JPH10194744A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH10194744A
JPH10194744A JP8349504A JP34950496A JPH10194744A JP H10194744 A JPH10194744 A JP H10194744A JP 8349504 A JP8349504 A JP 8349504A JP 34950496 A JP34950496 A JP 34950496A JP H10194744 A JPH10194744 A JP H10194744A
Authority
JP
Japan
Prior art keywords
phase
oxide superconductor
mol
composition
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8349504A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Kaneko
哲幸 兼子
Kazuhiko Hayashi
和彦 林
Hiroshi Maeda
弘 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8349504A priority Critical patent/JPH10194744A/en
Publication of JPH10194744A publication Critical patent/JPH10194744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oxide superconductor excellent in superconducting characteristics, moldable in a short baking time and to provide a method for producing the oxide superconductor. SOLUTION: An oxide superconductor is produced by using a raw material having the same composition as that in which a part of Bi or a part of both Bi and Pb contained in a Bi-2223 phase consisting essentially of Bi-Pb-Sr-Ca-Cu is substituted with V. A material obtained by adding V to a material having the same composition as that of the Bi-2223 phase consisting essentially of Bi-Pb-Sr-Ca-Cu is used as a raw material to produce an oxide superconductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Bi−Pb−Sr
−Ca−Cu−O系酸化物超電導体およびその製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a Bi-Pb-Sr
The present invention relates to a -Ca-Cu-O-based oxide superconductor and a method for producing the same.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】Bi
−Sr−Ca−Cuを主成分とする酸化物超電導体に
は、Bi2 Sr2 Ca2 Cu3 z (zは10に近い
数)で表わされる超電導相(Bi−2223相)とBi
2 Sr2 Ca1 Cu2 y (yは8に近い数)で表わさ
れる超電導相(Bi−2212相)との2種類の超電導
相が存在する。このうちBi−2223相については、
高い臨界温度および高い臨界電流密度を有するため、数
多くある酸化物超電導体の中でも、超電導線材の材料と
して最も適していると考えられている。
BACKGROUND OF THE INVENTION Problems to be Solved by Bi
The -Sr-Ca-Cu into oxide superconductor mainly is, Bi 2 Sr 2 Ca 2 Cu 3 O z (z is a number close to 10) superconducting phase represented by the (Bi-2223 phase) Bi
2 Sr 2 Ca 1 Cu 2 O y (y is a number close to 8) Two superconducting phases of the superconducting phase represented by (Bi-2212 phase) is present. Among them, for the Bi-2223 phase,
It has a high critical temperature and a high critical current density, and is considered to be the most suitable as a material for a superconducting wire among many oxide superconductors.

【0003】このBi−2223相と呼ばれる超電導相
を含む酸化物超電導体を製造する際、高純度な材料を得
るために少量のPb(鉛)をBi(ビスマス)と置換
し、(Bi,Pb)2 Sr2 Ca2 Cu3 z のような
組成で材料が合成されている。このようにPbを置換す
る効果は、Bi−2223相を安定に存在させることと
考えられている。しかしPbを置換した材料においても
その純度を上げるために、非常に長い時間(100時間
以上)の焼成が必要とされている。
When producing an oxide superconductor containing a superconducting phase called Bi-2223 phase, a small amount of Pb (lead) is replaced with Bi (bismuth) in order to obtain a high-purity material, and (Bi, Pb) ) material composition as 2 Sr 2 Ca 2 Cu 3 O z is synthesized. The effect of substituting Pb in this way is considered to make the Bi-2223 phase exist stably. However, even for a material in which Pb is substituted, firing for a very long time (100 hours or more) is required to increase the purity.

【0004】従来、相安定化あるいは超電導特性向上を
目的としてPb以外の各種の元素の導入が試みられてい
るが、特に効果の上がっているものはほとんど存在しな
かった。そのような元素のうちでV(バナジウム)につ
いても、いくつかの実験が試みられている。以上のこと
が記載された参考文献として以下のものがある。
Heretofore, attempts have been made to introduce various elements other than Pb for the purpose of stabilizing the phase or improving the superconducting characteristics, but none of them has been particularly effective. Some experiments have been attempted on V (vanadium) among such elements. References describing the above are listed below.

