JPH10190033A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH10190033A
JPH10190033A JP9322705A JP32270597A JPH10190033A JP H10190033 A JPH10190033 A JP H10190033A JP 9322705 A JP9322705 A JP 9322705A JP 32270597 A JP32270597 A JP 32270597A JP H10190033 A JPH10190033 A JP H10190033A
Authority
JP
Japan
Prior art keywords
layer
substrate
solar cell
electric field
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9322705A
Other languages
Japanese (ja)
Other versions
JP2999985B2 (en
Inventor
Yoshihiro Yamamoto
義宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9322705A priority Critical patent/JP2999985B2/en
Publication of JPH10190033A publication Critical patent/JPH10190033A/en
Application granted granted Critical
Publication of JP2999985B2 publication Critical patent/JP2999985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell in which carrier recoupling does not occur much in a backside electric field layer and which has a high photoelectric conversion efficiency by increasing the impurity concentration in the backside electric field layer without deterioration the quality of the layer. SOLUTION: A solar cell includes a semiconductor substrate 25 of a first conductivity (p-type), a semiconductor layer 24 formed in the substrate 22 on the light incidence side and having a second conductivity (n-type), and a backside electric field layer 26 formed on the rear surface of the substrate 25 on the opposite side to the light incidence side. The layer 26 is composed of a microcrystalline mixing type silicon hydride film containing a p-type impurity at a higher concentration than the substrate 25 and, near the boundary between the substrate 25 and the silicon hydride film 26, a high-concentration p-type impurity layer 29 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体太陽電池に関
し、特に、太陽電池の光電変換効率の改善に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor solar cell, and more particularly to an improvement in photoelectric conversion efficiency of a solar cell.

【0002】[0002]

【従来の技術】半導体太陽電池はp−n接合を利用した
エネルギ変換器である。その変換効率を高めるための1
手段として、半導体基板の光入射側と反対側の裏面に基
板本体と同じ導電型であって高い不純物濃度の裏面電界
層(BSF層とも呼ばれる)を形成し、裏面近傍で光生
成されるキャリアを内部電界で効率的に収集する方法が
知られている。
2. Description of the Related Art A semiconductor solar cell is an energy converter utilizing a pn junction. 1 to increase the conversion efficiency
As a means, a back surface electric field layer (also referred to as a BSF layer) of the same conductivity type as that of the substrate main body and having a high impurity concentration is formed on the back surface of the semiconductor substrate opposite to the light incident side, and carriers generated light near the back surface are formed. A method of efficiently collecting with an internal electric field is known.

【0003】従来、この裏面電界層の形成には、アルミ
ニウムペースト材料をシリコン基板の裏面に印刷した後
に。約700℃の温度で焼成して形成する方法が多用さ
れている。アルミニウムペーストから半導体基板内への
アルミニウムの拡散によって裏面電界層を形成するとと
もに、同時にアルミニウムの裏面電極の形成され得るの
である。
Conventionally, this backside electric field layer is formed after an aluminum paste material is printed on the backside of a silicon substrate. A method of forming by firing at a temperature of about 700 ° C. is often used. The back surface electric field layer is formed by diffusion of aluminum from the aluminum paste into the semiconductor substrate, and at the same time, a back surface electrode of aluminum can be formed.

【0004】しかし、この方法は、高い変換効率が得ら
れる薄型基板であるたとえば200μm以下の厚さの基
板を用いた場合に適用すれば、基板の反りや割れを生じ
る。そこで、薄型基板を用いる場合には三臭化ホウ素
(BBr3)を用いて熱拡散法で裏面電界層を形成する
方法が提案されている。
However, if this method is applied to the case of using a thin substrate having a high conversion efficiency, for example, a substrate having a thickness of 200 μm or less, the substrate warps or cracks. Therefore, a method of forming a back surface field layer in a thermal diffusion method using boron tribromide (BBr 3) is proposed in case of using a thin substrate.

【0005】[0005]

【発明が解決しようとする課題】これらの先行技術のい
ずれの場合においても、裏面電界層の不純物濃度を高め
れば高い内部電界強度がえられるが、裏面電界層の層質
の低下が生じ、裏面電界層内でのキャリアの再結合が多
くなる。したがって、高濃度の不純物の添加は、逆に光
電変換効率の低下を招くという課題がある。
In any of these prior arts, a high internal electric field strength can be obtained by increasing the impurity concentration of the back surface field layer, but the quality of the back surface field layer is degraded and the back surface field layer is degraded. Carrier recombination in the electric field layer increases. Therefore, there is a problem that the addition of a high-concentration impurity causes a reduction in photoelectric conversion efficiency.

