JP2002251929A - Thallium based superconducting silver based sheath wire of high crystal orientation and its manufacturing method - Google Patents

Thallium based superconducting silver based sheath wire of high crystal orientation and its manufacturing method

Info

Publication number
JP2002251929A
JP2002251929A JP2001047897A JP2001047897A JP2002251929A JP 2002251929 A JP2002251929 A JP 2002251929A JP 2001047897 A JP2001047897 A JP 2001047897A JP 2001047897 A JP2001047897 A JP 2001047897A JP 2002251929 A JP2002251929 A JP 2002251929A
Authority
JP
Japan
Prior art keywords
silver
crystal orientation
sheath wire
oxide
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001047897A
Other languages
Japanese (ja)
Other versions
JP3538620B2 (en
Inventor
Akira Iyo
彰 伊豫
Kosuke Tanaka
康資 田中
Hideo Ihara
英雄 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001047897A priority Critical patent/JP3538620B2/en
Publication of JP2002251929A publication Critical patent/JP2002251929A/en
Application granted granted Critical
Publication of JP3538620B2 publication Critical patent/JP3538620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire enhancing the crystal orientation of a superconductor in a Tl based silver sheath wire and increasing superconduction critical current density (Jc ). SOLUTION: In a process of manufacturing a Tl based superconducting silver based sheath wire formed by sheathing an oxide superconducting material with a silver based material, by slowly cooling the oxide material from a partially melted state, crystal growth is accelerated along the silver based sheath, and the Tl based superconducting silver based sheath wire having high crystal orientation structure is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶配向性の高い
タリウム系超伝導銀シース線材及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thallium-based superconducting silver sheath wire having high crystal orientation and a method for producing the same.

【0002】[0002]

【従来の技術】異方性の高い銅酸化物超伝導体を実用線
材に仕立てるためには、線材中の結晶の配向性を高める
必要がある。ビスマス(Bi)系銀シース線材では熱処理に
より結晶配向性が高い組織を持った線材が製造されてい
るものの、Tl系では熱処理により結晶は配向しないと考
えられていた。結果的に無秩序な結晶方位組織をもった
線材しか製造されていないため材料の性能が十分引き出
されていなかった。Baを含む酸化物は炭素が残留しやす
いことが知られている。従来の方法は、残留炭素に関し
て注意が払われていなかったため、原料中に残留した炭
素がTl系超伝導体の結晶成長を阻害したり、結晶粒間の
結合を弱めていた。また、酸化物材料の組成制御が有効
に行われていなかったために、部分溶融状態からの結晶
成長が利用されず、無秩序な結晶方位組織をもった線材
しか製造されていなかった。
2. Description of the Related Art In order to prepare a copper wire superconductor having high anisotropy into a practical wire, it is necessary to increase the crystal orientation in the wire. Bismuth (Bi) -based silver sheathed wires were manufactured by heat treatment to produce wires with a structure with high crystal orientation, but it was thought that heat treatment in Tl-based materials did not align the crystals. As a result, since only wires having a disordered crystal orientation structure have been manufactured, the performance of the materials has not been sufficiently brought out. It is known that carbon containing Ba tends to remain in the oxide containing Ba. In the conventional method, since no attention has been paid to the residual carbon, the carbon remaining in the raw material has hindered the crystal growth of the Tl-based superconductor or weakened the bonding between the crystal grains. Further, since the composition control of the oxide material has not been effectively performed, crystal growth from a partially melted state has not been used, and only wires having a disordered crystal orientation structure have been manufactured.

【0003】[0003]

【本発明の課題】線材中の結晶配向性が高くなると、超
伝導臨界電流密度(Jc)が高いTl系銀シース線材を製造す
ることができる。本発明の課題は、Tl系銀シース線材中
の超伝導体の結晶配向性を高め、超伝導臨界電流密度(J
c)の増大した線材を提供する。
[Problems of the Invention] When the crystal orientation in a wire becomes high, a Tl-based silver sheath wire having a high superconducting critical current density (J c ) can be produced. An object of the present invention is to enhance the crystal orientation of a superconductor in a Tl-based silver sheath wire, and to increase the superconducting critical current density (J
c ) to provide an increased wire rod.