【0005】(1)P.C.W.Fung et al.,“VANADIUM SUB
STITUTED 2212 AND 2223 SUPERCONDUCTING CERAMICS
”,solid State Communications, Vol.75, NO.3, 199
0, pp.211-216 (2)B.Chanda et al.,“Heat conduction in vanadiu
m substituted (Bi0.8Pb0.2-y Vy )2 Sr2 Ca2 Cu3 OX s
intered pellets between 10 and 150K”,Cryogenics 1
993 Vol.33, No10, pp.980-985 (3)B.Chanda et al.,“Normal state thermoelectri
c power of vanadium-substituted (Bi0.8 Pb
0.2-y Vy )2 Sr2 Ca2 Cu3 OX superconducting pellets
”, Physica C 232 (1994), pp.136-144 (4)N.V.Minh et al.,“EFECTS OF VANADIUM ON THE
SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O SYS
TEM ”, Physica C 235-240 (1994), pp.1435-1436 (5)G.Narsinga Rao et al.,"LEMA and Irreversibil
ity Line Studies onVanadium Doped Bi(2223) superco
nducting system”, Physica C 235-240 (1994), pp.
2031-2033 (6)B.Chanda et al.,“Mixed State Thermoeledtric
Power of Vanadium Substituted 2223 (Bi,Pb) Superc
onducting Polycrystalline Cuprates”, Journal of S
uperconductivity, Vol.9, No.2, 1996, pp.181-185 (7)Youmo Li et al.,“Comparative Study on the D
oping Effect of 3d Elements in Bi1.5 Pb0.2 Sr2 Ca
2 Cu2.8 M0.2 O y (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
or Zn), Journal of Superconductivity, Vol.9, No.
3, 1996, pp.201-203 (8)M.E.Yakinci et al.,"Synthesis of melt-quench
ed Bi1.7 V0.3 Sr2Ca2 Cu3 O10+y superconducting gla
ss-ceramics”, JOURNAL OF MATERIALS SCIENCE 31 (1
996), pp.2865-2871 しかし、これらの文献では、V元素の添加あるいは置換
が不適切であるため、格別の効果は見られていない。
(1) PCWFung et al., “VANADIUM SUB
STITUTED 2212 AND 2223 SUPERCONDUCTING CERAMICS
”, Solid State Communications, Vol.75, NO.3, 199
0, pp.211-216 (2) B. Chanda et al., “Heat conduction in vanadiu
m substitute (Bi 0.8 Pb 0.2-y V y ) 2 Sr 2 Ca 2 Cu 3 O X s
intered pellets between 10 and 150K ”, Cryogenics 1
993 Vol.33, No10, pp.980-985 (3) B. Chanda et al., “Normal state thermoelectri
c power of vanadium-substituted (Bi 0.8 Pb
0.2-y V y ) 2 Sr 2 Ca 2 Cu 3 O X superconducting pellets
Physica C 232 (1994), pp.136-144 (4) NV Minh et al., “EFECTS OF VANADIUM ON THE
SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O SYS
TEM ", Physica C 235-240 (1994), pp. 1435-1436 (5) G. Narsinga Rao et al.," LEMA and Irreversibil
ity Line Studies onVanadium Doped Bi (2223) superco
nducting system ”, Physica C 235-240 (1994), pp.
2031-2033 (6) B. Chanda et al., “Mixed State Thermoeledtric
Power of Vanadium Substituted 2223 (Bi, Pb) Superc
onducting Polycrystalline Cuprates ”, Journal of S
uperconductivity, Vol.9, No.2, 1996, pp.181-185 (7) Youmo Li et al., “Comparative Study on the D
oping Effect of 3d Elements in Bi 1.5 Pb 0.2 Sr 2 Ca
2 Cu 2.8 M 0.2 O y (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
or Zn), Journal of Superconductivity, Vol. 9, No.
3, 1996, pp.201-203 (8) MEYakinci et al., "Synthesis of melt-quench
ed Bi 1.7 V 0.3 Sr 2 Ca 2 Cu 3 O 10 + y superconducting gla
ss-ceramics ”, JOURNAL OF MATERIALS SCIENCE 31 (1
996), pp.2865-2871 However, in these documents, no particular effect has been observed because the addition or substitution of the V element is inappropriate.

【0006】たとえば、参考文献(1)、(5)および
(8)には、(Bi2-x x )Sr 2 Ca2 Cu3 z
のようにPbを含めずVをPbの変わりにBiと置換す
るような材料が合成されているが、臨界温度も(Bi,
Pb)2 Sr2 Ca2 Cu3z に比べ高くなく、低い
臨界温度のBi−2212相との混合試料になる。
For example, references (1), (5) and
(8) contains (Bi2-xVx) Sr TwoCaTwoCuThreeOz
Replaces V with Bi instead of Pb without including Pb as in
Material is synthesized, but the critical temperature is also (Bi,
Pb)TwoSrTwoCaTwoCuThreeOzNot high and low compared to
It becomes a mixed sample with the Bi-2212 phase at the critical temperature.

【0007】また参考文献(2)、(3)および(6)
には、(Bi0.8 Pb0.2-x x 2 Sr2 Ca2 Cu
3 z のようにVをPbの一部と置換された試料が合成
されている。しかし、ここで示されている超電導特性は
V量の増加に従って臨界温度が低下するような悪影響が
見られる。さらに試料の焼成時間が840℃で100時
間を超える時間を(参考文献(2)より)かけたとして
も単相のBi−2223相を得ることができていない
(参考文献(2)のFig.1参照:Bi−2212相
のピークが見える)。
References (2), (3) and (6)
Contains (Bi0.8Pb0.2-xVx) TwoSrTwoCaTwoCu
ThreeOzA sample in which V is replaced with a part of Pb as in
Have been. However, the superconducting properties shown here are
An adverse effect such that the critical temperature decreases with an increase in the amount of V
Can be seen. Further, the firing time of the sample is 100 hours at 840 ° C.
If you spend more time (from reference (2))
Has not been able to obtain a single-phase Bi-2223 phase
(See FIG. 1 in Reference (2): Bi-2212 phase)
Peak is visible).

【0008】また参考文献(4)および(7)には、
(Bi,Pb)2 Sr2 Ca2 Cu3- x X z のよう
にCu(銅)と置換するような材料が合成されている。
これらのケースでは臨界温度がV添加のない試料と同等
の性能を持つが、そのような特性を引出すために非常に
長い焼成時間が必要とされると考えられる(参考文献
(4):170時間、参考文献(7):150時間)。
References (4) and (7) also state that
(Bi, Pb) materials to replace the Cu (copper) as 2 Sr 2 Ca 2 Cu 3- x V X O z have been synthesized.
In these cases, the critical temperature has the same performance as the sample without V addition, but it is considered that a very long baking time is required to obtain such characteristics (Reference (4): 170 hours) , Reference (7): 150 hours).

