JPH10193489A - Thin film forming material and forming method for thin film - Google Patents

Thin film forming material and forming method for thin film

Info

Publication number
JPH10193489A
JPH10193489A JP9298807A JP29880797A JPH10193489A JP H10193489 A JPH10193489 A JP H10193489A JP 9298807 A JP9298807 A JP 9298807A JP 29880797 A JP29880797 A JP 29880797A JP H10193489 A JPH10193489 A JP H10193489A
Authority
JP
Japan
Prior art keywords
thin film
water
substance
film forming
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9298807A
Other languages
Japanese (ja)
Inventor
Yoshikazu Miyazawa
良和 宮澤
Tomonori Aoki
智則 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTORON KK
Canon Inc
Original Assignee
OPUTORON KK
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTORON KK, Canon Inc filed Critical OPUTORON KK
Priority to JP9298807A priority Critical patent/JPH10193489A/en
Publication of JPH10193489A publication Critical patent/JPH10193489A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a homogeneous thin film for effectively and stably realizing desired characteristics on a base material in simple steps by holding thin film forming substance on a porous material made of normal temperature curable substance. SOLUTION: After water is added to gypsum and agitated, it is cast in a plastic casting mold 1 and dried at ambient temperature. The gypsum 2 in the mold 1 is impregnated with water-repellent treating solution containing perfluoroalkyl group-containing compound. Further, the gypsum 2 is dried, for example, at 70 deg.C, then removed from the mold 1, and installed in a vacuum tank 4 of a vacuum deposition unit. Then, a synthetic resin lens 7 to become base material to be deposited is set in the tank 4. An electron beam 11 is emitted to a sample by an electron beam depositing method by using an electron gun 8 and ZrO2 , 9, SiO2 10 provided oppositely, an SiO2 thin film and ZrO2 thin film are alternately laminated to obtain a lens with an antireflection film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基材もしくは基材
上のコート膜の表面処理等に用いる材料、及び該表面処
理としての薄膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material used for surface treatment of a base material or a coat film on the base material, and a method of forming a thin film as the surface treatment.

【0002】[0002]

【従来の技術】種々の基材表面に防汚、防水、防塵等の
機能を付与する表面処理を施すに当たって、基材表面に
上記防汚・防水等の機能を持った有機系材料等からなる
薄膜を設けることが広く行われている。かかる薄膜の形
成方法としては、例えば、有機溶媒に希釈した撥水性物
質を基材に形成された下地層に直接塗布する方法(特開
昭60−40254)、撥水性物質により調製された溶
液に基材(レンズ)を浸漬させる方法(特開昭61−1
30902)が知られている。また、多孔性セラミック
スに含浸させた有機物質を真空槽中で蒸発させ基材上に
保護膜を形成する方法(特開平4−72055)、繊維
状の金属塊に含浸させた有機物質を真空槽中で蒸発さ
せ、無機コート膜上に有機系被膜を形成する方法(特開
平6−340966)などが知られている。
2. Description of the Related Art In performing a surface treatment for imparting functions such as antifouling, waterproofing, and dustproofing to the surface of various substrates, the surface of the substrate is made of an organic material having the above-described functions such as antifouling and waterproofing. It is widely practiced to provide a thin film. As a method for forming such a thin film, for example, a method in which a water-repellent substance diluted in an organic solvent is directly applied to a base layer formed on a substrate (Japanese Patent Application Laid-Open No. 60-40254), Method of immersing a substrate (lens)
30902) are known. Also, a method of evaporating an organic substance impregnated in porous ceramics in a vacuum chamber to form a protective film on a substrate (Japanese Patent Laid-Open No. 4-72055), a method of depositing an organic substance impregnated in a fibrous metal lump in a vacuum chamber A method of forming an organic coating film on an inorganic coating film by evaporating the coating film in an atmosphere (Japanese Patent Laid-Open No. 6-340966) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような各種の薄膜形成方法にはそれぞれ以下のような欠
点がある。
However, each of the above-mentioned various thin film forming methods has the following disadvantages.

【0004】撥水性物質を基材に直接塗布する方法で
は、得られた塗膜の均一性が必ずしも十分でないことが
ある。特に、真空蒸着等の真空工程により形成された無
機薄膜上に塗布を行う場合では、真空工程(蒸着工程)
により無機薄膜を形成した基材を一度真空槽から取り出
し、再度別工程で塗布を行うために、工程が煩雑である
上に塗膜ムラになりやすく、均質な撥水薄膜が得ること
が難しい。
In the method of directly applying a water-repellent substance to a substrate, the uniformity of the obtained coating film may not always be sufficient. In particular, when the coating is performed on an inorganic thin film formed by a vacuum process such as vacuum deposition, a vacuum process (a deposition process)
The substrate on which the inorganic thin film has been formed is once taken out of the vacuum chamber and then applied again in another step, so that the process is complicated and the coating film tends to be uneven, and it is difficult to obtain a uniform water-repellent thin film.

【0005】浸漬による方法も、特に真空工程で形成さ
れた無機薄膜上に塗布を行う場合では、同様な煩雑な工
程を要し、また必要量の何倍もの希釈溶液が必要であ
り、廃液を環境に放出しないための廃液処理設備や処理
コストがかかる。
[0005] The immersion method also requires a similar complicated process, especially when coating is performed on an inorganic thin film formed in a vacuum process, and requires a dilute solution many times the required amount. Waste liquid treatment facilities and treatment costs for not discharging to the environment are required.

【0006】セラミックスに含浸させた有機物質を蒸発
させる方法では、セラミックスを形成するためにプレス
や高温焼結といった工程が必要であり、また有機物の含
浸量を制御するためにセラミックスの空隙率を微細に調
整することが必要となる。よって、セラミックスの粒
度、焼結温度、純度等を精密に制御することが要求さ
れ、材料の調製工程の煩雑化及びコストの増大を招く。
また、セラミックス自体の調製に有機バインダーを使用
することが多く、この場合有機物(有機バインダー或い
はその分解生成物)が残存すると、セラミックスに含浸
された膜形成材料(例えば有機シリコーン類やパーフル
オロアルキル基等の撥水性物質)と反応あるいは共に蒸
発して被処理基材上に付着し、接触角の低下などの得ら
れる薄膜の特性が劣化し、所望の防汚、防水効果等が得
られなくなる。
In the method of evaporating an organic substance impregnated in ceramics, steps such as pressing and high-temperature sintering are required to form the ceramics, and the porosity of the ceramics is reduced to control the amount of the organic substances impregnated. Needs to be adjusted. Therefore, it is required to precisely control the particle size, sintering temperature, purity, and the like of the ceramics, which leads to complicated material preparation steps and increased costs.
In addition, an organic binder is often used for preparing the ceramic itself. In this case, when an organic substance (an organic binder or a decomposition product thereof) remains, a film-forming material (for example, an organic silicone or a perfluoroalkyl group) impregnated in the ceramic is used. Or the like, and reacts with or evaporates together and adheres to the substrate to be treated, thereby deteriorating the properties of the obtained thin film, such as a decrease in contact angle, and making it impossible to obtain desired antifouling and waterproofing effects.