【0004】[0004]

【課題を解決する手段】Tl系銀系シース線材において、
酸化物材料が部分溶融した状態から徐冷するという熱処
理により、銀系シースに沿った結晶成長を促進し結晶の
配向性を高めことができる。さらにTl系超伝導体の結晶
成長を促進するため、および結晶粒間の結合を強化する
ため、酸化物超伝導体材料として残留炭素濃度を減少さ
せた酸化物材料を用いると良い。また、部分溶融状態か
らの結晶成長を利用するため、酸化物超伝導体材料とし
てCu量および酸素量などの組成を変えることにより融点
を制御した酸化物材料を用いる。
[Means for Solving the Problems] In a Tl-based silver-based sheath wire,
The heat treatment in which the oxide material is gradually cooled from a partially melted state can promote crystal growth along the silver-based sheath and increase crystal orientation. Further, in order to promote the crystal growth of the Tl-based superconductor and to strengthen the bonding between crystal grains, it is preferable to use an oxide material having a reduced residual carbon concentration as the oxide superconductor material. Further, in order to utilize crystal growth from a partially molten state, an oxide material whose melting point is controlled by changing the composition such as the amount of Cu and the amount of oxygen is used as the oxide superconductor material.

【0005】[0005]

【発明の実施の形態】本発明においてTl系超伝導体と
は、一般的に化学式Tl m(Ba,Sr)2Can-1CunOy (m=1,2、n
=2,3,4、7≦y≦12)で表される物質である。ただしTlサ
イトへの他元素の部分置換など各サイトへの多少の元素
置換を除外するものではない。また、シースに用いる銀
系材料としては、銀のほか銀の合金がある。酸化物材料
中の残留炭素濃度を減らすために、高純度の酸化物、例
えばTl2O3、BaO2、SrO、Ca2CuO3、CuO、Cu2Oなどを原料
として用いる。または、それらの酸化物を混合した後、
炭酸ガスを取り除いた雰囲気中で800℃〜1100℃に加熱
して、例えば(Ba,Sr)2Can-1CunOy (n=2,3,4、6≦y≦10)
という組成比を持つTlを含まない前駆体を予め作製し原
料とする。酸化物材料が部分溶融した状態からの結晶成
長を利用するために、Cu量や酸素量などの酸化物材料の
組成を制御する。例えば、1molの前駆体(Ba,Sr)2Can-1C
unOy (n=2,3,4、6≦y≦10)に対して0〜10molのCuOまた
はCu2Oを混合する。または、Cu量などの組成を調節して
混合した酸化物原料を、酸素分圧を制御した雰囲気中で
加熱することにより、Cu量や酸素量などの組成を制御し
た前駆体を予め作製する。酸化物材料中の残留炭素を削
減すること、Cu量を増やしたり酸素量を減らすなどの組
成制御をすることは、材料の融点を下げる作用もあるた
め、部分溶融状態からの結晶成長に都合が良い。
The Tl-based superconductors in the Detailed Description of the Invention The present invention, generally the formula Tl m (Ba, Sr) 2 Ca n-1 Cu n O y (m = 1,2, n
= 2,3,4,7 ≦ y ≦ 12). However, this does not preclude some element substitution at each site such as partial substitution of other elements at the Tl site. The silver-based material used for the sheath includes silver alloys in addition to silver. In order to reduce the residual carbon concentration in the oxide material, a high-purity oxide such as Tl 2 O 3 , BaO 2 , SrO, Ca 2 CuO 3 , CuO, or Cu 2 O is used as a raw material. Or, after mixing those oxides,
Heat to 800 ° C. to 1100 ° C. in an atmosphere from which carbon dioxide is removed, for example, (Ba, Sr) 2 Can -1 Cu n O y (n = 2, 3, 4, 6 ≦ y ≦ 10)
A precursor that does not contain Tl and has the composition ratio described above is prepared in advance and used as a raw material. In order to utilize crystal growth from a state where the oxide material is partially melted, the composition of the oxide material such as the amount of Cu and the amount of oxygen is controlled. For example, 1 mol of precursor (Ba, Sr) 2 Can -1 C
Mix 0 to 10 mol of CuO or Cu 2 O with u n O y (n = 2, 3, 4, 6 ≦ y ≦ 10). Alternatively, a precursor in which the composition such as the amount of Cu or the amount of oxygen is controlled is prepared in advance by heating an oxide material mixed by adjusting the composition such as the amount of Cu in an atmosphere in which the oxygen partial pressure is controlled. Controlling the composition, such as reducing the residual carbon in the oxide material or increasing the amount of Cu or reducing the amount of oxygen, also has the effect of lowering the melting point of the material, which is convenient for crystal growth from a partially molten state. good.