【0009】また本願発明者の一部による既出願(特開
平6−316417号公報)において、Sr−V−Oを
形成するような添加の方法が開示されているが、この方
法においても単相のBi−2223相を得るには100
時間以上の焼成時間が必要とされる。
In addition, an application filed by a part of the inventor of the present application (JP-A-6-316417) discloses a method of adding Sr-VO to form a single phase. 100 to obtain the Bi-2223 phase
A firing time of at least one hour is required.

【0010】以上のように、Pb置換されたBi−22
23相は銀被覆法などを用いた超電導線材に適した材料
であり、その特性も非常に高いものであるが、その焼成
時間の長さが生産性を著しく低下させていた。
As described above, Pb-substituted Bi-22
The 23 phase is a material suitable for a superconducting wire using a silver coating method or the like, and has very high characteristics, but the length of the firing time significantly reduces productivity.

【0011】それゆえ、本発明の目的は、短い焼成時間
で形成可能な超電導特性に優れた酸化物超電導体および
その製造方法を提供することである。
It is therefore an object of the present invention to provide an oxide superconductor having excellent superconducting properties which can be formed in a short firing time, and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本願発明者らは、(B
i,Pb)2 Sr2 Ca2 Cu3 z に各種元素を様々
な方法で置換あるいは添加して試料を合成し、その焼成
時間が減少されるような元素あるいは方法を探索した。
その結果、V元素の新しい導入方法を見出し、その方法
によって焼成時間を大幅に減少させることに成功した。
Means for Solving the Problems The present inventors have proposed (B
A sample was synthesized by substituting or adding various elements to i, Pb) 2 Sr 2 Ca 2 Cu 3 O z by various methods, and a sample was synthesized.
As a result, they found a new method of introducing V element and succeeded in greatly reducing the firing time by the method.

【0013】この新たに見出したV元素の導入方法を適
用した本発明の酸化物超電導体の製造方法は以下のとお
りである。
The method of manufacturing the oxide superconductor of the present invention to which the newly discovered method of introducing V element is applied is as follows.

【0014】本発明の1の局面に従う酸化物超電導体の
製造方法は、Bi−Pb−Sr−Ca−Cuを主成分と
するBi−2223相に含まれるBiの一部をVで置換
した組成と同一組成比を有する原料を用いて製造するこ
とである。
According to one embodiment of the present invention, there is provided a method for manufacturing an oxide superconductor, comprising the steps of: replacing a part of Bi contained in a Bi-2223 phase containing Bi-Pb-Sr-Ca-Cu as a main component with V; The production is performed using a raw material having the same composition ratio as in the above.

【0015】前述の参考文献に記載された方法では、P
bのすべてをVで置き換える、あるいはPbの一部だけ
をVで置き換えた方法であり、このような置換の仕方で
は焼成時間の短縮には効果がない。一方、本発明のよう
にBi単独、あるいはBiとPb両者の一部をVで置き
換えた場合には、焼成時間を大幅に短縮することがで
き、生産性を著しく向上させることができる。
In the method described in the aforementioned reference, P
This is a method in which all of b is replaced with V or only a part of Pb is replaced with V. Such a replacement method has no effect on shortening the firing time. On the other hand, when Bi alone or a part of both Bi and Pb is replaced with V as in the present invention, the firing time can be greatly reduced, and the productivity can be significantly improved.

【0016】なお、ここでBi−2223相とは、通
常、(Bi,Pb)2 Sr2 Ca2 Cu3 Z の組成を
示すが、一般的にはBi1.8 Pb0.4 Sr2.0 Ca2.2
Cu3. 0 Z の組成のものが用いられる。
Here, the Bi-2223 phase usually indicates a composition of (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O Z , but generally, Bi 1.8 Pb 0.4 Sr 2.0 Ca 2.2
It is used as the Cu 3. 0 O Z composition.

【0017】また本発明の他の局面に従う酸化物超電導
体の製造方法は、Bi−Pb−Sr−Ca−Cuを主成
分とするBi−2223相の組成と同一組成比を有する
材料にVを添加したものを原料として用いて製造する方
法である。
Further, according to another aspect of the present invention, there is provided a method of manufacturing an oxide superconductor, wherein V is added to a material having the same composition ratio as a Bi-2223 phase containing Bi-Pb-Sr-Ca-Cu as a main component. This is a method of producing using the added material as a raw material.

【0018】たとえば目的とする超電導相の組成(最終
製品の超電導相組成)が、Bi1.8Pb0.4 Sr2.0
2.2 Cu3 z (zは10に近い数)である場合、出
発原料の元素比率をBi1.8 Pb0.4 Sr2.0 Ca2.2
Cu3 z +Vu (uは比率)のようにBi、Pb、S
r、Ca、Cuの部分は目的組成と同じくし、そこにV
元素を加える方法である。
For example, the composition of the target superconducting phase (the superconducting phase composition of the final product) is Bi 1.8 Pb 0.4 Sr 2.0 C
When a 2.2 Cu 3 O z (z is a number close to 10), the element ratio of the starting material is set to Bi 1.8 Pb 0.4 Sr 2.0 Ca 2.2
Bi, Pb, S like Cu 3 O z + V u (u is a ratio)
r, Ca, and Cu are the same as the target composition, and V
This is a method of adding an element.