【0007】また、繊維状金属塊に含浸させた有機物質
を蒸発させる方法では、上記の他の方法に比べて簡単で
ある。しかし、特に金属材料として銅やアルミニウム等
などを使用した場合、これら金属の融点が600℃乃至
800℃であるため、加熱条件の調整によっては金属塊
が溶け、或いは溶解した金属自体が蒸発して基材に付着
することがあり、着色や接触角の低下などの得られる薄
膜の特性について悪影響を与える場合がまれにあり得
る。更に、金属は熱伝導率が大きいので加熱時の昇温が
非常に早く、含浸された有機物質の蒸発量の調整に精度
を要する場合がある。
The method of evaporating an organic substance impregnated in a fibrous metal lump is simpler than the other methods described above. However, particularly when copper, aluminum, or the like is used as the metal material, the melting point of these metals is 600 ° C. to 800 ° C., and depending on the adjustment of the heating conditions, the metal lump melts or the dissolved metal itself evaporates. It may adhere to the substrate, and may rarely adversely affect the properties of the obtained thin film, such as coloring and lowering the contact angle. Further, since the metal has a high thermal conductivity, the temperature rise during heating is very fast, and it may be necessary to adjust the evaporation amount of the impregnated organic substance with high accuracy.

【0008】本発明は、上記問題点に鑑みてなされたも
ので、その課題とするところは、基材上に、簡便な工程
で、所望の特性、特に防汚、防塵、撥水、撥油等の機能
を有効に且つ安定的に実現し得る均質な薄膜を形成する
ことの可能な薄膜形成材並び薄膜の形成方法を提供する
ことである。
[0008] The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide desired properties, particularly, antifouling, dustproof, water repellent, and oil repellent on a substrate by a simple process. It is an object of the present invention to provide a thin film forming material and a thin film forming method capable of forming a homogeneous thin film capable of effectively and stably realizing such functions.

【0009】[0009]

【課題を解決するための手段】本発明の薄膜形成材は、
常温硬化性物質からなる多孔質材に、薄膜形成物質を保
持させたことを特徴とする。
Means for Solving the Problems The thin film forming material of the present invention comprises:
It is characterized in that a thin film forming substance is held on a porous material made of a room temperature curable substance.

【0010】また、本発明の薄膜形成方法は、常温硬化
性物質からなる多孔質材中に含浸させた薄膜形成物質を
蒸発させて、基材上に薄膜を形成することを特徴とす
る。
The thin film forming method of the present invention is characterized in that a thin film forming substance impregnated in a porous material made of a room temperature curable substance is evaporated to form a thin film on a substrate.

【0011】[0011]

【発明の実施の形態】本発明の薄膜形成材は、多孔質材
に薄膜形成物質を保持せしめたものであり、該薄膜形成
物質を好ましくは蒸発等により基材上に堆積させるよう
に用いる。そして本発明の薄膜形成材は、この多孔質材
の材料として、常温硬化性物質を用いた点で特徴的であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The thin film forming material of the present invention is a porous material in which a thin film forming material is held, and the thin film forming material is preferably used to be deposited on a substrate by evaporation or the like. The thin film forming material of the present invention is characterized in that a room temperature curable substance is used as the material of the porous material.

【0012】本発明において、“常温硬化性物質”と
は、例えば粉末状物質であって水或いは水を含むアルコ
ールを加え室温〜100℃程度の範囲の温度域での処理
(例えば加熱)により硬化する物質である。但し、特に
硬化の過程で硬化反応時の物質自体の発熱により100
℃を超えるような物質をも包含する。
In the present invention, the term "room temperature curable substance" refers to, for example, a powdery substance, which is cured by adding water or an alcohol containing water and treating (eg, heating) in a temperature range of room temperature to about 100 ° C. Substance. However, especially due to the heat generated by the substance itself during the curing reaction during the curing process, 100
It also includes substances having a temperature exceeding ℃.

【0013】前記常温硬化性物質としては、上述したよ
うに好ましくは水(或いは水を含むアルコール)により
硬化する多孔質物質を用いる。具体的には、例えば、ポ
ルトランドセメント、アルミナセメント等の無機質の膠
着物質、石膏(硫酸カルシウム)、石灰(酸化カルシウ
ム又は水酸化カルシウム)、酸化亜鉛等の無機多孔質物
質を用いることができる。特に、硬化時間が短い、成分
構成が単純である、硬化後の多孔質材の空隙率に影響す
る粒度の制御が容易である等の多孔質材を調製する容易
さを考慮すると、石膏、特に粒度分布が遠心沈降法で測
定される粒度分布で1〜100μm程度の石膏を用いる
ことが望ましい。
As the cold-curable substance, a porous substance that is preferably cured by water (or alcohol containing water) is used as described above. Specifically, for example, inorganic glue substances such as Portland cement and alumina cement, and inorganic porous substances such as gypsum (calcium sulfate), lime (calcium oxide or calcium hydroxide), and zinc oxide can be used. In particular, considering the ease of preparing a porous material such as a short curing time, a simple component configuration, and easy control of the particle size affecting the porosity of the porous material after curing, gypsum, It is desirable to use gypsum having a particle size distribution of about 1 to 100 μm as measured by a centrifugal sedimentation method.

【0014】前記常温硬化性物質は、水を用いて硬化さ
せた後に薄膜形成物質を含浸させるが、該薄膜形成物質
が水溶性であり、水によって希釈可能な場合には、直接
その水溶液で当該常温硬化性物質を固化乾燥させ、同時
に薄膜形成物質が含浸された薄膜形成材を調製すること
もできる。更に、薄膜を形成する基材(処理される基
材)が特に水分を嫌う材料からなる場合には、基材上に
形成される薄膜に水分の混入を低減させるために、常温
硬化性物質を水分によって固化させた後に150℃から
700℃で乾燥し水分を蒸発させ、その後薄膜形成物質
を含浸させ、水分量が抑制された薄膜形成材を調製して
もよい。
The above-mentioned cold-setting substance is cured with water and then impregnated with a thin-film forming substance. When the thin-film forming substance is water-soluble and can be diluted with water, the cold-setting substance is directly added to the aqueous solution. It is also possible to solidify and dry the room-temperature-curable substance and simultaneously prepare a thin-film forming material impregnated with the thin-film forming substance. Further, when the substrate on which the thin film is formed (substrate to be treated) is made of a material which dislikes moisture in particular, a room temperature curable substance is used in order to reduce the incorporation of moisture into the thin film formed on the substrate. After solidifying with water, the film may be dried at 150 ° C. to 700 ° C. to evaporate the water, and then impregnated with a thin film forming substance to prepare a thin film forming material with a reduced amount of water.

【0015】また、前記常温硬化性物質からなる多孔性
材には、その空隙中に薄膜形成物質を最適量含有させる
ように空隙を調整するべく、常温で硬化しない他の物質
を70重量%以下の配合量で、例えば粒度0.5mm以
下の石英等の無機物質の粉末を70重量%以下の量程度
で混入させても良い。
Further, in the porous material made of the above-mentioned cold-setting material, 70% by weight or less of another material which is not hardened at normal temperature is adjusted so as to adjust the void so that the thin-film forming material is contained in the void. May be mixed with powder of an inorganic substance such as quartz having a particle size of 0.5 mm or less in an amount of about 70% by weight or less.

【0016】常温硬化性物質として石膏を用いる場合で
は、薄膜形成物質を必要量含有させるように空隙を形成
するため、焼き石膏にて水分を40重量%から150重
量%程度配合して固化させて調製することが望ましい。
In the case where gypsum is used as a cold-setting material, in order to form voids so as to contain a necessary amount of a thin film-forming substance, water is mixed with ca. It is desirable to prepare.

【0017】本発明の薄膜形成材で用いる薄膜形成物質
としては、形成する薄膜に要求される機能に応じて選択
されるものである。例えば、基材に対して、撥水性、撥
油性、防塵性等の機能を付与するような表面処理を行う
ために用いる薄膜形成材においては、薄膜状態でこれら
機能を付与し得る材料を薄膜形成物質を適用する。
The thin film forming substance used in the thin film forming material of the present invention is selected according to the function required for the thin film to be formed. For example, in a thin film forming material used for performing a surface treatment that imparts functions such as water repellency, oil repellency, and dust resistance to a base material, a material capable of imparting these functions in a thin film state is formed into a thin film. Apply substance.

【0018】特に撥水性を付与する薄膜形成物質として
は、例えば、オルガノシロキサン類化合物、又はパーフ
ルオロアルキル基含有化合物等の撥水性の有機材料を好
適に用いることができる。かかるオルガノシロキサン類
化合物の具体例としては、ジエトキシジメチルシラン、
トリエトキシメチルシラン等の他、特開昭61―130
902に挙げられたポリオルガノシロキサン類が挙げら
れる。また、パーフルオロアルキル基含有化合物の具体
例としては、2−(パーフルオロオクチル)エチルトリ
アミノシラン、2−(パーフルオロヘキシル)エチルト
リアミノシランをはじめ、特開昭63−296002号
公報に記載されたパーフルオロアルキル基含有化合物が
挙げられる。この他、クロルトリエチルシラン等のシラ
ン化合物を用いることもできる。これら化合物は単独で
はもちろんのこと2種以上組み合わせて用いてもよい。
In particular, as the thin film forming substance imparting water repellency, for example, a water repellent organic material such as an organosiloxane compound or a perfluoroalkyl group-containing compound can be suitably used. Specific examples of such organosiloxane compounds include diethoxydimethylsilane,
Other than triethoxymethylsilane, etc., JP-A-61-130
902. Further, specific examples of the perfluoroalkyl group-containing compound include 2- (perfluorooctyl) ethyltriaminosilane and 2- (perfluorohexyl) ethyltriaminosilane, and are described in JP-A-63-296002. A perfluoroalkyl group-containing compound is exemplified. In addition, a silane compound such as chlorotriethylsilane can be used. These compounds may be used alone or in combination of two or more.

【0019】上記薄膜形成物質、特に、有機シリコーン
類化合物、またはパーフルオロアルキル基含有化合物等
は、一般には原液あるいは溶媒に希釈された溶液の形で
供給される。そして、これらの物質を含む原液ないし溶
液に、前述したような硬化させた常温硬化性物質からな
る多孔質材を直接浸す方法、また当該原液ないし溶液を
ピペット等で必要量滴下含浸させる方法、あるいは溶
液、特に水溶液の形(薄膜形成物質が水溶性の場合)で
直接常温硬化性物質を固化させる方法などにより、常温
硬化性物質からなる多孔質材に薄膜形成物質を保持せし
めた薄膜形成材を調製する。
The above-mentioned thin film-forming substance, in particular, an organic silicone compound or a compound containing a perfluoroalkyl group, is generally supplied in the form of a stock solution or a solution diluted with a solvent. Then, a stock solution or solution containing these substances is directly immersed in a porous material made of a hardened room-temperature-curable material as described above, or a method of dropping and impregnating the stock solution or solution in a required amount with a pipette, or A method of solidifying a cold-setting material directly in the form of a solution, particularly an aqueous solution (when the thin-film forming material is water-soluble). Prepare.

【0020】本発明では、上述したような薄膜形成材に
おいて保持された薄膜形成物質を蒸発させ、所定の基材
上に堆積させて薄膜を形成し、基材の表面に所望の機能
を付与する。
In the present invention, the thin film forming substance held in the above thin film forming material is evaporated and deposited on a predetermined substrate to form a thin film, and a desired function is imparted to the surface of the substrate. .

【0021】その具体例としては、上述したような薄膜
形成物質として撥水性物質を用いた薄膜形成材を用い、
当該撥水性物質を真空中で加熱蒸発させ、基材の表面に
直接ないしは基材上に形成された無機コート膜等の被膜
上に撥水性物質を堆積せしめ撥水性薄膜を形成し、当該
基材表面に撥水性を付与する。
As a specific example, a thin film forming material using a water repellent material as the above thin film forming material is used.
The water-repellent substance is heated and evaporated in a vacuum, and the water-repellent substance is deposited directly on the surface of the substrate or on a coating such as an inorganic coat film formed on the substrate to form a water-repellent thin film. Provides water repellency to the surface.

【0022】ここで、薄膜形成物質を蒸発させる方法と
しては、大気中又は減圧下でのハロゲンランプヒーター
加熱、抵抗加熱による方法が適用される。好ましくは薄
膜形成材を真空槽中等の閉じた系内で加熱する方法が用
いられる。
Here, as a method for evaporating the thin film-forming substance, a method using halogen lamp heater heating or resistance heating in air or under reduced pressure is applied. Preferably, a method of heating the thin film forming material in a closed system such as in a vacuum chamber is used.

【0023】真空中における薄膜形成物質の蒸発の条件
は、薄膜形成物質及び基材の種類、状態により条件を適
宜決定することが望ましいが、例えば、プラスチック基
材上にSiO2などの無機コート薄膜を形成した光学レ
ンズ上に、撥水性物質を加熱蒸発及び堆積させて薄膜を
形成する場合には、真空度10-6〜10-3Torrで行うこ
とがより望ましい。
The conditions for evaporating the thin film forming substance in a vacuum are preferably determined as appropriate according to the type and state of the thin film forming substance and the base material. For example, an inorganic coated thin film such as SiO 2 on a plastic base material is preferable. When a thin film is formed by heating and evaporating and depositing a water-repellent substance on the optical lens on which is formed, it is more preferable to perform the process at a degree of vacuum of 10 -6 to 10 -3 Torr.

【0024】本発明においては、薄膜を形成する基材は
特に限定されない。例えば、撥水性の薄膜形成物質を用
いて撥水性薄膜を形成する場合では、最表面が無機物質
からなるコート膜であるようなものであれば特に限定さ
れるものではないが、具体例としては、無機反射防止膜
が形成されたガラスレンズ、プラスチックレンズ、光学
フィルター、自動車のフロントガラス、ディスプレイパ
ネルなどが挙げられる。
In the present invention, the substrate on which the thin film is formed is not particularly limited. For example, in the case of forming a water-repellent thin film using a water-repellent thin film-forming substance, there is no particular limitation as long as the outermost surface is a coat film made of an inorganic substance. And a glass lens, a plastic lens, an optical filter, an automobile windshield, and a display panel on which an inorganic antireflection film is formed.

【0025】[0025]

【実施例】以下、本発明を、図面を参照し、実施例に沿
って更に詳細に説明するが、本発明は以下に限定される
ものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings and embodiments, but the present invention is not limited to the following.

【0026】(例1)石膏(サンエス石膏株式会社製、
商品名:焼石膏/粒度分布5〜50μm)50gに水2
5gを添加し1分間よく攪拌した後、これを図1に示す
ような直径18mm深さ10mmのプラスチック製の鋳型1
に流し込んで室温で1時間乾燥させた。かかる鋳型1内
の石膏2に、化学式n−C817CH2CH2Si(N
23で表されるパーフルオロアルキル基含有化合物を
メタキシレンヘキサフロライドで3%に希釈した撥水処
理用の溶液をピペットを用いて1ml含浸させた。更
に、石膏2を70℃で20分間乾燥後、鋳型1から取り
出し、真空蒸着装置(シンクロンVE800/シンクロ
ン社製)の真空槽内に設置した。即ち、図2に示すよう
な真空蒸着装置3の真空槽4内に設けられた抵抗加熱電
極5間に抵抗加熱ボード6を架設した構造の薄膜形成材
の設置部において、抵抗加熱ボート6上に石膏2を設置
した。
(Example 1) Gypsum (manufactured by San-Esu Gypsum Co., Ltd.
Trade name: calcined gypsum / particle size distribution 5-50 μm) 50 g in water 2
After adding 5 g and stirring well for 1 minute, this was mixed with a plastic mold 1 having a diameter of 18 mm and a depth of 10 mm as shown in FIG.
And dried for 1 hour at room temperature. The gypsum 2 in the mold 1 has the chemical formula nC 8 F 17 CH 2 CH 2 Si (N
A perfluoroalkyl group-containing compound represented by H 2 ) 3 was diluted with meta-xylene hexafluoride to 3% and impregnated with 1 ml of a water-repellent solution using a pipette. Further, after the gypsum 2 was dried at 70 ° C. for 20 minutes, it was taken out of the mold 1 and placed in a vacuum tank of a vacuum evaporation apparatus (Sincron VE800 / Sincron). That is, as shown in FIG. 2, the resistance heating boat 6 is installed on the resistance heating boat 6 in the structure where the resistance heating board 6 is installed between the resistance heating electrodes 5 provided in the vacuum chamber 4 of the vacuum evaporation apparatus 3. Plaster 2 was installed.