【0006】上記の酸化物原料、または前駆体にTl2O3
を適量加えて混合した粉末を直接、または、それらの混
合物を予め仮焼した粉末を銀を含む金属で覆い、線引き
および圧延した後、部分溶融する温度(860℃〜960℃)ま
で加熱、一定時間保持してから徐冷することにより銀系
シース材に沿った結晶成長を促進し結晶配向性の高い組
織を得る。本発明における徐冷は、銀系シース材に沿っ
た結晶成長を促進し結晶配向性の高い組織を得るのが目
的であり、目的を達成できる徐冷の範囲であればどのよ
うな徐冷でも良いが、徐冷速度が0.01℃/h〜100℃/hが
望ましい。銀が酸素を透過する性質を利用し、酸素分圧
を制御しながら熱処理を施すことにより、さらに効果的
に結晶配向性の高い組織や超伝導性を制御した組織を得
る。
[0006] Tl 2 O 3 is used as the above oxide material or precursor.
The powder mixed by adding an appropriate amount is coated directly, or the mixture obtained by calcining the mixture in advance is covered with a metal containing silver, drawn and rolled, and then heated to a temperature (860 ° C. to 960 ° C.) where partial melting is performed. By slow cooling after holding for a time, the crystal growth along the silver-based sheath material is promoted, and a structure having high crystal orientation is obtained. The purpose of the slow cooling in the present invention is to promote the crystal growth along the silver-based sheath material and to obtain a structure having a high crystal orientation, and any slow cooling within the range of the slow cooling that can achieve the purpose. Good, but desirably a slow cooling rate of 0.01 ° C / h to 100 ° C / h. By utilizing the property of silver transmitting oxygen and performing heat treatment while controlling the oxygen partial pressure, a structure having a high crystal orientation and a structure having a controlled superconductivity can be obtained more effectively.

【0007】[0007]

【実施例】本発明の具体例を示すが、本発明は種々の応
用が可能であり、この具体例に拘束されるものではな
い。 (実施例1)高純度の酸化物、BaO2、Ca2CuO3、CuOを混
合し、炭酸ガスを取り除いた酸素雰囲気中940℃で加熱
して Ba2Ca2Cu3Oy (7≦y≦8)という組成比を持つTlを含
まない前駆体を作製した。この時、前駆体1molに対して
残留炭素濃度は0.1mol以下になっていた。その前駆体に
Tl2O3、CuOおよびCu20を適量混合して、組成比TlBa2Ca2
Cu4Oy (9≦y≦10.5)となる原料混合物を作製した。その
原料混合物を銀で覆い、線引きおよび圧延した後、1気
圧に設定した酸素雰囲気中890℃まで加熱し10分間保持
してから、1時間に10℃の割合で酸化物材料が凝固する
温度まで冷却した。銀の被服を剥がして測定した酸化物
材料のエックス線回折パターンを図1(a)に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Although specific examples of the present invention will be described, the present invention is applicable to various applications and is not limited to these specific examples. Example 1 A mixture of high-purity oxides, BaO 2 , Ca 2 CuO 3 , and CuO was heated at 940 ° C. in an oxygen atmosphere from which carbon dioxide was removed to obtain Ba 2 Ca 2 Cu 3 O y (7 ≦ y). A precursor containing no Tl having a composition ratio of ≦ 8) was prepared. At this time, the residual carbon concentration was 0.1 mol or less based on 1 mol of the precursor. To its precursor
Tl 2 O 3 , CuO and Cu 20 are mixed in an appropriate amount, and the composition ratio TlBa 2 Ca 2
A raw material mixture satisfying Cu 4 O y (9 ≦ y ≦ 10.5) was produced. After covering the raw material mixture with silver, drawing and rolling, it is heated to 890 ° C. in an oxygen atmosphere set at 1 atm and held for 10 minutes, and then to a temperature at which the oxide material solidifies at a rate of 10 ° C. per hour. Cool. FIG. 1 (a) shows an X-ray diffraction pattern of the oxide material measured by peeling the silver coating.