【0019】前述の参考文献では、Vの置換量だけ、あ
る元素の比率を少なくしているが、このような置換の仕
方では、焼成時間の短縮には効果がない。一方、本発明
のように目的組成と同じ元素比率を有する出発原料にV
を添加した場合には、焼成時間が大幅に減少し、生産性
を著しく向上させることができる。
In the above-mentioned references, the ratio of a certain element is reduced by the V substitution amount, but such a substitution method has no effect on shortening the firing time. On the other hand, the starting material having the same element ratio as the target composition as in the present invention has V
When is added, the firing time is greatly reduced, and the productivity can be significantly improved.

【0020】上記のように、V元素を特定の元素と置き
換えるよう、あるいはさらにVを付け加えるように用い
ることによって、110K程度の臨界温度を持ち、かつ
Bi−Pb−Sr−Ca−Cuを主成分とするBi−2
223相の焼成時間を従来の半分程度の時間に短縮する
ことができる。
As described above, by replacing the V element with a specific element or by adding V further, it has a critical temperature of about 110 K and contains Bi-Pb-Sr-Ca-Cu as a main component. Bi-2
The calcination time of the 223 phase can be reduced to about half of the conventional time.

【0021】またこのようなV元素の導入方法は超電導
特性、特に臨界温度の低下を引起こさずにV元素あるい
はV化合物を超電導材料中に分散させることができる。
In addition, such a method of introducing the V element can disperse the V element or the V compound in the superconducting material without lowering the superconducting characteristics, particularly the critical temperature.

【0022】また本願発明者らは、このV元素に加え、
B(ボロン)をさらに追加して添加すると焼成時間の短
縮の効果がより一層促進されることも見出した。
The inventors of the present application have added, in addition to this V element,
It has also been found that when B (boron) is further added, the effect of shortening the firing time is further promoted.

【0023】またこのBの添加量は、所定の組成比より
なる原料1molに対して0.1mol以上0.2mo
l以下添加することが望ましい。Bの添加量を0.1m
ol以上0.2mol以下としたのは、0.1mol未
満では焼成時間短縮の効果が十分でなく、0.2mol
を超えて添加すると超電導特性が低下するからである。
The amount of B added is 0.1 mol or more and 0.2 mol per 1 mol of a raw material having a predetermined composition ratio.
It is desirable to add 1 or less. 0.1 m of B
The reason for setting the sintering time to less than 0.1 mol is that the effect of shortening the firing time is not sufficient if the amount is less than 0.1 mol.
This is because if added in excess of the above, the superconducting properties deteriorate.

【0024】またV元素は、所定の組成比を有する原料
1molに対して0.1mol以上0.3mol以下添
加されることが望ましい。Vの添加量を0.1mol以
上0.3mol以下としたのは、0.1mol未満では
焼成時間短縮の効果が十分でなく、0.3molを超え
て添加すると超電導特性が低下するからである。
The element V is desirably added in an amount of 0.1 mol or more and 0.3 mol or less per 1 mol of a raw material having a predetermined composition ratio. The reason why the addition amount of V is 0.1 mol or more and 0.3 mol or less is that if it is less than 0.1 mol, the effect of shortening the sintering time is not sufficient, and if it exceeds 0.3 mol, the superconducting properties deteriorate.

【0025】上記2つの局面によって形成される本発明
の酸化物超電導体は、Bi−Pb−Sr−Ca−Cuを
主成分とするBi−2223相を有し、Bi−2223
相に含まれるBiの一部がVで置換されていることを特
徴とする。
The oxide superconductor of the present invention formed by the above two aspects has a Bi-2223 phase mainly composed of Bi-Pb-Sr-Ca-Cu,
A feature is that a part of Bi contained in the phase is replaced with V.

【0026】また、Biの一部だけはなく、Pbの一部
がVで置換されていてもよい。またさらにBが添加され
ていてもよい。
Further, not only a part of Bi but also a part of Pb may be substituted with V. Further, B may be further added.

【0027】Bi−2223相に含まれるBiとVとの
元素比が0.05<V/(Bi+V)<0.22である
ことが望ましい。このBiとVとの元素比が0.05以
下であると焼成時間短縮の効果が十分ではなく、0.2
0以上であると超電導特性が低下する。
It is desirable that the element ratio between Bi and V contained in the Bi-2223 phase is 0.05 <V / (Bi + V) <0.22. If the element ratio between Bi and V is 0.05 or less, the effect of shortening the firing time is not sufficient,
If it is 0 or more, the superconducting properties deteriorate.

【0028】またBi−2223相に含まれるBiとP
bとVとの元素比が0.04<V/(Bi+Pb+V)
<0.20であることが望ましい。このBiとPbとV
との元素比が0.04以下であると焼成時間短縮の効果
が十分でなく、0.20以上であると超電導特性が低下
する。
Bi and P contained in Bi-2223 phase
The element ratio between b and V is 0.04 <V / (Bi + Pb + V)
<0.20 is desirable. This Bi, Pb and V
If the element ratio is 0.04 or less, the effect of shortening the firing time is not sufficient, and if it is 0.20 or more, the superconducting properties are deteriorated.

