JP3950437B2 - Fluid catalytic cracking of heavy oil - Google Patents
Fluid catalytic cracking of heavy oil Download PDFInfo
- Publication number
- JP3950437B2 JP3950437B2 JP2003193848A JP2003193848A JP3950437B2 JP 3950437 B2 JP3950437 B2 JP 3950437B2 JP 2003193848 A JP2003193848 A JP 2003193848A JP 2003193848 A JP2003193848 A JP 2003193848A JP 3950437 B2 JP3950437 B2 JP 3950437B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- regeneration
- catalytic cracking
- zone
- fluid catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、重質油を分解してエチレン、プロピレン、ブチレン、ペンテン等の軽質オレフィンを得るための流動接触分解法に関する。詳細には、反応帯域出口温度を570〜650℃と高温にする必要がある流動接触分解法において、特に重質油の中でも比較的軽質な減圧軽油などを原料油として用いる場合でも十分な反応温度を得ることができる改良された重質油の流動接触分解法に関する。
【0002】
【従来の技術】
通常の流動接触分解(FCC)は石油系炭化水素を触媒と接触させて分解し、主生成物としてのガソリンと少量のLPGと分解軽油等を得、さらに触媒上に堆積したコ−クを空気で燃焼除去して触媒を循環再使用するものである。
しかしながら最近では流動接触分解装置をガソリン製造装置としてではなく石油化学原料としての軽質オレフィン製造装置として利用していこうという動きがある。このような流動接触分解装置の利用法は、石油精製と石油化学工場が高度に結びついた精油所において特に経済的なメリットがある。また一方、環境問題への関心の高まりから、欧米において自動車ガソリン中のオレフィン、芳香族含有量の規制が施行され始めている。これによりFCCガソリン、接触改質ガソリンに替わる高オクタン価ガソリン基材としてアルキレートの需要が増大することが予想される。従ってそれら基材の原料であるプロピレン、ブチレンの増産が必要となる。
【0003】
重質油の流動接触分解により軽質オレフィンを製造する方法としては、高温で反応を行う方法(例えば、特許文献1参照。)、触媒として超安定Y型ゼオライトを用い高温、短時間の条件で反応を行う方法(例えば、特許文献2参照。)等が知られている。
これらの方法を用いる場合でも反応に必要な温度は従来の流動接触分解法と同様、反応により生成し、触媒上に堆積するコークを触媒再生塔において燃焼するときに生ずる熱により供給される。軽質オレフィンを製造するために従来の流動接触分解よりも高い反応温度を用いる場合、それだけコーク収率が多くなる必要がある。原料油として比較的軽質な減圧軽油を用いる場合はコークが不足となり必要な反応温度を維持できなくなってしまうという問題があった。
【0004】
【特許文献1】
米国特許第4,980,053号明細書
【特許文献2】
米国特許第5,951,850号明細書
【0005】
【発明が解決しようとする課題】
本発明の目的は、熱源として余分な油を消費することなく高い反応温度を維持することができる改良された重質油の流動接触分解法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、高温反応を用いて軽質オレフィンを生産する重質油の流動接触分解法において、種々の実験および熱収支計算を行った結果、反応温度を570〜650℃としたときに軽質オレフィン収率を最大とできるものの、原料油が比較的軽質な場合にはコーク収率が不足となり、再生塔でトーチ油を燃焼するなどの方法で熱を追加する必要があることが判明した。本発明者等はさらに検討を重ねた結果、再生に用いる空気をある特定の温度に予備加熱して供給することにより、トーチ油等を用いることなく必要な反応温度を維持することができることを見出し、この知見に、基づき本発明を完成したものである。
【0007】
すなわち本発明は、反応帯域、分離帯域、ストリッピング帯域および再生帯域を有する流動接触分解反応装置を用いて軽質オレフィンを製造する重質油の流動接触分解法であって、コーク収率が2〜6質量%(対原料油)である条件下に、反応帯域出口温度を570〜650℃、触媒/油比を10〜35wt/wt、再生帯域触媒濃厚相の温度を650〜730℃とし、かつ触媒再生に用いる空気を450〜600℃に予備加熱してから再生帯域に導入することを特徴とする重質油の流動接触分解法に関する。
【0008】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明において流動接触分解の原料油として用いる重質油としては、例えば、直留軽油、減圧軽油、常圧残油、減圧残油、熱分解軽油、およびこれらを水素化精製した重質油等が挙げられる。これらの重質油は単独で用いてもよいし、これらの重質油の2種以上の混合物、あるいはこれらの重質油に軽質油を一部混合したものも用いることができる。