【0008】(比較例)比較のために、酸化物材料を部
分溶融した状態から徐冷することなく、従来の方法で製
造された銀シース線のエックス線回折パターンを図1(b)
に示す。このように従来の方法では無秩序に配向した結
晶組織しか得られない。ところが、本発明を使用して製
造されたものは、(00L)面からの回折ピーク(TlBa2Ca2Cu
3Oy(Tl-1223)超伝導相に対応)が相対的に強くなってお
り、Tl系超伝導結晶の配向性が高くなっていることがわ
かる。図1(a) は本発明を使用して製造されたもので、
図1(b) は従来の方法で製造されたものである。両方と
もTl-1223相が生成しているが、図1(a) の方が(00L)面
からの回折ピークが相対的に強くなっており結晶配向性
が高くなっている。
Comparative Example For comparison, an X-ray diffraction pattern of a silver sheath wire manufactured by a conventional method without gradually cooling an oxide material from a partially melted state is shown in FIG. 1 (b).
Shown in As described above, only the randomly oriented crystal structure can be obtained by the conventional method. However, those manufactured using the present invention have diffraction peaks from the (00L) plane (TlBa 2 Ca 2 Cu
3 O y (corresponding to the Tl-1223) superconducting phase) is relatively strong, indicating that the orientation of the Tl-based superconducting crystal is high. FIG. 1 (a) was produced using the present invention,
FIG. 1 (b) is manufactured by a conventional method. In both cases, the Tl-1223 phase was generated, but in FIG. 1 (a), the diffraction peak from the (00L) plane was relatively strong, and the crystal orientation was high.

【0009】[0009]

【本発明の効果】従来の方法では実現しない結晶配向性
の高いTl系超伝導銀シース線材が製造できる。結晶の配
向性の高めることにより線材の超伝導臨界電流密度(Jc)
の増大が期待できる。
According to the present invention, a Tl-based superconducting silver sheath wire having high crystal orientation, which cannot be realized by the conventional method, can be manufactured. Superconducting critical current density ( Jc ) of wire by increasing crystal orientation
Can be expected to increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】銀系の被服を剥がして測定した酸化物材料のエ
ックス線回折パターン
Fig. 1 X-ray diffraction pattern of an oxide material measured by peeling silver-based clothing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊豫 彰 茨城県つくば市梅園1丁目1番4 経済産 業省産業技術総合研究所電子技術総合研究 所内 (72)発明者 田中 康資 茨城県つくば市梅園1丁目1番4 経済産 業省産業技術総合研究所電子技術総合研究 所内 (72)発明者 伊原 英雄 茨城県つくば市梅園1丁目1番4 経済産 業省産業技術総合研究所電子技術総合研究 所内 Fターム(参考) 4G047 JA05 JC10 KA01 KB04 KB14 LA02 LB01 5G321 AA07 CA04 CA32 CB99 DB18 DB29 DB48  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Iyo 1-4-4 Umezono, Tsukuba, Ibaraki Pref. 1-4-1 Umezono-shi, METI Electronic Technology Research Institute, Ministry of Economy, Trade and Industry (72) Inventor Hideo Ihara 1-4-1, Umezono, Tsukuba-shi, Ibaraki Laboratory F-term (reference) 4G047 JA05 JC10 KA01 KB04 KB14 LA02 LB01 5G321 AA07 CA04 CA32 CB99 DB18 DB29 DB48

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超伝導体材料を銀系の材料でシー
スしたTl系超伝導銀系シース線材を製造する工程におい
て、酸化物材料を部分溶融した状態から徐冷することよ
り、銀系シースに沿って結晶成長を促進させた結晶配向
性の高い組織を持ったタリウム系超伝導銀系シース線
材。
In a step of manufacturing a Tl-based superconducting silver-based sheath wire in which an oxide superconductor material is sheathed with a silver-based material, the oxide-based material is gradually cooled from a partially melted state to obtain a silver-based superconducting silver-based wire. A thallium-based superconducting silver-based sheath wire having a texture with a high crystal orientation that promotes crystal growth along the sheath.
【請求項2】 酸化物超伝導体材料として残留炭素濃度
を減少させた酸化物材料、又はCu量および酸素量の組成
を制御した酸化物材料を用いる請求項1記載のタリウム
系超伝導銀系シース線材。
2. The thallium-based superconducting silver-based material according to claim 1, wherein the oxide superconductor material is an oxide material having a reduced residual carbon concentration or an oxide material having a controlled composition of Cu content and oxygen content. Sheath wire.
【請求項3】 酸化物超伝導体材料を銀系の材料でシー
スしたTl系超伝導銀系シース線材を製造する工程におい
て、酸化物材料が部分溶融した状態から徐冷することよ
り、銀系シースに沿って結晶成長を促進させた結晶配向
性の高い組織を持ったタリウム系超伝導銀系シース線材
を製造する方法。
3. In a step of manufacturing a Tl-based superconducting silver-based sheath wire in which an oxide superconductor material is sheathed with a silver-based material, the oxide-based material is gradually cooled from a partially molten state, so that the silver-based superconducting material is gradually cooled. A method for producing a thallium-based superconducting silver-based sheath wire having a structure with high crystal orientation in which crystal growth is promoted along a sheath.
【請求項4】 徐冷する速度が0.01℃/h〜100℃/hであ
る請求項3に記載されたタリウム系超伝導銀系シース線
材を製造する方法。
4. The method for producing a thallium-based superconducting silver-based sheath wire according to claim 3, wherein the slow cooling rate is 0.01 ° C./h to 100 ° C./h.
JP2001047897A 2001-02-23 2001-02-23 Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method Expired - Lifetime JP3538620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001047897A JP3538620B2 (en) 2001-02-23 2001-02-23 Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001047897A JP3538620B2 (en) 2001-02-23 2001-02-23 Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method

Publications (2)

Publication Number Publication Date
JP2002251929A true JP2002251929A (en) 2002-09-06
JP3538620B2 JP3538620B2 (en) 2004-06-14

Family

ID=18909245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001047897A Expired - Lifetime JP3538620B2 (en) 2001-02-23 2001-02-23 Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method

Country Status (1)

Country Link
JP (1) JP3538620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121681A1 (en) * 2010-03-31 2011-10-06 株式会社日立製作所 Job schedule system, job schedule management method, and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121681A1 (en) * 2010-03-31 2011-10-06 株式会社日立製作所 Job schedule system, job schedule management method, and recording medium

Also Published As

Publication number Publication date
JP3538620B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JP2002251929A (en) Thallium based superconducting silver based sheath wire of high crystal orientation and its manufacturing method
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JPH06275146A (en) Composite superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2567891B2 (en) Method for producing oxide superconducting molded body
JPH0238359A (en) Production of superconductor
JPH061616A (en) Production of bi based oxide superconductor
JP3050572B2 (en) Manufacturing method of oxide superconducting conductor
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JPH04317415A (en) Production of bi-based oxide superconductor
EP1411154A1 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JPH07115872B2 (en) Oxide superconductor and method for manufacturing the same
JPH05234437A (en) Manufacture of oxide superconductive wire
JPH03230423A (en) Manufacture of thallium oxide superconducting wire rod
JPH0613429B2 (en) Method for manufacturing oxide superconductor
JPH05234438A (en) Manufacture of oxide superconductive wire
JPH03290316A (en) Production of bi-based oxide superconductor
JPH01304618A (en) Manufacture of oxide superconductive filament
JPH01215716A (en) Superconducting material and production thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3538620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term