【0029】[0029]

【実施例】以下、本願発明者らが行なった実験の方法お
よび結果について説明する。
The method and results of experiments conducted by the present inventors will be described below.

【0030】原料粉末としてBi2 3 、PbO、Sr
CO3 、CaCO3 、CuO、V25 、B2 3 を用
い、基本組成比をBi1.8 Pb0.4 Sr2.0 Ca2.2
3. 0 y としてこの組成に対してV元素の各元素置換
および添加効果を調査した。試料は組成のみを代えて混
合し、大気中780℃×8時間の熱処理、粉砕、785
℃×8時間の熱処理、粉砕、790℃×8時間の熱処
理、粉砕の工程の順で処理された。この段階でいずれの
組成の試料にもBi−2223相は含まれておらず、低
い臨界温度を持つBi−2212相だけが含まれてい
た。この処理された粉末をプレス機でペレット化し、大
気中838℃で熱処理時間を変化させ試料中のBi−2
223相の生成量を調整した。
Bi 2 O 3 , PbO, Sr
Using CO 3 , CaCO 3 , CuO, V 2 O 5 , and B 2 O 3 , the basic composition ratio was set to Bi 1.8 Pb 0.4 Sr 2.0 Ca 2.2 C
and examines each element substitution and addition effect of V elements for this composition as u 3. 0 O y. The sample was mixed by changing only the composition, and heat-treated in air at 780 ° C. × 8 hours, pulverized, 785
Heat treatment at 8 ° C. × 8 hours, pulverization, heat treatment at 790 ° C. × 8 hours, and pulverization were performed in this order. At this stage, the Bi-2223 phase was not contained in any sample of any composition, and only the Bi-2212 phase having a low critical temperature was contained. The treated powder was pelletized by a press machine, and the heat treatment time was changed at 838 ° C. in the atmosphere to change Bi-2 in the sample.
The amount of 223 phase formed was adjusted.

【0031】なお各相の存在比率は粉末X線回折(X線
としてCu−Kα線を使用)パターンより得られる、回
折ピーク(115)線(Bi−2223相では2θ=2
6.2°、Bi−2212相では2θ=27.5°に現
れる)の強度比を用いて導出した。
The proportion of each phase was determined by the diffraction peak (115) line (2θ = 2 in the Bi-2223 phase) obtained from the powder X-ray diffraction (using Cu-Kα ray as the X-ray) pattern.
6.2 °, which appears at 2θ = 27.5 ° in the Bi-2212 phase).

【0032】またVおよびBを導入しない試料Bi1.8
Pb0.4 Sr2.0 Ca2.2 Cu3.0y を比較例1とし
た。
The sample Bi 1.8 into which V and B are not introduced
The Pb 0.4 Sr 2.0 Ca 2.2 Cu 3.0 O y and Comparative Example 1.

【0033】実施例1 上記の基本組成に対し、Bi元素の一部をVで置換した
組成(Bi1.8-x x)Pb0.4 Sr2.0 Ca2.2 Cu
3.0 y (x=0.1、0.2、0.3、0.4、0.
5)を持つ粉末を混合し、上記工程にて試料を作製し
た。それら試料の大気中838℃における焼成時間と試
料内に含まれるBi−2223相との割合の関係を図1
に示す。
Example 1 Composition (Bi 1.8-x V x ) Pb 0.4 Sr 2.0 Ca 2.2 Cu in which Bi element is partially substituted with V with respect to the above basic composition
3.0 O y (x = 0.1, 0.2, 0.3, 0.4, 0.
The powder having 5) was mixed, and a sample was prepared in the above process. FIG. 1 shows the relationship between the firing time of these samples at 838 ° C. in the air and the ratio of the Bi-2223 phase contained in the samples.
Shown in

【0034】図1からわかるように、比較例1(Vを含
まない組成)では、150時間の焼成後もまだ試料内に
含まれるBi−2223相の割合は50%であるのに対
し、VをBiと置換した試料においては、Bi−222
3相の割合が短い時間で増加することがわかる。また置
換量の増加に従ってその生成速度が加速されていること
もわかる。
As can be seen from FIG. 1, in Comparative Example 1 (composition not containing V), the ratio of the Bi-2223 phase still contained in the sample after sintering for 150 hours was 50%, whereas V Was replaced with Bi, Bi-222
It can be seen that the ratio of the three phases increases in a short time. It can also be seen that the generation rate is accelerated as the substitution amount increases.

【0035】また以下の表1に焼成時間150h(時
間)におけるV置換量と臨界温度との関係を示す。これ
により焼成時間を短縮できて、かつ臨界温度を比較例と
同等の値にすることができるVの置換量は、V/(Bi
+V)が0.05以上0.2以下程度であることが望ま
しいといえる。
Table 1 below shows the relationship between the V substitution amount and the critical temperature at a firing time of 150 hours (hours). Thereby, the sintering time can be reduced, and the critical temperature can be set to a value equivalent to that of the comparative example.
+ V) is desirably about 0.05 or more and about 0.2 or less.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例2 上記の基本組成に対し、BiおよびPb元素両者の一部
をVで置換した組成(Bi1.8-x x )(Pb0.4-z
z )Sr2.0 Ca2.2 Cu3.0 y において、xおよび
zの組合せとしてx=0.082、z=0.018と、
x=0.164、z=0.036と、x=0.245、
z=0.055と、x=0.327、z=0.073
と、x=0.409、z=0.091との5種を持つ粉
末を混合し、実施例1と同じく大気中838℃における
Bi−2223相の生成割合を調べた。その結果を図2
に示す。
Example 2 A composition (Bi 1.8-x V x ) (Pb 0.4-z V) in which both of the Bi and Pb elements were partially replaced with V with respect to the above basic composition.
In z) Sr 2.0 Ca 2.2 Cu 3.0 O y, x = 0.082 as a combination of x and z, and z = 0.018,
x = 0.164, z = 0.036, x = 0.245,
z = 0.555, x = 0.327, z = 0.073
And five kinds of powders having x = 0.409 and z = 0.091 were mixed, and the formation ratio of the Bi-2223 phase at 838 ° C. in the atmosphere was examined in the same manner as in Example 1. Figure 2 shows the result.
Shown in