【0006】このような先行技術の課題に鑑み、本発明
は裏面電界層の層質を低下させることなく不純物濃度の
高い裏面電界層を形成することによって裏面電界層内で
のキャリアの再結合が少なくて光電変換効率の高い太陽
電池を提供することを目的としている。
In view of the above-mentioned problems in the prior art, the present invention forms a backside electric field layer having a high impurity concentration without deteriorating the layer quality of the backside electric field layer, thereby preventing carrier recombination in the backside electric field layer. It is an object of the present invention to provide a solar cell having a small amount and high photoelectric conversion efficiency.

【0007】[0007]

【課題を解決するための手段】本発明による太陽電池
は、第1導電型の半導体基板と、その基板内において光
入射側に形成された第2導電型の半導体層と、基板の光
入射側と反対側の裏面上に形成された裏面電界層とを含
み、前記裏面電界層は基板より高濃度の第1導電型不純
物を含んだ微結晶混合質水素化シリコン膜からなってい
ることを特徴としている。
A solar cell according to the present invention comprises a semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on the light incident side in the substrate, and a light incident side of the substrate. And a back surface field layer formed on the back surface opposite to the back surface, wherein the back surface field layer is made of a microcrystalline mixed silicon hydride film containing a first conductivity type impurity at a higher concentration than the substrate. And

【0008】本発明による太陽電池においては、裏面電
界層が高濃度の不純物を含んだ微結晶混合質水素化シリ
コン膜で形成されているので、十分な内部電界が生ぜら
れ、キャリアを効率的に収集することができる。また、
微結晶混合質水素化シリコン膜の裏面電界層は、不純物
濃度を高めても従来の裏面電界層のような層質の低下が
ほとんどなく、裏面電界層内でのキャリアの再結合の増
大を抑制することができる。
In the solar cell according to the present invention, since the back surface electric field layer is formed of a microcrystalline mixed silicon hydride film containing a high concentration of impurities, a sufficient internal electric field is generated and carriers are efficiently generated. Can be collected. Also,
Even if the impurity concentration is increased, the backside electric field layer of the microcrystalline mixed silicon hydride film hardly deteriorates in quality as in the conventional backside electric field layer, and suppresses an increase in recombination of carriers in the backside electric field layer. can do.

【0009】[0009]

【発明の実施の形態】図1は、本発明の第1の実施の形
態による太陽電池の概略的な断面図である。p型単結晶
シリコン基板25の光入射側にn型層24が形成されて
いる。n型層24の表面は、入射光の反射を低減するた
めに、たとえばエッチングなどによって凹凸にされてい
る。n型層24はシリコン酸化膜23によって覆われて
おり、シリコン酸化膜23は反射防止膜22によって覆
われている。電流は、シリコン酸化膜23と反射防止膜
22を貫通してn型層24に接続されたグリッド電極2
1を介して取出される。
1 is a schematic sectional view of a solar cell according to a first embodiment of the present invention. An n-type layer 24 is formed on the light incident side of a p-type single crystal silicon substrate 25. The surface of the n-type layer 24 is made uneven by, for example, etching to reduce the reflection of incident light. The n-type layer 24 is covered with a silicon oxide film 23, and the silicon oxide film 23 is covered with an antireflection film 22. The electric current passes through the silicon oxide film 23 and the antireflection film 22 and is connected to the grid electrode 2 connected to the n-type layer 24.
It is taken out through 1.