【0009】
本発明において重質油の流動接触分解とは、前記した重質油を流動状態に保持されている触媒と所定条件の下で連続的に接触させ、重質油を軽質オレフィンを主体とした炭化水素に分解することである。この接触は触媒の流動ベッドで行う場合と、触媒粒子と原料油が共に管中を上昇するいわゆるライザ−クラッキング、あるいは触媒粒子と原料油が共に管中を降下するダウンフロークラッキングを採用する場合がある。本発明においてダウンフロークラッキングが好ましく採用される。
【0010】
このように接触分解を受けた生成物、未反応物および触媒の混合物は、次にストリッピング帯域に送られ、触媒粒子から生成物、未反応物等の炭化水素類の大部分が除去される。また、不必要な熱分解あるいは過分解を抑制するため、分解生成物を分離器(ストリッピング帯域)の直前あるいは直後において急冷することも必要に応じ採用される。
【0011】
炭素質および一部重質の炭化水素類が付着した触媒は該ストリッピング帯域から再生帯域(再生塔)に送られる。再生帯域においては、該炭素質の付着した触媒の酸化処理が施される。この酸化処理を受けた触媒が再生触媒であり、触媒上に沈着した炭素質および炭化水素類が減少されたものである。この再生触媒は前記反応帯域に連続的に循環される。
【0012】
本発明においてコーク収率とは流動接触分解反応によって生成し、触媒上に堆積するコーク質の原料油に対する収率であり、本発明において該コーク収率は2〜6質量%の範囲であり、好ましくは4〜6質量%である。コーク収率が6質量%より大きい場合は本発明の方法によらずとも必要な熱量を得ることができる。コーク収率が2質量%より小さい場合は本発明による熱の供給に加えてさらにトーチ油などによる熱の供給が必要となるため好ましくない。
【0013】
本発明でいう反応帯域出口温度とは、具体的には流動床型反応器の出口温度のことであり、分解生成物が急冷あるいは触媒と分離される前の温度である。本発明において反応帯域出口温度は570〜650℃であり、好ましくは590〜630℃である。570℃より低い温度では高い収率で軽質オレフィンを得ることができず、650℃より高い温度では熱分解が顕著になりドライガス発生量が多くなるため好ましくない。
【0014】
本発明でいう触媒/油比とは触媒循環量(ton/h)と原料油供給速度(ton/h)の比であり、本発明において該触媒/油比は10〜35wt/wtであり、好ましくは20〜30wt/wtである。触媒/油比が10wt/wtより小さい場合ヒートバランス上再生帯域触媒濃厚相の温度が高くなるため、触媒の失活が早められると同時に、高温の触媒と原料油が接触するため熱分解によるドライガス発生量が多くなり好ましくない。また触媒/油比が35wt/wtより大きい場合触媒循環量が大きくなり、再生帯域での触媒再生に必要な触媒滞留時間を確保するため再生帯域の容量を大きくする必要があり好ましくない。
【0015】
本発明でいう再生温度とは触媒再生を行う再生帯域における触媒の濃厚流動層の温度をいう。本発明において再生温度は650〜730℃であり、好ましくは690〜715℃である。650℃より低い温度ではコークの燃焼速度が小さくなり、触媒再生が十分に行われないため好ましくない。また再生温度が730℃を超えると、触媒の水熱劣化が激しくなるため好ましくない。触媒の水熱劣化とは水(スチーム)の存在下で触媒中のゼオライトが高温にさらされるとゼオライトの酸点を形成しているアルミが引き抜かれゼオライト結晶が破壊されて触媒が本来の活性を失う現象を指す。水熱劣化の度合いは温度によって大きく影響を受けることが知られている。
【0016】
本発明は前記条件下において再生用空気を予備加熱することにより必要な熱を供給するものであり、再生用空気の温度は450〜600℃である。450℃より低い温度では熱の供給量が小さく、効果が無い。一方、600℃より高い温度では熱交換を行うための機器の設計が難しくなる、あるいは機器が高価になるため好ましくない。
【0017】
再生用空気の予備加熱の方法としては、好ましくは再生用空気を再生帯域から排出される排ガスと熱交換する方法が用いられる。熱交換を行うための機器としてはシェル−チューブ型の熱交換器が好ましく用いられる。
熱交換器内を通るときの再生用空気の線速度は3〜15m/sが好ましい。さらに好ましくは5〜10m/sである。3m/sより小さくすると熱交換器の容量が大きくなり、経済的に好ましくない。一方、15m/sより大きくすると熱交換器内部での空気の滞留時間が短くなりすぎ、十分な熱交換が行われないため好ましくない。
熱交換器を通るときの排ガスの線速度としては3〜10m/sが好ましい。さらに好ましくは3〜5m/sである。3m/sより小さくすると熱交換器の容量が大きくなり、経済的に好ましくない。一方、10m/sより大きくすると排ガスに同伴される触媒粒子により熱交換器内部が磨耗するため好ましくない。
【0018】
本発明において流動接触分解反応装置の操作条件は上記以外には特に限定されないが、反応圧力196〜392kPa(1〜3kg/cm2G)、接触時間2秒以下で好ましく運転される。接触時間については0.5秒以下がさらに好ましい。ここでいう接触時間とは、触媒と原料重質油が接触してから反応帯域出口において触媒と分解生成物が分離されるまでの時間あるいは分離帯域の手前で急冷される場合は急冷されるまでの時間を示す。
【0019】
本発明の流動接触分解においてはコーク収率の非常に小さい触媒が用いられ、触媒としては活性成分であるゼオライトとその支持母体であるマトリックスよりなる触媒が好ましく用いられる。該ゼオライトの主成分は超安定Y型ゼオライトであり、その結晶格子定数は24.35Å以下であり、好ましくは24.30Å以下である。ここでいうゼオライトの結晶格子定数はASTM D−3942−80で測定したものである。また該ゼオライトの結晶化度は90%以上であり、好ましくは95%以上であり、さらに好ましくは98%以上である。ゼオライトの結晶格子定数が24.35Å超の場合、コーク選択性が悪くなり、低いデルタコークを維持できなくなる。またゼオライトの結晶化度が90%より低い場合、耐熱性が悪くなり触媒消費量が増大するため好ましくない。該ゼオライトの含有量は触媒全量基準で5〜50質量%が好ましく、15〜40質量%がさらに好ましい。
【0020】
本発明に用いられる触媒としては、前記超安定Y型ゼオライトの他にY型ゼオライトよりも細孔径の小さい結晶性アルミノシリケートゼオライトあるいはシリコアルミノフォスフェート(SAPO)を含むこともできる。そのようなゼオライトあるいはSAPOとして、ZSM−5、β、オメガ、SAPO−5、SAPO−11、SAPO−34等が例示できる。これらのゼオライトあるいはSAPOは前記超安定Y型ゼオライトを含む触媒と同一の触媒粒子中に含まれていてもよいし、別粒子であってもよい。
本発明に用いる触媒のかさ密度は0.5〜1.0g/ml、平均粒径は50〜90μm、表面積は50〜350m2/g、細孔容積は0.05〜0.5ml/gの範囲であるのが好ましい。
【0021】
【発明の効果】
コーク収率が2〜6質量%(対原料油)と比較的低い場合には、接触分解の反応温度を維持するため、通常、再生塔でトーチ油を燃焼するなどの方法で熱を追加する必要があるが、反応帯域出口温度を570〜650℃、触媒/油比を10〜35wt/wt、再生帯域触媒濃厚相の温度を650〜730℃とし、かつ触媒再生に用いる空気を450〜600℃に予備加熱してから再生帯域に導入することにより、トーチ油等を用いることなく必要な反応温度を維持することが可能となつた。
【0022】
【実施例】
次に実施例を挙げて本発明を具体的に説明するが本発明はこれに限定されるものではない。
【0023】
[実施例1]
40%硫酸3370g中へJIS3号水硝子の希釈溶液(SiO2濃度11.6% )21550gを滴下しpH3.0のシリカゾルを得た。このシリカゾル全量中へ超安定Y型ゼオライト(格子定数24.28Å、東ソ−(株)製HSZ−370HUA)3500gとカオリン4000gを加え混練し、250℃の熱風で噴霧乾燥した。こうして得られた噴霧乾燥品を50℃、50リットルの0.2%硫酸アンモニウムで洗浄した後、110℃のオ−ブン中で乾燥し、さらに600℃で焼成し触媒Aを得た。
触媒Aを断熱型のダウンフロータイプFCCパイロット装置で評価した。装置規模は、インベントリ−2kg、フィ−ド量1kg/hであった。原料油は中東系の脱硫VGOであった。この脱硫VGOの性状を表1に示す。触媒Aを装置に充填する前に触媒を疑似平衡化するため、800℃で6時間、100%スチ−ムでスチ−ミングした。
運転条件を反応温度600℃、触媒/油比25wt/wtとしたとき表2に示すような高い軽質オレフィン収率を得た。このときのコーク収率は4質量%(対フィード)という低いレベルであった。不足する熱を補うため再生用空気を排ガスと熱交換し、再生用空気の温度を450℃まで高めてから再生塔に投入した。定常状態での再生塔温度は707℃となった。
【0024】
[比較例1]
実施例1と同じ触媒、原料、装置を用いて反応を行った。ただし再生用空気と排ガスの熱交換は行わなかった。その結果、再生空気の温度はブロアーの吐出温度である80℃まで下がった。これにより再生塔温度は689℃まで下がった。これに伴い再生触媒が反応器に持ち込む熱量が下がるため反応温度は584℃まで下がった。その結果、軽質オレフィンの収率が合わせて5質量%減少した。
【0025】
[比較例2]
比較例2と同じ条件の実験において、再生塔温度を707℃まで上げるため、再生塔にてトーチ油を燃焼させた。このときトーチ油の必要量は1.4質量%(対フィード)となった。
【0026】
【表1】
【0027】
【表2】
[0001]
[Industrial application fields]
The present invention relates to a fluid catalytic cracking method for cracking heavy oil to obtain light olefins such as ethylene, propylene, butylene, and pentene. Specifically, in the fluid catalytic cracking method in which the reaction zone outlet temperature needs to be as high as 570 to 650 ° C., a sufficient reaction temperature even when a relatively light vacuum gas oil or the like is used as a raw material oil, among heavy oils. It relates to an improved heavy oil fluid catalytic cracking process.