【0038】図2からわかるように、この置換のパター
ンにおいても、比較例1に比べVの置換により、Bi−
2223相の生成が大きく促進されることがわかる。
As can be seen from FIG. 2, even in this substitution pattern, Bi-
It can be seen that the formation of the 2223 phase is greatly promoted.

【0039】また以下の表2に焼成時間100hにおけ
るV置換量と臨界温度との関係を示す。これにより焼成
時間を短縮できて、かつ臨界温度を比較例と同等の値に
することができるVの置換量は、V/(Bi+Pb+
V)が0.04以上0.2以下程度であることが望まし
いといえる。
Table 2 below shows the relationship between the V substitution amount and the critical temperature at a firing time of 100 hours. Thereby, the sintering time can be shortened, and the critical temperature can be set to the same value as the comparative example. The substitution amount of V is V / (Bi + Pb +
It can be said that V) is desirably about 0.04 or more and about 0.2 or less.

【0040】[0040]

【表2】 [Table 2]

【0041】比較例 上記の基本組成に対し、Pb元素の一部をVで置換した
組成Bi1.8 (Pb0. 4-z z )Sr2.0 Ca2.2 Cu
3.0 y (z=0.1、0.25、0.3)を持つ粉末
を混合し、同じく大気中838℃におけるBi−222
3相の生成割合を調べた。その結果を図3に示す。
[0041] For the basic composition of the comparative example described above, the composition by replacing part of Pb element in V Bi 1.8 (Pb 0. 4- z V z) Sr 2.0 Ca 2.2 Cu
A powder having 3.0 O y (z = 0.1, 0.25, 0.3) is mixed, and Bi-222 at 838 ° C. in the atmosphere is also mixed.
The formation ratio of three phases was examined. The result is shown in FIG.

【0042】図3からわかるように、この置換のパター
ンにおいては、V量の増加に従って、Bi−2223相
の生成が抑制されていることがわかる。これにより、P
bのみをVで置換することは焼成時間を短縮する効果に
とっては悪影響であるといえる。よって、先に挙げた参
考文献中に示されるような、Pbの含まれない組成、あ
るいはPbを減少させ代わりにVを置換するような組成
は焼成時間の短縮に対しては適切ではないことがわか
る。
As can be seen from FIG. 3, in this substitution pattern, the formation of the Bi-2223 phase is suppressed as the V amount increases. This allows P
It can be said that substituting only b with V has an adverse effect on the effect of shortening the firing time. Therefore, a composition that does not contain Pb, or a composition that reduces Pb and replaces V instead of Pb, as shown in the above-mentioned references, may not be appropriate for shortening the firing time. Recognize.

【0043】実施例3 上記の基本組成の各元素に比率を維持したまま、余分に
V元素を加えた組成Bi1.8 Pb0.4 Sr2.0 Ca2.2
Cu3.0 y +Vx (x=0.1、0.2、0.3、
0.4)を持つ粉末を混合し、上記と同じく大気中83
8℃におけるBi−2223相の生成割合を調べた。そ
の結果を図4に示す。
[0043] Example 3 while maintaining the ratio to each element of the above-described basic composition, extra composition plus V element Bi 1.8 Pb 0.4 Sr 2.0 Ca 2.2
Cu 3.0 O y + V x (x = 0.1, 0.2, 0.3,
0.4), and mixed in the same manner as above.
The formation ratio of the Bi-2223 phase at 8 ° C. was examined. FIG. 4 shows the results.

【0044】図4からわかるように、Vを余分に加えら
れた組成においては、大きくBi−2223相の生成は
促進され、たとえばx=0.2の添加においては、ほぼ
70時間程度で反応が完了し、必要な焼成時間が短くな
っていることがわかる。
As can be seen from FIG. 4, in the composition to which V is added extra, the formation of the Bi-2223 phase is greatly promoted. For example, in the case of adding x = 0.2, the reaction takes about 70 hours. It can be seen that the firing is completed and the required firing time is shortened.

【0045】また以下の表3に焼成時間100hにおけ
るV置換量と臨界温度との関係を示す。これにより、焼
成時間を短縮できて、かつ臨界温度を比較例と同等の値
にすることができるVの添加量は、超電導組成1mol
に対して0.1mol以上0.3mol以下(上記x=
0.1〜0.3)であることが望ましいといえる。
Table 3 below shows the relationship between the V substitution amount and the critical temperature at a firing time of 100 hours. Thereby, the amount of V that can reduce the firing time and make the critical temperature equivalent to that of the comparative example is 1 mol of the superconducting composition.
0.1 mol or more and 0.3 mol or less (the above x =
0.1 to 0.3).

【0046】[0046]

【表3】 [Table 3]

【0047】実施例4 上記の基本組成に対し、Bのみを添加した組成(比較例
となる:Bi1.8 Pb 0.4 Sr2.0 Ca2.2 Cu3.0
y +B0.1 )と、VおよびBを添加した組成(Bi1.8
Pb0.4 Sr2.0 Ca2.2 Cu3.0 y +Vz
0.1 、z=0.1、0.2)の粉末を混合し、同様の
実験を行なった。図5にその結果を示す。
[0047]Example 4 Composition with only B added to the above basic composition (Comparative Example
Becomes: Bi1.8Pb 0.4Sr2.0Ca2.2Cu3.0O
y+ B0.1) And a composition (Bi1.8
Pb0.4Sr2.0Ca2.2Cu3.0Oy+ Vz+
B0.1, Z = 0.1, 0.2), and mix
An experiment was performed. FIG. 5 shows the result.

【0048】図5からわかるように、まずBのみを添加
した試料においては、基本組成試料(比較例1)と比べ
てもほとんど変化がない。一方、VとBとを同時に添加
した試料では、比較例1あるいはVのみを添加した試料
に比べても、必要とされる焼成時間が短くなっているこ
とがわかる。このようにVに加えBを同時に添加するこ
とは、Bi−2223相の生成をより促進するといえ
る。
As can be seen from FIG. 5, in the sample to which only B was first added, there was almost no change as compared with the basic composition sample (Comparative Example 1). On the other hand, in the sample to which V and B were added at the same time, it can be seen that the required baking time was shorter than that in Comparative Example 1 or the sample to which only V was added. It can be said that the simultaneous addition of B in addition to V further promotes the formation of the Bi-2223 phase.

【0049】またBi1.8 Pb0.4 Sr2.0 Ca2.2
3.0 y +V0.2 +Bw とV量とを固定しBの量をw
=0.1、0.2、0.3と変化させた場合、w=0.
1と0.2との試料は焼成時間100時間において臨界
温度107Kを示すが、w=0.3では100K程度と
なり、好ましいBの添加量は超電導組成1molに対
し、0.1mol以上0.2mol以下程度であるとい
える。
Also, Bi 1.8 Pb 0.4 Sr 2.0 Ca 2.2 C
u 3.0 O y + V 0.2 + B w and V amount are fixed, and the amount of B is w
= 0.1, 0.2, 0.3, w = 0.
The samples of 1 and 0.2 show a critical temperature of 107 K at a firing time of 100 hours, but when w = 0.3, the temperature becomes about 100 K. It can be said that it is below.

【0050】今回開示された実施例はすべての点で例示
であって制限的なものではないと考えられるべきであ
る。本発明の範囲は上記した説明ではなくて特許請求の
範囲によって示され、特許請求の範囲と均等の意味およ
び範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0051】[0051]

【発明の効果】上記のように、本発明に示されるV元素
あるいはB元素の導入方法により、Bi−Pb−Sr−
Ca−Cuを主成分とするBi−2223相の焼成時間
が大きく短縮され、この超電導体を用いた製品を製造す
る際の製造時間が大幅に削減される。
As described above, according to the method of introducing the V element or the B element shown in the present invention, Bi-Pb-Sr-
The firing time of the Bi-2223 phase containing Ca-Cu as a main component is greatly reduced, and the manufacturing time when manufacturing a product using this superconductor is greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における焼成時間とBi−2
223相割合との関係を示すグラフである。
FIG. 1 shows firing time and Bi-2 in Example 1 of the present invention.
It is a graph which shows the relationship with 223 phase ratio.

【図2】本発明の実施例2における焼成時間とBi−2
223相割合との関係を示すグラフである。
FIG. 2 shows the firing time and Bi-2 in Example 2 of the present invention.
It is a graph which shows the relationship with 223 phase ratio.

【図3】比較例における焼成時間とBi−2223相割
合との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a firing time and a Bi-2223 phase ratio in a comparative example.

【図4】本発明の実施例3における焼成時間とBi−2
223相割合との関係を示すグラフである。
FIG. 4 shows firing time and Bi-2 in Example 3 of the present invention.
It is a graph which shows the relationship with 223 phase ratio.

【図5】本発明の実施例4における焼成時間とBi−2
223相割合との関係を示すグラフである。
FIG. 5 shows the firing time and Bi-2 in Example 4 of the present invention.
It is a graph which shows the relationship with 223 phase ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 和彦 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 前田 弘 宮城県仙台市青葉区川内元支倉35 川内住 宅1−201 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuhiko Hayashi 1-3-1 Shimaya, Konohana-ku, Osaka-shi In Osaka Works, Sumitomo Electric Industries, Ltd. 35 Kawauchi Residence 1-201