【0010】p型基板25の光入射側と反対側の裏面上
には、同じp型の不純物が高濃度に添加された微結晶混
合質水素化シリコン膜からなる裏面電界層26が形成さ
れている。裏面電界層26は裏面金属電極27によって
覆われている。微結晶混合質水素化シリコン膜26は、
プラズマ化学気相成長法(プラズマCVD法)によって
形成することができ、微結晶と非晶質の混合した水素化
シリコンからなっている。プラズマCVD法には、直流
放電,ラジオ波(RF)放電,マイクロ波放電およびこ
れらを組合わせた方法、さらにはマイクロ波を用いた電
子サイクロトロン共鳴法などの方法を用いることができ
る。これらの製膜方法は周知であって多くの文献が存在
するので、ここでは説明を省略する。
On the back surface of the p-type substrate 25 opposite to the light incident side, a back surface electric field layer 26 made of a microcrystalline mixed silicon hydride film doped with the same p-type impurity at a high concentration is formed. I have. The back surface electric field layer 26 is covered by a back surface metal electrode 27. The microcrystalline mixed silicon hydride film 26
It can be formed by a plasma chemical vapor deposition method (plasma CVD method), and is made of mixed hydrogenated silicon of microcrystal and amorphous. As the plasma CVD method, a direct current discharge, a radio frequency (RF) discharge, a microwave discharge, a method combining these, or a method such as an electron cyclotron resonance method using microwave can be used. Since these film forming methods are well known and there are many documents, description thereof is omitted here.

【0011】図2は図1の太陽電池のn型層24,p型
層24,p型基板25および裏面電界層26におけるエ
ネルギバンド構造を拡大して示している。水平の一点鎖
線Fは、フェルミエネルギレベルを表している。フェル
ミエネルギレベルFより上側の曲線Cは導電帯の下限の
エネルギレベルを表し、下側の曲線Vは価電子帯の上限
のエネルギレベルを表している。
FIG. 2 is an enlarged view showing the energy band structure of the n-type layer 24, p-type layer 24, p-type substrate 25 and back surface electric field layer 26 of the solar cell of FIG. The horizontal dashed-dotted line F represents the Fermi energy level. The curve C above the Fermi energy level F represents the lower energy level of the conduction band, and the lower curve V represents the upper energy level of the valence band.

【0012】微結晶混合質シリコン膜26はp型の不純
物が高濃度に添加されているので、p型基板25内にお
いて裏面電界層26の近傍に強電界領域VGが形成され
る。この強電界領域VGは、光電変換によって生じた空
孔を効率的に裏面電界層26内に引抜くように作用す
る。また、微結晶混合質水素化シリコン膜26は、単結
晶シリコン基板25より大きなエネルギ禁制帯幅を有し
ているので基板25を透過してきた光をほとんど吸収せ
ず、裏面金属電極27で反射された光が基板25内へ戻
されるのを許容する。さらに、基板25と裏面電界層2
6との界面において、導電帯Cに高い電位壁CBが形成
されるので、その界面近傍における基板25内の電子は
裏面電界層26内への逆拡散が阻止され裏面電界層26
内における正孔との再結合が低減される。
[0012] Since the microcrystalline mixed silicon film 26 is p-type impurity is added at high concentration, a strong electric field region V G in the vicinity of the back surface field layer 26 in the p-type substrate 25 is formed. The strong electric field region V G acts pores generated by photoelectric conversion as efficiently pulled to the back surface field layer 26. Further, since the microcrystalline mixed silicon hydride film 26 has a larger energy bandgap than the single crystal silicon substrate 25, it hardly absorbs light transmitted through the substrate 25 and is reflected by the back metal electrode 27. Allowed light to be returned into the substrate 25. Further, the substrate 25 and the back surface electric field layer 2
At the interface between the 6, since a high potential barrier C B to the conduction band C is formed, the electrons in the substrate 25 near the interface is despread into a back surface field layer 26 is prevented back surface field layer 26
Recombination with holes in the inside is reduced.

【0013】以上のように、微結晶混合質水素化シリコ
ン膜の裏面電界層26を用いることによって、裏面電界
層26内での光吸収損失が少なく、高濃度不純物添加に
基づく層質の低下による裏面電界層26内でのキャリア
の再結合の増大を伴うことなく従来よりも強い内部電界
を形成することができ、太陽電池の光電変換効率を高め
ることができる。
As described above, by using the back surface field layer 26 of the microcrystalline mixed silicon hydride film, light absorption loss in the back surface field layer 26 is small, and the layer quality is deteriorated due to the addition of high concentration impurities. A stronger internal electric field than before can be formed without increasing the recombination of carriers in the back surface electric field layer 26, and the photoelectric conversion efficiency of the solar cell can be increased.