【0027】次に、真空槽4内に、被蒸着基材となるジ
エチレングリコールビスアリルカーボネート樹脂からな
る合成樹脂製レンズ7をセットした。そして、これ対向
させて設けた電子銃8、蒸着試料ととしてのZrO
29、SiO210を用いて、電子ビーム蒸着法により
(電子ビーム11を試料に照射して)レンズ7上にSi
2薄膜及びZrO2薄膜を交互に、膜構成が基板側から
SiO2膜約3μm、ZrO2膜約0.015μm、Si
2膜約0.02μm、ZrO2膜約0.1μm、SiO
2膜約0.08μmとなるように積層し反射防止膜付き
レンズを得た。
Next, in the vacuum chamber 4, a synthetic resin lens 7 made of diethylene glycol bisallyl carbonate resin as a base material to be deposited was set. Then, the electron gun 8 provided opposite thereto and ZrO as a vapor deposition sample are used.
2 9, a SiO 2 10 using, by an electron beam evaporation method (by irradiating an electron beam 11 on the sample) Si on the lens 7
The O 2 thin film and the ZrO 2 thin film are alternately formed from the substrate side with a SiO 2 film of about 3 μm, a ZrO 2 film of about 0.015 μm,
O 2 film about 0.02 μm, ZrO 2 film about 0.1 μm, SiO
Two films were laminated so as to have a thickness of about 0.08 μm to obtain a lens with an antireflection film.

【0028】続いて、この合成樹脂レンズ7を、反射防
止膜の形成後、真空槽4から出さずに、先に抵抗加熱ボ
ート6上にセットした薄膜形成材(薄膜形成物質を保持
した石膏)2を約500℃で3分間加熱し、パーフルオ
ロアルキル基含有化合物を蒸発させ、上記のレンズの反
射防止膜上に撥水薄膜の蒸着による形成を行った。
Subsequently, after forming the anti-reflection film, the synthetic resin lens 7 is not taken out of the vacuum chamber 4 but is previously set on the resistance heating boat 6 to form a thin film forming material (gypsum holding the thin film forming substance). 2 was heated at about 500 ° C. for 3 minutes to evaporate the perfluoroalkyl group-containing compound, and a water-repellent thin film was formed on the antireflection film of the lens by vapor deposition.

【0029】蒸着終了後、合成樹脂レンズ7を取り出
し、その表面の状態を観察すると共に、その表面の水に
対する接触角を協和界面科学製CA−Z型接触角計を用
いて測定した。またその測定後アセトンを含ませたレン
ズペーパーで約1Kgの重量をかけ、50往復擦り、そ
の後再度接触角を測定し、その変化を観察した。更に合
成樹脂レンズ7を大気中に1週間放置した後、上記同様
の表面の観察と接触角の測定を行った。結果を下記表1
に示す。
After the vapor deposition, the synthetic resin lens 7 was taken out, the state of the surface was observed, and the contact angle of the surface with water was measured using a CA-Z type contact angle meter manufactured by Kyowa Interface Science. After the measurement, a weight of about 1 kg was applied to the lens paper containing acetone and rubbed 50 times back and forth, and then the contact angle was measured again to observe the change. After the synthetic resin lens 7 was left in the air for one week, the surface was observed and the contact angle was measured in the same manner as described above. The results are shown in Table 1 below.
Shown in

【0030】(例2)石膏(サンエス石膏株式会社製、
商品名:焼石膏/粒度分布5〜50μm)50gに水2
5gを添加し1分間よく攪拌した後、これを図1に示す
ような直径18mm深さ10mmのプラスチック製の鋳型1
に流し込んで室温で1時間乾燥させ、更にオーブン内に
て200℃で1時間加熱し、水分を蒸発させた。かかる
鋳型1内の石膏に、化学式n−C817CH2CH2Si
(NH23で表されるパーフルオロアルキル基含有化合
物をメタキシレンヘキサフロライドで3%に希釈した撥
水処理用の溶液をピペットを用いて1ml含浸させた。
更に、石膏2を70℃で20分間乾燥後鋳型から取り出
し、例1と同様に、図2に示す真空蒸着装置(シンクロ
ンVE800)3の真空槽4内における抵抗加熱ボード
6に設置した。
Example 2 Gypsum (manufactured by San-Esu Gypsum Co., Ltd.)
Trade name: calcined gypsum / particle size distribution 5-50 μm) 50 g in water 2
After adding 5 g and stirring well for 1 minute, this was mixed with a plastic mold 1 having a diameter of 18 mm and a depth of 10 mm as shown in FIG.
And dried at room temperature for 1 hour, and further heated at 200 ° C. for 1 hour in an oven to evaporate water. The gypsum in the mold 1 has a chemical formula of nC 8 F 17 CH 2 CH 2 Si
A perfluoroalkyl group-containing compound represented by (NH 2 ) 3 was diluted to 3% with meta-xylene hexafluoride and impregnated with 1 ml of a water-repellent solution using a pipette.
Further, the gypsum 2 was dried at 70 ° C. for 20 minutes, taken out of the mold, and set on the resistance heating board 6 in the vacuum chamber 4 of the vacuum evaporation apparatus (Sincron VE800) 3 shown in FIG.

【0031】続いて、例1と同様の手順に沿って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜((Si
2とZrO2の積層膜))を形成した後、更に上記抵抗
加熱ボード(6)上に設けられた薄膜形成材(2)を用
い真空蒸着法により撥水薄膜を形成した。こうして得ら
れたレンズの薄膜が形成された側の表面について、例1
と同様に観察及び水に対する接触角を測定、評価した
(撥水膜形成直後及び大気中に1週間放置後)。結果を
下記表1に示す。
Subsequently, according to the same procedure as in Example 1, the anti-reflection film ((Si
After forming a laminated film of O 2 and ZrO 2 ), a water-repellent thin film was further formed by a vacuum evaporation method using the thin film forming material (2) provided on the resistance heating board (6). About the surface on the side where the thin film of the lens thus obtained was formed, Example 1
Observation and the contact angle with water were measured and evaluated in the same manner as in (1) immediately after the formation of the water-repellent film and after standing in the air for one week. The results are shown in Table 1 below.

【0032】(例3)石膏(サンエス石膏株式会社製、
商品名:焼石膏/粒度分布5〜50μm)50gにCF
3(CH22SiCl3の3%水溶液25gを添加し1分
間よく攪拌した後、これを図1に示すような直径18mm
深さ10mmのプラスチック製の鋳型1に流し込んで室温
で1時間乾燥させた後、これを鋳型から取り出し、例1
と同様に、図2に示す真空蒸着装置3(シンクロンVE
800)の真空槽4内における抵抗加熱ボード6(図2
参照)に設置した。
(Example 3) Gypsum (manufactured by San-Esu Gypsum Co., Ltd.
Trade name: calcined gypsum / particle size distribution 5 to 50 μm) 50 g of CF
25 g of a 3% aqueous solution of 3 (CH 2 ) 2 SiCl 3 was added and stirred well for 1 minute.
After pouring into a plastic mold 1 having a depth of 10 mm and drying at room temperature for 1 hour, it was taken out of the mold and
Similarly to FIG. 2, the vacuum deposition apparatus 3 (Sincron VE) shown in FIG.
800) in a vacuum chamber 4 (FIG. 2).
Reference).

【0033】続いて、例1と同様の手順に沿って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜(SiO
2とZrO2の積層膜)を形成した後、更に上述した抵抗
加熱ボード(6)上に設けられた薄膜形成材(2)を用
いて真空蒸着により撥水薄膜を形成した。こうして得ら
れたレンズの薄膜が形成された表面について、例1と同
様に観察及び水に対する接触角を測定し、評価した(撥
水膜形成直後及び大気中に1週間放置後)。結果を下記
表1に示す。
Subsequently, according to the same procedure as in Example 1, the anti-reflection film (SiO 2) was formed on the synthetic resin lens (7) by vacuum evaporation.
After forming a laminated film of ZrO 2 and ZrO 2 ), a water-repellent thin film was formed by vacuum evaporation using the thin film forming material (2) provided on the above-mentioned resistance heating board (6). Observation and the contact angle with water were measured and evaluated on the surface of the lens thus obtained on which the thin film was formed in the same manner as in Example 1 (immediately after the formation of the water-repellent film and after leaving it in the air for one week). The results are shown in Table 1 below.

【0034】(例4)石膏(サンエス石膏株式会社製、
商品名:焼石膏/粒度分布5〜50μm)50gに水2
5gを添加し1分間よく攪拌した後、これを図1に示す
ような直径18mm深さ10mmのプラスチック製の鋳型1
に流し込んで室温で1時間乾燥させた後、更にオーブン
内で200℃で1時間加熱し水分を蒸発させた。かかる
鋳型1内の石膏に、化学式n−C817CH2CH2Si
(OCH33で表されるパーフルオロアルキル基含有化
合物(希釈せず)をピペットを用いて0.5ml含浸さ
せた。更に、石膏を鋳型から取り出し70℃で20分間
乾燥した後、例1と同様に、図2に示す真空蒸着装置
(シンクロンVE800)3の真空槽4内における抵抗
加熱ボード6に設置した。
Example 4 Gypsum (manufactured by San-Esu Gypsum Co., Ltd.
Trade name: calcined gypsum / particle size distribution 5-50 μm) 50 g in water 2
After adding 5 g and stirring well for 1 minute, this was mixed with a plastic mold 1 having a diameter of 18 mm and a depth of 10 mm as shown in FIG.
And dried at room temperature for 1 hour, and further heated in an oven at 200 ° C. for 1 hour to evaporate water. The gypsum in the mold 1 has a chemical formula of nC 8 F 17 CH 2 CH 2 Si
A perfluoroalkyl group-containing compound represented by (OCH 3 ) 3 (not diluted) was impregnated with 0.5 ml using a pipette. Further, the gypsum was taken out of the mold, dried at 70 ° C. for 20 minutes, and then placed on the resistance heating board 6 in the vacuum chamber 4 of the vacuum evaporation apparatus (Sincron VE800) 3 shown in FIG.

【0035】続いて、例1と同様の手順に沿って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜(SiO
2とZrO2の積層膜)を形成した後、更に上述した抵抗
加熱ボード(6)上に設けられた薄膜形成材(2)を用
いて真空蒸着により撥水薄膜を形成した。こうして得ら
れたレンズの薄膜が形成された表面について、例1と同
様に観察及び水に対する接触角を測定、評価した(撥水
膜形成直後及び大気中に1週間放置後)。結果を下記表
1に示す。
Subsequently, according to the same procedure as in Example 1, the anti-reflection film (SiO 2) was formed on the synthetic resin lens (7) by vacuum evaporation.
After forming a laminated film of ZrO 2 and ZrO 2 ), a water-repellent thin film was formed by vacuum evaporation using the thin film forming material (2) provided on the above-mentioned resistance heating board (6). Observation and the contact angle with water were measured and evaluated for the surface of the lens thus obtained on which the thin film was formed in the same manner as in Example 1 (immediately after the formation of the water-repellent film and after leaving it in the air for one week). The results are shown in Table 1 below.

【0036】(例5)例1と同様の手順に沿って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜(SiO
2とZrO2の積層膜)を形成した後、真空槽より取り出
し、これに化学式n−C817CH2CH2Si(NH2
3で表されるパーフルオロアルキル基含有化合物をメタ
キシレンヘキサフロライドで3%に希釈した撥水処理用
の溶液を刷毛を用いて直接塗布した。こうして得られた
レンズの薄膜が形成された表面について、例1と同様に
観察及び水に対する接触角を測定、評価した(撥水膜形
成直後及び大気中に1週間放置後)。結果を下記表1に
示す。
(Example 5) In accordance with the same procedure as in Example 1, an antireflection film (SiO 2) was formed on the synthetic resin lens (7) by vacuum evaporation.
2 and a layered film of ZrO 2 ), taken out of the vacuum chamber, and added to the chemical formula nC 8 F 17 CH 2 CH 2 Si (NH 2 ).
Perfluoroalkyl group-containing compound solution for water repellent treatment was diluted to 3% metaxylene hexafluoride represented by 3 was coated directly with a brush. Observation and the contact angle with water were measured and evaluated for the surface of the lens thus obtained on which the thin film was formed in the same manner as in Example 1 (immediately after the formation of the water-repellent film and after leaving it in the air for one week). The results are shown in Table 1 below.

【0037】尚、本例のレンズは、1週間の放置後では
表面の一部に白濁が生じ、眼鏡レンズ等として使用不能
な状態となっていた。これはレンズに撥水性物質を塗布
したことで過度に厚く付着し、当該物質中の官能基が大
気中の水分と反応して白濁を生じたことが原因と考えら
れる。
After leaving the lens of this example for one week, cloudiness occurred on a part of the surface, and the lens could not be used as a spectacle lens or the like. This is considered to be because the water-repellent substance was applied to the lens, so that the substance adhered excessively thickly, and the functional groups in the substance reacted with moisture in the atmosphere to produce cloudiness.

【0038】(例6)例1と同様の手順に沿って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜(SiO
2とZrO2の積層膜)を形成した後、真空槽より取り出
し、これを化学式n−C217CH2CH2Si(NH2
3で表されるパーフルオロアルキル基含有化合物をメタ
キシレンヘキサフロライドで3%に希釈した撥水処理用
の溶液中に直接浸漬した。こうして得られたレンズの薄
膜が形成された表面について、例1と同様に観察及び水
に対する接触角を測定、評価した(撥水膜形成直後及び
大気中に1週間放置後)。結果を下記表1に示す。
(Example 6) In accordance with the same procedure as in Example 1, an anti-reflection film (SiO 2) was formed on the synthetic resin lens (7) by vacuum evaporation.
2 and ZrO 2 ) are formed, taken out of the vacuum chamber, and taken out of the chemical formula nC 2 F 17 CH 2 CH 2 Si (NH 2 ).
The perfluoroalkyl group-containing compound represented by 3 was directly immersed in a solution for water-repellent treatment diluted to 3% with meta-xylene hexafluoride. Observation and the contact angle with water were measured and evaluated for the surface of the lens thus obtained on which the thin film was formed in the same manner as in Example 1 (immediately after the formation of the water-repellent film and after leaving it in the air for one week). The results are shown in Table 1 below.

【0039】尚、本例のレンズは、1週間の放置後では
表面の一部に白濁が生じ、眼鏡レンズ等として使用不能
な状態となっていた。これはレンズを直接撥水性物質の
溶液に浸漬せしめたため、レンズに撥水性物質が過度に
厚く付着し、当該物質中の官能基が大気中の水分と反応
して白濁を生じたことが原因と考えられる。
After leaving for one week, the surface of the lens of this example became cloudy on a part of the surface, and was unusable as a spectacle lens or the like. This is because the lens was directly immersed in the solution of the water-repellent substance, so that the water-repellent substance adhered to the lens excessively thickly, and the functional groups in the substance reacted with atmospheric moisture to produce white turbidity. Conceivable.

【0040】(例7)直径18mm深さ10mmの銅製
の容器にスチールウールを充填し、これに化学式n−C
817CH2CH2Si(NH23で表されるパーフルオ
ロアルキル基含有化合物をメタキシレンヘキサフロライ
ドで3%に希釈した撥水処理用の溶液をピペットを用い
て1ml含浸させた。更に、これを70℃で20分間乾
燥後、例1で用いた真空蒸着装置(シンクロンVE80
0)3の真空槽4内における抵抗加熱ボード6(図2参
照)に設置した。
(Example 7) A copper container having a diameter of 18 mm and a depth of 10 mm was filled with steel wool, and this was filled with the chemical formula nC.
A perfluoroalkyl group-containing compound represented by 8 F 17 CH 2 CH 2 Si (NH 2 ) 3 was diluted to 3% with meta-xylene hexafluoride and impregnated with 1 ml of a solution for water-repellent treatment using a pipette. . Furthermore, after drying this at 70 ° C. for 20 minutes, the vacuum evaporation apparatus (SYNCHRON VE80) used in Example 1 was used.
0) It was set on the resistance heating board 6 (see FIG. 2) in the vacuum chamber 4 of 3.

【0041】続いて、例1と同様の手順に沿って、合成
樹脂レンズに真空蒸着により反射防止膜(SiO2とZ
rO2の積層膜)を形成した後、更に上述した抵抗加熱
ボード(6)上に設けられた薄膜形成材(2)を用い、
真空蒸着法により撥水薄膜を形成した。こうして得られ
たレンズの薄膜が形成された表面について、実施例1と
同様に観察及び水に対する接触角を測定、評価した(撥
水膜形成直後及び大気中に1週間放置後)。結果を下記
表1に示す。
Subsequently, according to the same procedure as in Example 1, an antireflection film (SiO 2 and Z
After forming the rO 2 laminated film), the thin film forming material (2) provided on the resistance heating board (6) described above is further used,
A water-repellent thin film was formed by a vacuum deposition method. Observation and a contact angle with respect to water were measured and evaluated for the surface of the lens thus obtained on which the thin film was formed in the same manner as in Example 1 (immediately after forming the water-repellent film and after leaving it in the air for one week). The results are shown in Table 1 below.

【0042】尚、撥水薄膜の真空蒸着形成後、抵抗加熱
ボードに薄膜形成材に用いた銅がごく微量付着してい
た。これは銅製の容器がごく微量溶けたことが原因と推
定される。
After the formation of the water-repellent thin film by vacuum evaporation, a very small amount of copper used as the thin film forming material adhered to the resistance heating board. This is presumably due to the very small amount of melting of the copper container.

【0043】(例8)直径18mm深さ10mmの銅製
の容器にスチールウールを充填し、これに化学式n−C
817CH2CH2Si(NH23で表されるパーフルオ
ロアルキル基含有化合物をメタキシレンヘキサフロライ
ドで3%に希釈した撥水処理用の溶液をピペットを用い
て1ml含浸させた。更に、これを70℃で20分間乾
燥後、スチールウールを銅製容器より取り出し、実施例
1で用いた真空蒸着装置(シンクロンVE800)3の
真空槽4内における抵抗加熱ボード6(図2参照)に設
置した。
(Example 8) A copper container having a diameter of 18 mm and a depth of 10 mm was filled with steel wool, and this was filled with the chemical formula nC.
A perfluoroalkyl group-containing compound represented by 8 F 17 CH 2 CH 2 Si (NH 2 ) 3 was diluted to 3% with meta-xylene hexafluoride and impregnated with 1 ml of a solution for water-repellent treatment using a pipette. . After drying at 70 ° C. for 20 minutes, the steel wool was taken out of the copper container and placed on the resistance heating board 6 (see FIG. 2) in the vacuum chamber 4 of the vacuum evaporation apparatus (Sincron VE800) 3 used in Example 1. installed.

【0044】続いて、例1と同様の手順に沿って、合成
樹脂レンズに真空蒸着により反射防止膜(SiO2とZ
rO2の積層膜)を形成した後、更に上述した抵抗加熱
ボード(6)上に設けられた薄膜形成材(2)を用い、
真空蒸着法により撥水膜を形成した。得られたレンズの
膜が形成された表面について、例1と同様に観察及び水
に対する接触角を測定、評価した(撥水膜形成直後及び
大気中に1週間放置後)。尚、当該例では、撥水薄膜形
成のプロセスにおいて、真空排気中に排気される空気の
流れによってスチールウールが抵抗加熱ボード上を移動
し、安定した保持が困難であり、所定膜厚の薄膜を均一
に得ることができなかった。
Subsequently, according to the same procedure as in Example 1, an anti-reflection film (SiO 2 and Z
After forming the rO 2 laminated film), the thin film forming material (2) provided on the resistance heating board (6) described above is further used,
A water-repellent film was formed by a vacuum deposition method. Observation and the contact angle with water were measured and evaluated on the surface of the obtained lens on which the film was formed in the same manner as in Example 1 (immediately after the formation of the water-repellent film and after leaving it in the air for one week). In the example, in the process of forming the water-repellent thin film, the steel wool moves on the resistance heating board due to the flow of the air exhausted during the vacuum evacuation, and it is difficult to stably hold the steel wool. It could not be obtained uniformly.

【0045】(例9)市販のポルトランドセメント(鹿
島コンクリート製、商品名ポルトランドセメント:粒度
分布が1から30μm)50gに水20gを添加し1分
間よく撹拌した後、図1に示すような直径18mm深さ
10mmのプラスチック製の鋳型に流し込んで室温で1
時間乾燥させ、更にオーブン内にて200℃で1時間加
熱し、水分を蒸発させた。かかる鋳型1内のセメント
に、化学式n−C817CH2CH 2Si(NH23で表
されるパーフルオロアルキル基含有化合物をメタキシレ
ンヘキサフロライドで3%に希釈した撥水処理用の溶液
をピペットを用いて1ml含浸させた。更に、セメント
(2)を70℃で20分間乾燥後鋳型から取り出し、例
1と同様に、図2に示す真空蒸着装置(シンクロンVE
800)の真空槽4内における抵抗加熱ボート6に設置
した。
Example 9 Commercially available Portland cement (deer)
Portland cement made of island concrete, trade name: particle size
(Distribution is 1 to 30 μm) Add 20 g of water to 50 g and 1 minute
After stirring well, 18mm in diameter as shown in Fig. 1
Pour into a 10 mm plastic mold and add
Dried at 200 ° C for 1 hour in an oven.
Heat to evaporate water. Cement in such a mold 1
Has the chemical formula nC8F17CHTwoCH TwoSi (NHTwo)ThreeIn table
Perfluoroalkyl group-containing compound
Solution for water repellent treatment diluted to 3% with hexafluorofluoride
Was impregnated with 1 ml using a pipette. Furthermore, cement
(2) is dried at 70 ° C. for 20 minutes, taken out of the mold, and
1, the vacuum evaporation apparatus (Sincron VE) shown in FIG.
800) installed on the resistance heating boat 6 in the vacuum chamber 4
did.

【0046】続いて、例1と同様の手順に従って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜(SiO
2とZrO2の積層膜)を形成した後、更に上記抵抗加熱
ボート(6)上に設けられた薄膜形成材(2)を用い真
空蒸着法により撥水薄膜を形成し、かかるレンズの薄膜
が形成された側の表面について、例1と同様に評価し
た。結果を下記表1に示す。
Subsequently, according to the same procedure as in Example 1, an antireflection film (SiO 2) was formed on the synthetic resin lens (7) by vacuum evaporation.
2 and ZrO 2 ), and then a water-repellent thin film is formed by a vacuum evaporation method using the thin film forming material (2) provided on the resistance heating boat (6). The surface on the formed side was evaluated in the same manner as in Example 1. The results are shown in Table 1 below.

【0047】(例10)石膏(サンエス石膏株式会社
製、商品名:焼石膏/粒度分布が5から50μmのも
の)50gと二酸化ケイ素粉末(キシダ化学製、商品
名:Siliconoxide:粒度が約35μm以
下)10gに水25gを添加し1分間よく撹拌した後、
その一部を、図1に示すような直径18mm深さ10m
mのプラスチック製の鋳型に流し込んで室温で1時間乾
燥させ、更にオーブン内にて200℃で1時間加熱し、
水分を蒸発させた。かかる鋳型1内の石膏に、化学式n
−C817CH2CH2Si(NH23で表されるパーフ
ルオロアルキル基含有化合物をメタキシレンヘキサフロ
ライド3%に希釈した撥水処理用の溶液をピペットを用
いて1ml含浸させた。更に、石膏2を70℃で20分
間乾燥後鋳型から取り出し、例1と同様に、図2に示す
真空蒸着装置(シンクロンVE800)の真空槽4内に
おける抵抗加熱ボート6に設置した。
(Example 10) 50 g of gypsum (manufactured by San-Esu Gypsum Co., Ltd., trade name: calcined gypsum / particle size distribution of 5 to 50 μm) and silicon dioxide powder (manufactured by Kishida Chemical, trade name: Siliconoxide: particle size of about 35 μm or less) ) After adding 25g of water to 10g and stirring well for 1 minute,
A part thereof is 18 mm in diameter and 10 m in depth as shown in FIG.
m, poured into a plastic mold, dried at room temperature for 1 hour, and further heated in an oven at 200 ° C. for 1 hour.
The water was evaporated. The gypsum in the mold 1 has a chemical formula n
The solution was 1ml impregnated with a pipette to the -C 8 F 17 CH 2 CH 2 Si (NH 2) 3 perfluoroalkyl group-containing compound represented by the diluted metaxylene hexafluoride 3% was for water repellent treatment Was. Further, the gypsum 2 was dried at 70 ° C. for 20 minutes, taken out of the mold, and set on the resistance heating boat 6 in the vacuum tank 4 of the vacuum evaporation apparatus (Sincron VE800) shown in FIG.

【0048】続いて、例1と同様の手順に従って、合成
樹脂レンズ(7)に真空蒸着により反射防止膜(SiO
2とZrO2の積層膜)を形成した後、更に上記抵抗加熱
ボート(6)上に設けられた薄膜形成材(2)を用い真
空蒸着法により撥水薄膜を形成し、かかるレンズの薄膜
が形成された側の表面について、例1と同様に評価し
た。結果を下記表1に示す。
Subsequently, according to the same procedure as in Example 1, the anti-reflection film (SiO 2) was formed on the synthetic resin lens (7) by vacuum evaporation.
2 and ZrO 2 ), and then a water-repellent thin film is formed by a vacuum evaporation method using the thin film forming material (2) provided on the resistance heating boat (6). The surface on the formed side was evaluated in the same manner as in Example 1. The results are shown in Table 1 below.

【0049】[0049]

【表1】 [Table 1]

【0050】表1に示す結果によれば、撥水性物質を石
膏に保持させた薄膜形成材(例1〜4)、撥水性物質を
ポルトラントセメントに保持させた薄膜形成材(例
9)、あるいは撥水性物質を微粉末(二酸化ケイ素)を
含んだ石膏に保持させた薄膜形成材(例10)を用い、
真空蒸着法により合成樹脂レンズ(反射防止膜付)表面
に形成された撥水薄膜は、外部からの影響による水に対
する接触角の変化、即ち、撥水性の変化が低減され、安
定した特性が得られている。
According to the results shown in Table 1, the thin-film forming material in which the water-repellent substance is held by gypsum (Examples 1 to 4), the thin-film forming material in which the water-repellent substance is held by portland cement (Example 9), Alternatively, using a thin film forming material (Example 10) in which a water-repellent substance is held in gypsum containing fine powder (silicon dioxide),
The water-repellent thin film formed on the surface of the synthetic resin lens (with an anti-reflection film) by the vacuum evaporation method reduces the change in the contact angle to water due to the influence from the outside, that is, the change in the water repellency, and obtains stable characteristics. Have been.

【0051】また、例1〜4、9、10のような薄膜形
成材では、常温硬化性物質からなる多孔質材があらゆる
形態で供給される薄膜形成物質を安定して保持されてお
り、真空蒸着プロセスにおいても装置内で容易に設置使
用することが可能となる。
Further, in the thin film forming materials as in Examples 1 to 4, 9, and 10, the porous material made of the room temperature curable material stably holds the thin film forming material supplied in all forms, and Also in the vapor deposition process, it can be easily installed and used in the apparatus.

【0052】[0052]

【発明の効果】以上詳述したように、本発明によれば、
常温硬化性物質からなる多孔質材に薄膜形成物質を保持
させた薄膜形成材が提供される。かかる薄膜形成材を用
いて、所定の基材上に、低コストで簡易な操作により、
高品質の薄膜を得ることができる。
As described in detail above, according to the present invention,
A thin film forming material is provided in which a thin film forming material is held on a porous material made of a room temperature curable substance. Using such a thin film forming material, on a predetermined base material, by a simple operation at low cost,
High quality thin films can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の薄膜形成材の調製時におけ
る、石膏をプラスチック製の鋳型に充填した状態を模式
的に示す断面図。
FIG. 1 is a cross-sectional view schematically showing a state in which gypsum is filled in a plastic mold during preparation of a thin film-forming material according to an embodiment of the present invention.

【図2】本発明の実施例で使用する真空蒸着装置の構造
を示す図。
FIG. 2 is a diagram showing a structure of a vacuum evaporation apparatus used in an embodiment of the present invention.

【符号の説明】 1 プラスチック製鋳型 2 石膏、セメント(薄膜形成材) 3 真空蒸着装置 4 真空槽 5 抵抗加熱電極 6 抵抗加熱ボード 7 レンズ 8 電子銃 9 ZrO2 10 SiO2 11 電子ビーム[Description of Signs] 1 Plastic mold 2 Gypsum, cement (thin film forming material) 3 Vacuum deposition device 4 Vacuum tank 5 Resistance heating electrode 6 Resistance heating board 7 Lens 8 Electron gun 9 ZrO 2 10 SiO 2 11 Electron beam

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G09F 9/30 312 G02B 1/10 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI G09F 9/30 312 G02B 1/10 Z

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 常温硬化性物質からなる多孔質材に、薄
膜形成物質を保持させた薄膜形成材。
1. A thin film forming material in which a thin film forming material is held on a porous material made of a room temperature curable substance.
【請求項2】 前記薄膜形成物質が、撥水性の有機物質
からなる請求項1記載の薄膜形成材。
2. The thin film forming material according to claim 1, wherein the thin film forming material is a water-repellent organic material.
【請求項3】 前記撥水性の有機物質は、有機シリコー
ン類化合物、又はパーフルオロアルキル基含有化合物で
あることを特徴とする請求項2記載の薄膜形成材。
3. The thin film forming material according to claim 2, wherein the water-repellent organic substance is an organic silicone compound or a perfluoroalkyl group-containing compound.
【請求項4】 前記常温硬化性物質が、水によって硬化
する物質であることを特徴とする請求項1記載の薄膜形
成材。
4. The thin film forming material according to claim 1, wherein the room temperature curable substance is a substance that is cured by water.
【請求項5】 前記常温硬化性物質が、セメントからな
る請求項1記載の薄膜形成材。
5. The thin film-forming material according to claim 1, wherein the cold-setting material comprises cement.
【請求項6】 前記常温硬化性物質が、石膏からなる請
求項1記載の薄膜形成材。
6. The thin film-forming material according to claim 1, wherein the room temperature curable substance comprises gypsum.
【請求項7】 前記石膏が粒度分布5〜50μmである
請求項6記載の薄膜形成材。
7. The thin film-forming material according to claim 6, wherein the gypsum has a particle size distribution of 5 to 50 μm.
【請求項8】 前記常温硬化性物質からなる多孔質材
は、70重量%以下の常温で硬化しない物質を混合した
ことを特徴とする請求項1記載の薄膜形成材。
8. The thin film forming material according to claim 1, wherein the porous material made of the room temperature curable substance is mixed with a substance which does not cure at room temperature of 70% by weight or less.
【請求項9】 前記常温硬化性物質からなる多孔質材
が、水または水溶性の撥水性物質を含んだ状態で硬化さ
れたものであることを特徴とする請求項1記載の薄膜形
成材。
9. The thin film forming material according to claim 1, wherein the porous material made of the room temperature curable substance is cured in a state containing water or a water-soluble water repellent substance.
【請求項10】 常温硬化性物質からなる多孔質材中に
保持された薄膜形成物質を蒸発させて、基材上に薄膜を
形成する薄膜形成方法。
10. A thin film forming method for forming a thin film on a substrate by evaporating a thin film forming substance held in a porous material made of a room temperature curable substance.
【請求項11】 前記薄膜形成物質が撥水性の有機物質
からなり、基材上に撥水薄膜を形成する請求項10記載
の薄膜形成方法。
11. The thin film forming method according to claim 10, wherein the thin film forming material is made of a water repellent organic substance, and a water repellent thin film is formed on a substrate.
【請求項12】 基材上に形成された無機物質からなる
層上に、薄膜を形成する請求項10記載の薄膜形成方
法。
12. The thin film forming method according to claim 10, wherein a thin film is formed on a layer made of an inorganic substance formed on a base material.
【請求項13】 真空槽内で薄膜の形成を行うことを特
徴とする請求項10記載の薄膜形成方法。
13. The method according to claim 10, wherein the thin film is formed in a vacuum chamber.
【請求項14】 真空槽内で基材上に前記無機物質から
なる層を形成し、同一の真空槽内で該無機物質の層上に
撥水薄膜を形成する請求項12記載の薄膜形成方法。
14. The thin film forming method according to claim 12, wherein a layer made of the inorganic material is formed on the substrate in a vacuum chamber, and a water-repellent thin film is formed on the inorganic material layer in the same vacuum chamber. .
JP9298807A 1996-11-14 1997-10-30 Thin film forming material and forming method for thin film Pending JPH10193489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9298807A JPH10193489A (en) 1996-11-14 1997-10-30 Thin film forming material and forming method for thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30257596 1996-11-14
JP8-302575 1996-11-14
JP9298807A JPH10193489A (en) 1996-11-14 1997-10-30 Thin film forming material and forming method for thin film

Publications (1)

Publication Number Publication Date
JPH10193489A true JPH10193489A (en) 1998-07-28

Family

ID=26561668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9298807A Pending JPH10193489A (en) 1996-11-14 1997-10-30 Thin film forming material and forming method for thin film

Country Status (1)

Country Link
JP (1) JPH10193489A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144097A (en) * 1998-01-31 2000-05-26 Toppan Printing Co Ltd Antifouling agent, formation of antifouling layer, optical member, antireflection optical member, optically functional member and display device
KR100538016B1 (en) * 2002-03-18 2005-12-21 호야 가부시키가이샤 Optical member, process of producing optical member, and process of producing thin film
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member
WO2010026887A1 (en) * 2008-09-05 2010-03-11 株式会社シンクロン Film-forming method and oil repellent base
WO2010041524A1 (en) * 2008-10-09 2010-04-15 株式会社シンクロン Film-forming method
WO2014143661A1 (en) * 2013-03-15 2014-09-18 Waterfi, Llc Method for water-proofing elecronic components
KR101451412B1 (en) * 2007-12-17 2014-10-16 재단법인 포항산업과학연구원 Method for surface modification of magnesium alloy plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144097A (en) * 1998-01-31 2000-05-26 Toppan Printing Co Ltd Antifouling agent, formation of antifouling layer, optical member, antireflection optical member, optically functional member and display device
KR100538016B1 (en) * 2002-03-18 2005-12-21 호야 가부시키가이샤 Optical member, process of producing optical member, and process of producing thin film
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member
KR101451412B1 (en) * 2007-12-17 2014-10-16 재단법인 포항산업과학연구원 Method for surface modification of magnesium alloy plate
WO2010026887A1 (en) * 2008-09-05 2010-03-11 株式会社シンクロン Film-forming method and oil repellent base
CN102084025A (en) * 2008-09-05 2011-06-01 新柯隆株式会社 Film-forming method and oil repellent base
WO2010041524A1 (en) * 2008-10-09 2010-04-15 株式会社シンクロン Film-forming method
WO2014143661A1 (en) * 2013-03-15 2014-09-18 Waterfi, Llc Method for water-proofing elecronic components

Similar Documents

Publication Publication Date Title
KR100297474B1 (en) Thin-Film Forming Material and Method for Forming Thin-Film
JP3602277B2 (en) Material and method for applying a water-repellent coating on an optical substrate
US5368887A (en) Process for producing thin glass film by sol-gel method
JP3549440B2 (en) Composition for creating a water-repellent coating on an optical substrate
JPH10193489A (en) Thin film forming material and forming method for thin film
US20190309421A1 (en) Self-curing mixed-metal oxides
US3956570A (en) Method for imparting water-repellency to construction materials
JPH06340966A (en) Treatment of surface and vapor deposition material used for the same
JP3774565B2 (en) Thin film formation method
US6099911A (en) Process for forming silica film
EP1156024A1 (en) Composite ceramic precursors and layers
JPH10221502A (en) Manufacture of optical thin film and optical thin film
JP2001335920A (en) Vapor deposition source, optical article and the producing method
JP3120371B2 (en) Optical article manufacturing method
JPH0414782B2 (en)
KR100315935B1 (en) Material for and method of preparing water-repellent coatings on optical substrates
JP2004149347A (en) Method for forming thin film on glass substrate and thin film-coated glass substrate
KR100315629B1 (en) Silica-based binder and its preparation method
JP3135679B2 (en) Ultraviolet shielding film forming solution and method for producing ultraviolet shielding film using the same
JPH05203801A (en) Production of synthetic resin lens
JP3254473B2 (en) Method for producing silica-based glassy film and coating agent used therefor
JP2000189795A (en) Surface treating agent for forming photocatalytic film and formation of photocatalytic film using the same
JP2006083049A (en) Water repellent glass
JP2002179430A (en) Method for manufacturing thin molding by sol-gel method
JPH06188528A (en) Sealing porous electron substrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527