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Bi−Pb−Sr−Ca−Cuを主成分
とするBi−2223相を有する酸化物超電導体におい
て、前記Bi−2223相に含まれるBiの一部がVで
置換されていることを特徴とする、酸化物超電導体。
1. An oxide superconductor having a Bi-2223 phase containing Bi-Pb-Sr-Ca-Cu as a main component, wherein a part of Bi contained in the Bi-2223 phase is substituted by V. An oxide superconductor, characterized in that:
【請求項2】 前記Bi−2223相に含まれるPbの
一部がVで置換されていることを特徴とする、請求項1
に記載の酸化物超電導体。
2. The method according to claim 1, wherein a part of Pb contained in the Bi-2223 phase is substituted with V.
2. The oxide superconductor according to claim 1.
【請求項3】 Bが添加されていることを特徴とする、
請求項1および2のいずれかに記載の酸化物超電導体。
3. The method according to claim 1, wherein B is added.
The oxide superconductor according to claim 1.
【請求項4】 前記Bi−2223相に含まれるBiと
Vとの元素比が、0.05<V/(Bi+V)<0.2
2であることを特徴とする、請求項1に記載の酸化物超
電導体。
4. The element ratio between Bi and V contained in the Bi-2223 phase is 0.05 <V / (Bi + V) <0.2.
2. The oxide superconductor according to claim 1, wherein:
【請求項5】 前記Bi−2223相に含まれるBiと
PbとVとの元素比が、0.04<V/(Bi+Pb+
V)<0.20であることを特徴とする、請求項2に記
載の酸化物超電導体。
5. The element ratio of Bi, Pb and V contained in the Bi-2223 phase is 0.04 <V / (Bi + Pb +
3. The oxide superconductor according to claim 2, wherein V) <0.20.
【請求項6】 Bi−Pb−Sr−Ca−Cuを主成分
とするBi−2223相に含まれるBiの一部をVで置
換した組成と同一組成比を有する原料を用いて製造す
る、酸化物超電導体の製造方法。
6. Oxidation produced by using a raw material having the same composition ratio as a composition obtained by substituting a part of Bi contained in a Bi-2223 phase containing Bi-Pb-Sr-Ca-Cu as a main component with V. Of manufacturing superconductors.
【請求項7】 Bi−Pb−Sr−Ca−Cuを主成分
とするBi−2223相の組成と同一組成比を有する材
料にVを添加したものを原料として用いて製造する、酸
化物超電導体の製造方法。
7. An oxide superconductor manufactured using a material obtained by adding V to a material having the same composition ratio as that of a Bi-2223 phase containing Bi-Pb-Sr-Ca-Cu as a main component as a raw material. Manufacturing method.
【請求項8】 前記原料にBが添加されている、請求項
6および7のいずれかに記載の酸化物超電導体の製造方
法。
8. The method for producing an oxide superconductor according to claim 6, wherein B is added to said raw material.
【請求項9】 前記原料1molに対してVが0.1m
ol以上0.3mol以下添加されていることを特徴と
する、請求項6および7のいずれかに記載の酸化物超電
導体の製造方法。
9. V is 0.1 m with respect to 1 mol of the raw material.
The method for producing an oxide superconductor according to any one of claims 6 and 7, characterized by being added in an amount of not less than ol and not more than 0.3 mol.
【請求項10】 前記原料1molに対してBが0.1
mol以上0.2mol以下添加されていることを特徴
とする、請求項8に記載の酸化物超電導体の製造方法。
10. B is 0.1 to 1 mol of the raw material.
The method for producing an oxide superconductor according to claim 8, wherein the oxide superconductor is added in an amount of not less than 0.2 mol and not more than 0.2 mol.
【請求項11】 Bi−Pb−Sr−Ca−Cuを主成
分とするBi−2223相を有する酸化物超電導体を製
造する際に、V化合物を添加することを特徴とする、酸
化物超電導体の製造方法。
11. An oxide superconductor characterized by adding a V compound when producing an oxide superconductor having a Bi-2223 phase containing Bi-Pb-Sr-Ca-Cu as a main component. Manufacturing method.
JP8349504A 1996-12-27 1996-12-27 Oxide superconductor and its production Pending JPH10194744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8349504A JPH10194744A (en) 1996-12-27 1996-12-27 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8349504A JPH10194744A (en) 1996-12-27 1996-12-27 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH10194744A true JPH10194744A (en) 1998-07-28

Family

ID=18404196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8349504A Pending JPH10194744A (en) 1996-12-27 1996-12-27 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH10194744A (en)

Similar Documents

Publication Publication Date Title
AU604827B2 (en) New superconductive compounds of the k2nif4 structural type having a high transition temperature, and method for fabricating same
US5106824A (en) Method of manufacturing oxide superconductor and the precursor of the oxide superconductor comprising heat treating in a reducing atmosphere of either hydrogen or carbon monoxide under reduced pressure
JPH10194744A (en) Oxide superconductor and its production
JPH04500196A (en) Superconducting metal oxide composition
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP2635408B2 (en) Oxide superconductor and manufacturing method thereof
JPH09115355A (en) Oxide superconducting composite material and its manufacture
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2961753B2 (en) Manufacturing method of oxide superconductor
JPH05182542A (en) Manufacture of bismuth group oxide superconductor
JPH05339008A (en) Tl-pb oxide superconducting material and its production
JP2801806B2 (en) Metal oxide material
JPH061616A (en) Production of bi based oxide superconductor
JPH06176636A (en) Manufacture of bi oxide superconductor
US5244871A (en) N-type oxide superconductor represented by the formula (Ndx (Cey Lz)2 CuO4-d where L is La, Mg or a mixture of alakaline earth elements
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH01264954A (en) Production of high-temperature superconductor
JPH0644841A (en) Manufacture of oxide superconducting wire rod
JPH01313326A (en) Superconductor and production thereof
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JP2002251929A (en) Thallium based superconducting silver based sheath wire of high crystal orientation and its manufacturing method
JPH0982153A (en) Manufacture of oxide superconducting wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227