【0014】図3は、本発明の第2の実施の形態による
太陽電池を示す断面図である。図3の太陽電池は図1の
ものと類似しているが、シリコン基板25の底面はシリ
コン酸化膜28によって覆われている。シリコン酸化膜
28には複数のドット状の開孔が開けられており、シリ
コン酸化膜28の底面を覆うように形成された微結晶混
合質水素化シリコン膜の裏面電界層26はそれらの開孔
を介して基板25に接続されている。すなわち、図3の
太陽電池においては裏面電界層26が限定された複数の
開孔を介して基板25に接続されているので、基板25
と裏面電界層26との界面近傍におけるキャリアの再結
合を一層減少させることができる。
FIG. 3 is a sectional view showing a solar cell according to a second embodiment of the present invention. The solar cell of FIG. 3 is similar to that of FIG. 1, but the bottom surface of the silicon substrate 25 is covered with a silicon oxide film 28. A plurality of dot-shaped holes are formed in the silicon oxide film 28, and the back surface electric field layer 26 of the microcrystalline mixed silicon hydride film formed so as to cover the bottom surface of the silicon oxide film 28 is formed by these holes. Is connected to the substrate 25 via the. That is, in the solar cell of FIG. 3, since the back surface field layer 26 is connected to the substrate 25 through a plurality of limited openings,
The recombination of carriers in the vicinity of the interface between the back surface electric field layer 26 and the back surface electric field layer 26 can be further reduced.

【0015】図4は本発明の第3の実施の形態による太
陽電池を示す断面図である。図3の太陽電池も図1Aの
ものに類似しているが、p型シリコン基板25内におい
てp型の裏面電界層26との界面近傍に高濃度のp型層
29が形成されている。このp型層29は、裏面電界層
26よりも低濃度であるが、基板25よりも高濃度(の
不純物を含んでおり、裏面電界層26による強電界領域
を基板25の内部に向けて広げるように作用する。すな
わち、図4の太陽電池においては、基板25の内部で裏
面電界層26から遠い位置にある正孔をも効率的に裏面
電界層26内へ引抜くことが可能であり、光電変換効率
が高められる。
FIG. 4 is a sectional view showing a solar cell according to the third embodiment of the present invention. The solar cell of FIG. 3 is also similar to that of FIG. 1A, except that a high-concentration p-type layer 29 is formed in the p-type silicon substrate 25 near the interface with the p-type backside electric field layer 26. The p-type layer 29 has a concentration lower than that of the back surface field layer 26, but contains a higher concentration of impurities than the substrate 25, and expands the strong field region of the back surface field layer 26 toward the inside of the substrate 25. That is, in the solar cell of Fig. 4, holes located far from the back surface field layer 26 inside the substrate 25 can be efficiently extracted into the back surface field layer 26, The photoelectric conversion efficiency is increased.

【0016】図5は、本発明の第4の実施の形態による
太陽電池を示す断面図である。図5の太陽電池は図3と
図4の太陽電池の構造を兼ね備えており、裏面電界層2
6はシリコン酸化膜28の複数の開孔(開口)を介して
高濃度のp型層29に接続されている。したがって、図
5の太陽電池は、図3と図4の太陽電池の光電変換特性
を兼ね備えている。
FIG. 5 is a sectional view showing a solar cell according to the fourth embodiment of the present invention. The solar cell of FIG. 5 has the structure of the solar cell of FIGS.
6 is connected to the high-concentration p-type layer 29 through a plurality of openings (openings) in the silicon oxide film 28. Therefore, the solar cell of FIG. 5 has the photoelectric conversion characteristics of the solar cells of FIGS. 3 and 4.

【0017】図6は、本発明の第5の実施の形態による
太陽電池を示す断面図である。図6の太陽電池は図5の
ものに類似しているが、高濃度のp型層29が酸化膜2
8の複数の開口部付近のみに限定して形成されている。
図6の太陽電池においては、基板25よりは少し層質が
劣る高濃度p型層29の領域を必要以上に大きくせず、
p型層29内でのキャリアの再結合を低減するように意
図されている。
FIG. 6 is a sectional view showing a solar cell according to a fifth embodiment of the present invention. The solar cell of FIG. 6 is similar to that of FIG. 5, except that the high concentration p-type
8 are formed only in the vicinity of the plurality of openings.
In the solar cell of FIG. 6, the region of the high-concentration p-type layer 29, which is slightly inferior in layer quality to the substrate 25, is not made unnecessarily large.
It is intended to reduce carrier recombination in the p-type layer 29.

【0018】以上の実施の形態では、p型の単結晶シリ
コン基板を用いた場合について説明したが、n型基板を
用いた場合にも本発明は同様に適用し得ることが理解さ
れよう。その場合、n型基板の光入射側の不純物層はp
型であり、裏面電界層である微結晶混合質水素化シリコ
ン膜はn型の不純物を高濃度に添加したものが用いられ
る。また、シリコン基板は単結晶に限らず、多結晶のシ
リコン基板を用いることも可能である。
In the above embodiment, a case where a p-type single crystal silicon substrate is used has been described. However, it will be understood that the present invention can be similarly applied to a case where an n-type substrate is used. In that case, the impurity layer on the light incident side of the n-type substrate is p-type.
A microcrystalline mixed silicon hydride film which is a backside electric field layer and has a high concentration of an n-type impurity is used. Further, the silicon substrate is not limited to a single crystal, and a polycrystalline silicon substrate can be used.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、太陽電
池中の裏面電界層が高濃度の不純物を含んだ微結晶混合
質水素化シリコン膜で形成されているので、十分な内部
電界が生ぜられ、キャリアを効率的に収集することがで
きる。また、微結晶混合質水素化シリコン膜の裏面電界
層は、不純物濃度を高めても従来の裏面電界層のような
層質の低下がほとんどなく、裏面電界層内でのキャリア
の再結合の増大を抑制することができ、しかも、基板の
内部で裏面電界層から遠い位置にある正孔をも効率的に
裏面電界層内へ引き抜くことが可能であり、光電変換効
率が高められる。すなわち、本発明によれば、光電変換
効率の高い太陽電池を提供することができる。
As described above, according to the present invention, since the back surface electric field layer in the solar cell is formed of a microcrystalline mixed silicon hydride film containing a high concentration of impurities, a sufficient internal electric field Is generated, and carriers can be efficiently collected. In addition, even if the impurity concentration is increased, the backside electric field layer of the microcrystalline mixed silicon hydride film hardly deteriorates in quality as in the conventional backside electric field layer, and the carrier recombination in the backside electric field layer increases. Can be suppressed, and moreover, holes at positions far from the back surface field layer inside the substrate can be efficiently extracted into the back surface field layer, and the photoelectric conversion efficiency can be improved. That is, according to the present invention, a solar cell having high photoelectric conversion efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による太陽電池の概
略的な断面図である。
FIG. 1 is a schematic sectional view of a solar cell according to a first embodiment of the present invention.

【図2】図1の太陽電池におけるエネルギバンド構造の
拡大図である。
2 is an enlarged view of an energy band structure in the solar cell of FIG.

【図3】本発明の第2の実施の形態による太陽電池の概
略的な断面図である。
FIG. 3 is a schematic sectional view of a solar cell according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態による太陽電池の概
略的な断面図である。
FIG. 4 is a schematic sectional view of a solar cell according to a third embodiment of the present invention.

【図5】本発明の第4の実施の形態による太陽電池の概
略的な断面図である。
FIG. 5 is a schematic sectional view of a solar cell according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施の形態による太陽電池の概
略的な断面図である。
FIG. 6 is a schematic sectional view of a solar cell according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21 グリッド電極 22 反射防止膜 23 シリコン酸化膜 24 n型シリコン層 25 p型シリコン基板 26 p型の微結晶混合質水素化シリコン膜 27 裏面金属電極 28 シリコン酸化膜 29 高濃度のp型シリコン層 21 grid electrode 22 antireflection film 23 silicon oxide film 24 n-type silicon layer 25 p-type silicon substrate 26 p-type microcrystalline mixed hydrogenated silicon film 27 backside metal electrode 28 silicon oxide film 29 high-concentration p-type silicon layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板と、前記基板内
において光入射側に形成された第2導電型の半導体層
と、前記基板の光入射側の反対側の裏面上に形成された
裏面電界層とを含み、前記裏面電界層は前記基板より高
濃度の第1導電型不純物を含んだ微結晶混合質水素化シ
リコン膜からなる太陽電池であって、前記半導体基板の
前記微結晶混合質水素化シリコン膜との界面近傍に、高
濃度の第1導電型不純物層が形成されていることを特徴
とする太陽電池。
1. A semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on the light incident side in the substrate, and formed on a back surface of the substrate opposite to the light incident side. A back-surface electric field layer, wherein the back-surface electric layer is a microcrystalline mixed silicon hydride film containing a first-conductivity-type impurity at a higher concentration than the substrate; A solar cell, wherein a high-concentration first conductivity type impurity layer is formed in the vicinity of an interface with a hydrogenated silicon hydride film.
【請求項2】 前記微結晶混合質水素化シリコン膜と半
導体基板との間に、複数の開口部を有するシリコン酸化
膜を設けることを特徴とする太陽電池。
2. A solar cell, wherein a silicon oxide film having a plurality of openings is provided between the microcrystalline mixed silicon hydride film and a semiconductor substrate.
【請求項3】 前記高濃度の不純物層が、シリコン酸化
膜の開口部付近に形成されていることを特徴とする請求
項2記載の太陽電池。
3. The solar cell according to claim 2, wherein the high-concentration impurity layer is formed near an opening of the silicon oxide film.
JP9322705A 1997-11-25 1997-11-25 Solar cell Expired - Fee Related JP2999985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9322705A JP2999985B2 (en) 1997-11-25 1997-11-25 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9322705A JP2999985B2 (en) 1997-11-25 1997-11-25 Solar cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2326292A Division JP2994735B2 (en) 1990-11-27 1990-11-27 Solar cell

Publications (2)

Publication Number Publication Date
JPH10190033A true JPH10190033A (en) 1998-07-21
JP2999985B2 JP2999985B2 (en) 2000-01-17

Family

ID=18146711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9322705A Expired - Fee Related JP2999985B2 (en) 1997-11-25 1997-11-25 Solar cell

Country Status (1)

Country Link
JP (1) JP2999985B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171263A (en) * 2009-01-23 2010-08-05 Mitsubishi Electric Corp Method of manufacturing photovoltaic device
EP2425457A2 (en) * 2009-05-01 2012-03-07 Calisolar, Inc. Bifacial solar cells with back surface reflector
KR20140143277A (en) * 2013-06-05 2014-12-16 엘지전자 주식회사 Solar cell and method for manufacturing the same
US10304974B2 (en) 2011-02-09 2019-05-28 Lg Electronics Inc. Solar cell
US11222991B2 (en) 2014-11-05 2022-01-11 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171263A (en) * 2009-01-23 2010-08-05 Mitsubishi Electric Corp Method of manufacturing photovoltaic device
EP2425457A2 (en) * 2009-05-01 2012-03-07 Calisolar, Inc. Bifacial solar cells with back surface reflector
CN102549765A (en) * 2009-05-01 2012-07-04 卡利太阳能有限公司 Bifacial solar cells with back surface reflector
EP2425457A4 (en) * 2009-05-01 2013-07-24 Silicor Materials Inc Bifacial solar cells with back surface reflector
US10304974B2 (en) 2011-02-09 2019-05-28 Lg Electronics Inc. Solar cell
KR20140143277A (en) * 2013-06-05 2014-12-16 엘지전자 주식회사 Solar cell and method for manufacturing the same
US10658529B2 (en) 2013-06-05 2020-05-19 Lg Electronics Inc. Solar cell and manufacturing method thereof
US11222991B2 (en) 2014-11-05 2022-01-11 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same
US11227965B2 (en) 2014-11-05 2022-01-18 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
JP2999985B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
US11605750B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US8686283B2 (en) Solar cell with oxide tunneling junctions
US20140102524A1 (en) Novel electron collectors for silicon photovoltaic cells
CA2181281C (en) Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US20160343883A1 (en) Solar cell having doped semiconductor heterojunction contacts
US20180374976A1 (en) Solar cell having a plurality of absorbers connected to one another by means of charge-carrier-selective contacts
US9865754B2 (en) Hole collectors for silicon photovoltaic cells
AU2022204107B2 (en) Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system
WO2022112619A2 (en) Passivated contact structure and solar cell comprising the same, cell assembly, and photovoltaic system
KR20100118864A (en) A fabricating method of buried contact solar cell
JP2010199415A (en) Solar cell
JPH0969643A (en) Solar battery and its manufacturing method
JP2999985B2 (en) Solar cell
JP2994735B2 (en) Solar cell
CN210379062U (en) P-type efficient battery structure with emitter passivation contact
US20240021741A1 (en) Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system
JPH08111537A (en) Solar battery
JPH0823109A (en) Solar battery
JPH0997916A (en) Solar cell and its manufacturing method
JPS5861681A (en) Solar battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees