Lifetime JP3724934B2 (en) 1996-11-15 1997-11-13 Fluid catalytic cracking method of oil

Country Status (1)

Country Link
JP (1) JP3724934B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305490A (en) * 2005-04-28 2006-11-09 Petroleum Energy Center Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
JP2007181777A (en) * 2006-01-06 2007-07-19 Petroleum Energy Center Catalytic cracking catalist and method for cracking hydrocarbon oil catalytically
WO2007108297A1 (en) 2006-03-22 2007-09-27 Petroleum Energy Center Cracking catalyst, process for preparation thereof, and process for catalytic cracking of hydrocarbon oil
US8435401B2 (en) 2009-01-06 2013-05-07 Process Innovators, Inc. Fluidized catalytic cracker with active stripper and methods using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305490A (en) * 2005-04-28 2006-11-09 Petroleum Energy Center Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
JP2007181777A (en) * 2006-01-06 2007-07-19 Petroleum Energy Center Catalytic cracking catalist and method for cracking hydrocarbon oil catalytically
WO2007108297A1 (en) 2006-03-22 2007-09-27 Petroleum Energy Center Cracking catalyst, process for preparation thereof, and process for catalytic cracking of hydrocarbon oil
JP2007253038A (en) * 2006-03-22 2007-10-04 Petroleum Energy Center Catalytic cracking catalyst, its manufacturing method and method for catalytically cracking hydrocarbon oil
US9861966B2 (en) 2006-03-22 2018-01-09 Cosmo Oil Co., Ltd. Catalytic cracking catalyst, process for producing the same, and method of catalytic cracking of hydrocarbon oil
US8435401B2 (en) 2009-01-06 2013-05-07 Process Innovators, Inc. Fluidized catalytic cracker with active stripper and methods using same

Also Published As

Publication number Publication date
JP3724934B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP3580518B2 (en) Fluid catalytic cracking of heavy oil
KR100225222B1 (en) Process for fluid catalytic cracking of oils
CA2428147C (en) Fcc process with improved yield of light olefins
EP2737013B1 (en) Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor
KR100235837B1 (en) Process for fluid catalytic cracking of heavy fraction oils
US20020195373A1 (en) Heavy oil fluid catalytic cracking process
EP0426400B1 (en) Upgrading light olefin fuel gas in a fluidized bed catalyst reactor and regeneration of the catalyst
JPS6384632A (en) Fluid catalytic cracking method
JP4711951B2 (en) C6 recycling for propylene production in fluid catalytic cracker
CA2553783C (en) System and method for selective component cracking to maximize production of light olefins
US5215650A (en) Cooling exothermic regenerator with endothermic reactions
JP4223690B2 (en) Fluid catalytic cracking method of heavy oil
JP2002241764A (en) Fluidized catalytic cracking process for heavy oil
US20040140246A1 (en) Process for upgrading fcc product with additional reactor
JP3724934B2 (en) Fluid catalytic cracking method of oil
JP3950437B2 (en) Fluid catalytic cracking of heavy oil
JP3724932B2 (en) Fluid catalytic cracking method of oil
JP5390857B2 (en) Fluid catalytic cracking method
RU2812317C1 (en) Method for converting hydrocarbon feeds into lighter olefins
JP3574555B2 (en) Fluid catalytic cracking of heavy oil
JPH1046160A (en) Method for fluidized bed catalytic cracking of heavy oil
JPH01132689A (en) Increase of octane value
JPH03504989A (en) Reforming naphtha in a multi-riser fluid catalytic cracking operation using catalyst mixtures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term