[0002]
[Prior art]
In normal fluid catalytic cracking (FCC), petroleum hydrocarbons are brought into contact with a catalyst and decomposed to obtain gasoline, a small amount of LPG, cracked light oil, etc. as main products, and further, the coal deposited on the catalyst is air-treated. The catalyst is circulated and reused by burning and removing.
Recently, however, there is a movement to use the fluid catalytic cracking apparatus not as a gasoline production apparatus but as a light olefin production apparatus as a petrochemical raw material. Such a method of using a fluid catalytic cracker has an economic advantage particularly in refineries where oil refining and petrochemical factories are highly coupled. On the other hand, regulations on olefins and aromatics in automobile gasoline have begun to be enforced in Europe and the United States due to growing interest in environmental issues. This is expected to increase the demand for alkylate as a high octane gasoline base material to replace FCC gasoline and catalytic reformed gasoline. Therefore, it is necessary to increase production of propylene and butylene, which are raw materials for these base materials.
[0003]
As a method for producing light olefins by fluid catalytic cracking of heavy oil, a method of performing a reaction at a high temperature (see, for example, Patent Document 1), a reaction using ultra-stable Y-type zeolite as a catalyst at a high temperature in a short time. There is known a method of performing (see, for example, Patent Document 2).
Even when these methods are used, the temperature necessary for the reaction is supplied by the heat generated when the coke produced by the reaction and deposited on the catalyst is burned in the catalyst regeneration tower, as in the conventional fluid catalytic cracking method. When using a higher reaction temperature than conventional fluid catalytic cracking to produce light olefins, the coke yield needs to be increased accordingly. In the case of using a relatively light vacuum gas oil as a raw material oil, there is a problem that coke becomes insufficient and a necessary reaction temperature cannot be maintained.
[0004]
[Patent Document 1]
US Pat. No. 4,980,053 [Patent Document 2]
US Pat. No. 5,951,850
[Problems to be solved by the invention]
It is an object of the present invention to provide an improved heavy oil fluid catalytic cracking process capable of maintaining a high reaction temperature without consuming excess oil as a heat source.
[0006]
[Means for Solving the Problems]
As a result of various experiments and heat balance calculations in the fluid catalytic cracking process of heavy oil that produces light olefins using a high-temperature reaction, the present inventors have conducted a light reaction when the reaction temperature is 570 to 650 ° C. Although the olefin yield can be maximized, it has been found that when the raw material oil is relatively light, the coke yield becomes insufficient, and it is necessary to add heat by a method such as burning torch oil in a regeneration tower. As a result of further studies, the present inventors have found that the necessary reaction temperature can be maintained without using torch oil or the like by preheating and supplying air used for regeneration to a specific temperature. Based on this finding, the present invention has been completed.
[0007]
That is, the present invention is a fluid catalytic cracking method of heavy oil that produces light olefins using a fluid catalytic cracking reactor having a reaction zone, a separation zone, a stripping zone, and a regeneration zone, and has a coke yield of 2 to 2. Under conditions of 6% by weight (vs. feedstock), the reaction zone outlet temperature is 570-650 ° C., the catalyst / oil ratio is 10-35 wt / wt, the regeneration zone catalyst rich phase temperature is 650-730 ° C., and The present invention relates to a fluid catalytic cracking method for heavy oil, characterized in that air used for catalyst regeneration is preheated to 450 to 600 ° C. and then introduced into the regeneration zone.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
Examples of heavy oils used as feedstock oils for fluid catalytic cracking in the present invention include straight-run gas oil, vacuum gas oil, atmospheric residue, vacuum residue, pyrolysis gas oil, and heavy oil obtained by hydrotreating them. Is mentioned. These heavy oils may be used alone, or a mixture of two or more of these heavy oils, or a mixture of these heavy oils with a part of light oils may be used.
[0009]
In the present invention, the fluid catalytic cracking of heavy oil means that the above-mentioned heavy oil is continuously brought into contact with a catalyst held in a fluid state under a predetermined condition, and the heavy oil is carbonized mainly composed of light olefins. It decomposes into hydrogen. This contact may be carried out in a fluidized bed of the catalyst, or so-called riser cracking in which both catalyst particles and feedstock rise in the pipe, or downflow cracking in which both catalyst particles and feedstock fall in the pipe. is there. In the present invention, downflow cracking is preferably employed.
[0010]
The mixture of the product, unreacted material and catalyst thus subjected to catalytic cracking is then sent to a stripping zone where most of the hydrocarbons such as product and unreacted material are removed from the catalyst particles. . In addition, in order to suppress unnecessary thermal decomposition or excessive decomposition, quenching of the decomposition product immediately before or immediately after the separator (stripping zone) is also employed as necessary.
[0011]
The catalyst to which carbonaceous and partially heavy hydrocarbons adhere is sent from the stripping zone to the regeneration zone (regeneration tower). In the regeneration zone, the carbonaceous catalyst is oxidized. The catalyst that has undergone this oxidation treatment is a regenerated catalyst, in which carbonaceous substances and hydrocarbons deposited on the catalyst are reduced. This regenerated catalyst is continuously circulated through the reaction zone.
[0012]
In the present invention, the coke yield is a yield with respect to the raw material oil of coke produced by the fluid catalytic cracking reaction and deposited on the catalyst, and in the present invention, the coke yield is in the range of 2 to 6% by mass, Preferably it is 4-6 mass%. When the coke yield is larger than 6% by mass, the necessary amount of heat can be obtained without using the method of the present invention. When the coke yield is less than 2% by mass, it is not preferable because it is necessary to supply heat with torch oil in addition to the supply of heat according to the present invention.
[0013]
The reaction zone outlet temperature in the present invention specifically refers to the outlet temperature of the fluidized bed reactor, and is the temperature before the decomposition product is rapidly cooled or separated from the catalyst. In the present invention, the reaction zone outlet temperature is 570 to 650 ° C, preferably 590 to 630 ° C. If the temperature is lower than 570 ° C., a light olefin cannot be obtained in a high yield, and if it is higher than 650 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable.
[0014]
The catalyst / oil ratio referred to in the present invention is the ratio of the catalyst circulation rate (ton / h) and the feed oil supply rate (ton / h). In the present invention, the catalyst / oil ratio is 10 to 35 wt / wt. Preferably it is 20-30 wt / wt. When the catalyst / oil ratio is smaller than 10 wt / wt, the temperature of the regeneration zone catalyst rich phase becomes high in terms of heat balance, so that the deactivation of the catalyst is accelerated and at the same time the hot catalyst and the feedstock are in contact with each other, so The amount of gas generation increases, which is not preferable. On the other hand, when the catalyst / oil ratio is larger than 35 wt / wt, the amount of catalyst circulation becomes large, which is not preferable because it is necessary to increase the capacity of the regeneration zone in order to secure the catalyst residence time necessary for catalyst regeneration in the regeneration zone.
[0015]
In the present invention, the regeneration temperature refers to the temperature of the dense fluidized bed of the catalyst in the regeneration zone where catalyst regeneration is performed. In this invention, regeneration temperature is 650-730 degreeC, Preferably it is 690-715 degreeC. A temperature lower than 650 ° C. is not preferable because the combustion rate of coke decreases and catalyst regeneration is not sufficiently performed. On the other hand, when the regeneration temperature exceeds 730 ° C., the hydrothermal deterioration of the catalyst becomes severe, which is not preferable. Hydrothermal degradation of the catalyst means that if the zeolite in the catalyst is exposed to high temperatures in the presence of water (steam), the aluminum that forms the acid sites of the zeolite is pulled out and the zeolite crystals are destroyed, causing the catalyst to have its original activity. It refers to the phenomenon of losing. It is known that the degree of hydrothermal degradation is greatly affected by temperature.
[0016]
The present invention supplies necessary heat by preheating the regeneration air under the above conditions, and the temperature of the regeneration air is 450 to 600 ° C. At a temperature lower than 450 ° C., the amount of heat supplied is small, and there is no effect. On the other hand, a temperature higher than 600 ° C. is not preferable because it is difficult to design a device for performing heat exchange or the device becomes expensive.
[0017]
As a method for preheating the regeneration air, a method of exchanging heat between the regeneration air and the exhaust gas discharged from the regeneration zone is preferably used. As a device for performing heat exchange, a shell-tube type heat exchanger is preferably used.
The linear velocity of the regenerating air when passing through the heat exchanger is preferably 3 to 15 m / s. More preferably, it is 5-10 m / s. When it is less than 3 m / s, the capacity of the heat exchanger increases, which is not economically preferable. On the other hand, if it is higher than 15 m / s, the residence time of the air inside the heat exchanger becomes too short, and it is not preferable because sufficient heat exchange is not performed.
The linear velocity of the exhaust gas when passing through the heat exchanger is preferably 3 to 10 m / s. More preferably, it is 3-5 m / s. When it is less than 3 m / s, the capacity of the heat exchanger increases, which is not economically preferable. On the other hand, if it exceeds 10 m / s, the inside of the heat exchanger is worn by the catalyst particles accompanying the exhaust gas, which is not preferable.
[0018]
In the present invention, the operating conditions of the fluid catalytic cracking reactor are not particularly limited, but are preferably operated at a reaction pressure of 196 to 392 kPa (1 to 3 kg / cm 2 G) and a contact time of 2 seconds or less. The contact time is more preferably 0.5 seconds or less. The contact time here means the time from when the catalyst comes into contact with the raw material heavy oil until the catalyst and decomposition products are separated at the outlet of the reaction zone, or until it is quenched before the separation zone. Indicates the time.
[0019]
In the fluid catalytic cracking of the present invention, a catalyst having a very small coke yield is used. As the catalyst, a catalyst comprising a zeolite which is an active component and a matrix which is a supporting matrix thereof is preferably used. The main component of the zeolite is ultra-stable Y-type zeolite, and its crystal lattice constant is 24.35 or less, preferably 24.30 or less. The crystal lattice constant of a zeolite here is measured by ASTM D-3942-80. The crystallinity of the zeolite is 90% or more, preferably 95% or more, and more preferably 98% or more. When the crystal lattice constant of zeolite exceeds 24.35 Å, coke selectivity is deteriorated and low delta coke cannot be maintained. On the other hand, if the crystallinity of the zeolite is lower than 90%, the heat resistance deteriorates and the catalyst consumption increases, which is not preferable. The content of the zeolite is preferably 5 to 50% by mass, more preferably 15 to 40% by mass based on the total amount of the catalyst.
[0020]
The catalyst used in the present invention may include crystalline aluminosilicate zeolite or silicoaluminophosphate (SAPO) having a pore size smaller than that of the Y-type zeolite in addition to the ultrastable Y-type zeolite. Examples of such zeolite or SAPO include ZSM-5, β, omega, SAPO-5, SAPO-11, and SAPO-34. These zeolites or SAPOs may be contained in the same catalyst particles as the catalyst containing the ultrastable Y-type zeolite, or may be separate particles.
The bulk density of the catalyst used in the present invention is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 μm, the surface area is 50 to 350 m 2 / g, and the pore volume is 0.05 to 0.5 ml / g. A range is preferred.
[0021]
【The invention's effect】
When the coke yield is 2 to 6% by mass (relative to feedstock), heat is usually added by a method such as burning torch oil in a regeneration tower in order to maintain the reaction temperature for catalytic cracking. Although it is necessary, the reaction zone outlet temperature is 570 to 650 ° C., the catalyst / oil ratio is 10 to 35 wt / wt, the temperature of the regeneration zone catalyst dense phase is 650 to 730 ° C., and the air used for catalyst regeneration is 450 to 600. It was possible to maintain the necessary reaction temperature without using torch oil or the like by preheating to 0 ° C. and then introducing it into the regeneration zone.
[0022]
【Example】
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0023]
[Example 1]
21550 g of a diluted solution of JIS No. 3 water glass (SiO 2 concentration 11.6%) was dropped into 3370 g of 40% sulfuric acid to obtain a silica sol having a pH of 3.0. 3500 g of ultrastable Y-type zeolite (lattice constant 24.28Å, HSZ-370HUA manufactured by Tosoh Corporation) and kaolin 4000 g were added and kneaded into the total amount of silica sol, and spray dried with hot air at 250 ° C. The spray-dried product thus obtained was washed with 50 ° C. and 50 liters of 0.2% ammonium sulfate, dried in an oven at 110 ° C., and calcined at 600 ° C. to obtain Catalyst A.
Catalyst A was evaluated with an adiabatic downflow type FCC pilot device. The scale of the apparatus was inventory-2 kg and feed amount 1 kg / h. The feedstock was Middle Eastern desulfurized VGO. Table 1 shows the properties of this desulfurized VGO. In order to quasi-equilibrate the catalyst before charging the catalyst A into the apparatus, it was steamed at 800 ° C. for 6 hours in 100% steam.
When the operating conditions were a reaction temperature of 600 ° C. and a catalyst / oil ratio of 25 wt / wt, a high light olefin yield as shown in Table 2 was obtained. The coke yield at this time was a low level of 4 mass% (vs. feed). In order to make up for the lack of heat, the regeneration air was heat exchanged with the exhaust gas, and the temperature of the regeneration air was increased to 450 ° C. before being put into the regeneration tower. The regeneration tower temperature in a steady state was 707 ° C.
[0024]
[Comparative Example 1]
The reaction was carried out using the same catalyst, raw material and apparatus as in Example 1. However, heat exchange between regeneration air and exhaust gas was not performed. As a result, the temperature of the regeneration air decreased to 80 ° C., which is the blower discharge temperature. This lowered the regeneration tower temperature to 689 ° C. Along with this, the amount of heat that the regenerated catalyst brought into the reactor decreased, and the reaction temperature decreased to 584 ° C. As a result, the yield of light olefins was reduced by 5% by mass.
[0025]
[Comparative Example 2]
In the experiment under the same conditions as in Comparative Example 2, torch oil was burned in the regeneration tower in order to raise the regeneration tower temperature to 707 ° C. At this time, the required amount of torch oil was 1.4% by mass (vs. feed).
[0026]
[Table 1]
[0027]
[Table 2]
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003193848A JP3950437B2 (en) | 2003-07-08 | 2003-07-08 | Fluid catalytic cracking of heavy oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003193848A JP3950437B2 (en) | 2003-07-08 | 2003-07-08 | Fluid catalytic cracking of heavy oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005029620A JP2005029620A (en) | 2005-02-03 |
JP3950437B2 true JP3950437B2 (en) | 2007-08-01 |
Family
ID=34205206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003193848A Expired - Fee Related JP3950437B2 (en) | 2003-07-08 | 2003-07-08 | Fluid catalytic cracking of heavy oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3950437B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4714589B2 (en) | 2006-01-20 | 2011-06-29 | 石油コンビナート高度統合運営技術研究組合 | Heavy oil catalytic cracking catalyst and process for producing olefin and fuel oil |
WO2008026635A1 (en) * | 2006-08-31 | 2008-03-06 | Nippon Oil Corporation | Fluid catalytic cracking method |
WO2008026681A1 (en) * | 2006-08-31 | 2008-03-06 | Nippon Oil Corporation | Fluid catalytic cracking method |
WO2011079355A1 (en) * | 2009-12-28 | 2011-07-07 | Petróleo Brasileiro S.A.- Petrobras | High-efficiency combustion device and fluidized catalytic cracking process for the production of light olefins |
FR3016370B1 (en) * | 2014-01-10 | 2017-06-16 | Ifp Energies Now | CATALYTIC CRACKING METHOD FOR ENHANCED ENHANCEMENT OF CALORIES OF COMBUSTION FUME. |
JP6234829B2 (en) * | 2014-01-24 | 2017-11-22 | Jxtgエネルギー株式会社 | Fluid catalytic cracking of heavy oil |
-
2003
- 2003-07-08 JP JP2003193848A patent/JP3950437B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005029620A (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3580518B2 (en) | Fluid catalytic cracking of heavy oil | |
KR100225222B1 (en) | Process for fluid catalytic cracking of oils | |
JP5692962B2 (en) | Catalytic conversion process for increasing the yield of lower olefins | |
US6222087B1 (en) | Catalytic production of light olefins rich in propylene | |
EP2737013B1 (en) | Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor | |
US20020195373A1 (en) | Heavy oil fluid catalytic cracking process | |
JP2003504500A (en) | Catalytic production of light olefins from naphtha feed | |
KR100235837B1 (en) | Process for fluid catalytic cracking of heavy fraction oils | |
KR20100132491A (en) | Method for obtaining light fuel from inferior feedstock | |
JPS5834517B2 (en) | tankasisotenkahou | |
JP4711951B2 (en) | C6 recycling for propylene production in fluid catalytic cracker | |
JP3650119B2 (en) | Catalytic decomposition with MCM-49 | |
JP3950437B2 (en) | Fluid catalytic cracking of heavy oil | |
JP3948905B2 (en) | Fluid catalytic cracking of heavy oil | |
JP3724932B2 (en) | Fluid catalytic cracking method of oil | |
JP3724934B2 (en) | Fluid catalytic cracking method of oil | |
WO2015111566A1 (en) | Fluid catalytic cracking process for heavy oil | |
US11891356B2 (en) | Production of high yields of light olefins from heavy hydrocarbons | |
RU2812317C1 (en) | Method for converting hydrocarbon feeds into lighter olefins | |
JP6329436B2 (en) | Fluid catalytic cracking of heavy oil | |
CN114606020B (en) | Ethylene and propylene production system and method | |
JP2013537926A (en) | Catalytic modification to improve product distribution | |
JP3574555B2 (en) | Fluid catalytic cracking of heavy oil | |
WO2008026681A1 (en) | Fluid catalytic cracking method | |
JPH1046160A (en) | Method for fluidized bed catalytic cracking of heavy oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060815 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3950437 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140427 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |