JPH0997916A - Solar cell and its manufacturing method - Google Patents

Solar cell and its manufacturing method

Info

Publication number
JPH0997916A
JPH0997916A JP7307253A JP30725395A JPH0997916A JP H0997916 A JPH0997916 A JP H0997916A JP 7307253 A JP7307253 A JP 7307253A JP 30725395 A JP30725395 A JP 30725395A JP H0997916 A JPH0997916 A JP H0997916A
Authority
JP
Japan
Prior art keywords
silicon semiconductor
layer
solar cell
forming
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7307253A
Other languages
Japanese (ja)
Other versions
JP3158028B2 (en
Inventor
Makoto Nishida
誠 西田
Minoru Kaneiwa
実 兼岩
Satoshi Okamoto
諭 岡本
Ichiro Yamazaki
一郎 山嵜
Yuji Komatsu
雄爾 小松
Takayuki Minamimori
孝幸 南森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30725395A priority Critical patent/JP3158028B2/en
Publication of JPH0997916A publication Critical patent/JPH0997916A/en
Application granted granted Critical
Publication of JP3158028B2 publication Critical patent/JP3158028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell of high conversion efficiency in the solar cell in which a reverse face electric field layer comprising a fine crystal silicon layer is formed on a reverse face of a silicon semiconductor substrate. SOLUTION: On a reverse face of a P type silicon semiconductor substrate 11, a silicon oxide film 16 is partially formed in an area 20 in a position corresponding to a connection area 21 connecting with a reverse face electrode 19, and further a P<+> type fine crystal silicon layer 17, an insulation film layer 18 and a reverse face electrode 19 are succesively formed. A solar cell is heated at 300 deg.C or more and reverse face electric field effects of the P<+> type fine crystal silicon layer are increased, whereby it is possible to obtain the solar cell of high conversion efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池に関し、
特に光電変換効率を改善する太陽電池及びその製造方法
に関するものである。
The present invention relates to a solar cell,
In particular, the present invention relates to a solar cell that improves photoelectric conversion efficiency and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の太陽電池について、図4に示した
断面構造に基づき説明する。凹凸加工されたP型シリコ
ン半導体基板41の光入射面側には燐(P)を不純物と
するN型シリコン半導体層42が形成されている。N型
シリコン半導体層42の上にはシリコン酸化膜層43
が、シリコン酸化膜層43の上には窒化シリコン膜から
なる反射防止膜層44が形成されている。さらに、シリ
コン酸化膜層43と反射防止膜層44を貫通してN型シ
リコン半導体層42に接続されたチタン(Ti)/パラ
ジウム(Pd)/銀(Ag)の金属からなるグリッド電
極45が形成されている。P型シリコン半導体基板41
の光入射面側と反対側の裏面上にP型シリコン半導体基
板41と同じ導電型で、かつ、より高濃度にボロン
(B)を有する水素化微結晶シリコン層(以後、この膜
を「P+ 型微結晶シリコン層」という)からなる裏面電
界層47が設けられている。裏面電界層47上には窒化
シリコン膜からなる絶縁膜層48が、絶縁膜層48の上
にはAlやAgなどの金属からなる裏面電極49が形成
されている。裏面電極49は絶縁膜層48が形成されな
い開口部50で裏面電界層47と接続されている。
2. Description of the Related Art A conventional solar cell will be described based on the sectional structure shown in FIG. An N-type silicon semiconductor layer 42 containing phosphorus (P) as an impurity is formed on the light-incident surface side of the P-type silicon semiconductor substrate 41 that has been processed to have irregularities. A silicon oxide film layer 43 is formed on the N-type silicon semiconductor layer 42.
However, an antireflection film layer 44 made of a silicon nitride film is formed on the silicon oxide film layer 43. Further, a grid electrode 45 made of a metal of titanium (Ti) / palladium (Pd) / silver (Ag), which penetrates the silicon oxide film layer 43 and the antireflection film layer 44 and is connected to the N-type silicon semiconductor layer 42, is formed. Has been done. P-type silicon semiconductor substrate 41
A hydrogenated microcrystalline silicon layer having the same conductivity type as the P-type silicon semiconductor substrate 41 and having a higher concentration of boron (B) on the back surface opposite to the light incident surface side (hereinafter referred to as "P A back surface electric field layer 47 made of a “ + type microcrystalline silicon layer”) is provided. An insulating film layer 48 made of a silicon nitride film is formed on the back surface electric field layer 47, and a back electrode 49 made of a metal such as Al or Ag is formed on the insulating film layer 48. The back surface electrode 49 is connected to the back surface field layer 47 through the opening 50 where the insulating film layer 48 is not formed.

【0003】P+ 型微結晶シリコン層はP型シリコン半
導体基板41よりも高濃度にBを含み、広い禁制帯幅を
もつことから、裏面電界層47とP型シリコン半導体基
板41との接合面において内部電界を形成し、裏面近傍
で発生した少数キャリア(電子)をP型シリコン半導体
基板41の内部へ押し戻し、基板裏面でのキャリアの再
結合損失を抑制して光電変換効率を高める働きをしてい
る(以後、この働きを「裏面電界効果」という)。さら
に、絶縁膜層48はP型シリコン半導体基板41を抜け
て裏面電極49に達する光が再びP型シリコン半導体基
板41に向かう裏面反射を大きくして、光電変換効率を
高める働きをしている。
Since the P + -type microcrystalline silicon layer contains B in a higher concentration than the P-type silicon semiconductor substrate 41 and has a wide band gap, the junction surface between the back surface electric field layer 47 and the P-type silicon semiconductor substrate 41. At the same time, an internal electric field is formed to push back minority carriers (electrons) generated in the vicinity of the back surface to the inside of the P-type silicon semiconductor substrate 41, suppress recombination loss of carriers on the back surface of the substrate, and enhance photoelectric conversion efficiency. (Hereafter, this function is called "back surface field effect"). Further, the insulating film layer 48 has a function of increasing the back surface reflection of the light passing through the P-type silicon semiconductor substrate 41 and reaching the back surface electrode 49 toward the P-type silicon semiconductor substrate 41 again, and increasing the photoelectric conversion efficiency.

【0004】このP+ 型微結晶シリコン層を裏面電界層
47とした太陽電池の製造方法においては、P+ 型微結
晶シリコン層上に裏面電極を蒸着形成した後、熱処理を
行っていたが、特開平6−310740号公報で開示さ
れたように、良好な光電変換効率が得られる最適温度範
囲は200〜300℃であった。
In the method of manufacturing a solar cell in which the P + -type microcrystalline silicon layer is used as the back surface electric field layer 47, the back surface electrode is vapor-deposited on the P + -type microcrystalline silicon layer, and then heat treatment is performed. As disclosed in JP-A-6-310740, the optimum temperature range in which good photoelectric conversion efficiency is obtained was 200 to 300 ° C.

【0005】[0005]

【発明が解決しようとする課題】P型シリコン半導体基
板上に形成した高濃度にドーパントを含むP+ 型微結晶
シリコン層は、熱処理温度の上昇に伴い比抵抗値が小さ
くなって、裏面電界層としての品質が向上する。
In the P + type microcrystalline silicon layer formed on the P type silicon semiconductor substrate and containing a high concentration of dopant, the specific resistance value becomes smaller as the heat treatment temperature increases, and the back surface electric field layer is formed. As the quality is improved.

【0006】ところが、特開平6−310740号公報
で開示されたように、従来の太陽電池においては、30
0℃以上で熱処理を行うと光電変換効率が低下してしま
い、熱処理によるP+ 型微結晶シリコン層の品質向上が
十分に活用されていなかった。
However, as disclosed in Japanese Unexamined Patent Publication No. 6-310740, in the conventional solar cell, 30
When the heat treatment is performed at 0 ° C. or higher, the photoelectric conversion efficiency is reduced, and the quality improvement of the P + -type microcrystalline silicon layer due to the heat treatment has not been fully utilized.

【0007】この光電変換効率の低下の原因は、熱処理
によって、裏面電極と接する領域のP+ 型微結晶シリコ
ン層がP型シリコン半導体基板の裏面にキャリアの再結
合損失が大きい領域を形成して、裏面電界効果を低下さ
せることにあることが判明した。以下にその詳細を述べ
る。つまり、絶縁膜層によってP+ 型微結晶シリコン層
が裏面電極から離されたP型シリコン半導体基板裏面上
の領域での熱処理の影響と、P+ 型微結晶シリコン層が
裏面電極と接するP型シリコン半導体基板裏面上の領域
での熱処理の影響とは異なっている。まず、前者の領域
では、熱処理温度の上昇に伴いP+ 型微結晶シリコン層
の比抵抗値が小さくなり、P型シリコン半導体基板裏面
でのキャリア再結合損失を抑制する裏面電界効果が向上
する。一方、後者の領域では、熱処理によってP+ 型微
結晶シリコン層が裏面電極と反応して変質する。熱処理
温度が高いほど変質の程度が大きくなり、変質したP+
型微結晶シリコン層と接するP型シリコン半導体基板の
裏面でのキャリアの再結合損失を増大する。300℃以
上の熱処理では、前者の領域での裏面電界効果の向上
を、後者の領域での再結合損失の増大が打ち消すことに
よって、裏面電界効果を低下させることになるものと思
われる。
The cause of this decrease in photoelectric conversion efficiency is that the P + -type microcrystalline silicon layer in the region in contact with the back electrode forms a region on the back face of the P-type silicon semiconductor substrate where the carrier recombination loss is large by heat treatment. , It was found that it is to reduce the back surface field effect. The details will be described below. That is, the influence of heat treatment in the region on the back surface of the P-type silicon semiconductor substrate where the P + -type microcrystalline silicon layer is separated from the back electrode by the insulating film layer, and the P-type in which the P + -type microcrystalline silicon layer is in contact with the back electrode. This is different from the effect of heat treatment in the region on the back surface of the silicon semiconductor substrate. First, in the former region, the specific resistance value of the P + -type microcrystalline silicon layer decreases as the heat treatment temperature increases, and the back surface field effect of suppressing carrier recombination loss on the back surface of the P-type silicon semiconductor substrate is improved. On the other hand, in the latter region, the heat treatment causes the P + -type microcrystalline silicon layer to react with the back surface electrode and deteriorate. The higher the heat treatment temperature, the greater the degree of alteration, and the altered P +
The recombination loss of carriers on the back surface of the P-type silicon semiconductor substrate in contact with the type microcrystalline silicon layer is increased. It is considered that the heat treatment at 300 ° C. or higher reduces the back surface field effect by canceling the increase in the back surface field effect in the former area and the increase in the recombination loss in the latter area.

【0008】そこで、本発明の目的は、300℃以上の
高温での熱処理によっても、裏面電界効果が向上して、
高い光電変換効率が得られる太陽電池とその製造方法を
提供することにある。
Therefore, the object of the present invention is to improve the back surface field effect even by heat treatment at a high temperature of 300 ° C. or higher,
It is intended to provide a solar cell that can obtain high photoelectric conversion efficiency and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の太陽電池は、光
入射側の第1導電型のシリコン半導体基板上に第2導電
型のシリコン半導体層が設けられ、光入射側と反対側の
上記シリコン半導体基板上に第1絶縁層が所定領域のみ
に設けられ、上記シリコン半導体基板より高濃度の第1
導電型の微結晶シリコン半導体層が上記所定領域を覆う
ように設けられ、上記所定領域に対応する開口部を有す
る第2絶縁層が上記微結晶シリコン半導体層上に設けら
れ、裏面電極が上記開口部を覆うように設けられ上記微
結晶シリコン半導体層と導通することを特徴とする。
In the solar cell of the present invention, a second-conductivity-type silicon semiconductor layer is provided on the first-conductivity-type silicon semiconductor substrate on the light-incident side, and the second-conductivity-type silicon semiconductor layer is provided on the opposite side to the light-incident side. The first insulating layer is provided only on a predetermined region on the silicon semiconductor substrate, and the first insulating layer has a concentration higher than that of the silicon semiconductor substrate.
A conductive type microcrystalline silicon semiconductor layer is provided so as to cover the predetermined region, a second insulating layer having an opening corresponding to the predetermined region is provided on the microcrystalline silicon semiconductor layer, and a back electrode is formed in the opening. It is provided so as to cover the portion and is electrically connected to the microcrystalline silicon semiconductor layer.

【0010】つまり、裏面電極と接続される領域の微結
晶シリコン半導体層は、第1絶縁層によってシリコン半
導体基板と離れているため、熱処理により変質してもシ
リコン半導体基板の裏面には直接影響を与えない。すな
わち、熱処理によって裏面電極と接する領域の微結晶シ
リコン半導体層がシリコン半導体基板の裏面にキャリア
の再結合損失が大きい領域を形成しない。
That is, since the microcrystalline silicon semiconductor layer in the region connected to the back surface electrode is separated from the silicon semiconductor substrate by the first insulating layer, even if it is deteriorated by heat treatment, the back surface of the silicon semiconductor substrate is not directly affected. Do not give. That is, the heat treatment does not form an area where the recombination loss of carriers is large in the back surface of the silicon semiconductor substrate in the microcrystalline silicon semiconductor layer in the area in contact with the back electrode.

【0011】また、第1導電型であって上記微結晶シリ
コン半導体層より低抵抗の層が、上記開口部に対応して
上記微結晶シリコン半導体層に設けられると共に上記裏
面電極に接続されていることを特徴とする。
A layer of the first conductivity type having a resistance lower than that of the microcrystalline silicon semiconductor layer is provided in the microcrystalline silicon semiconductor layer corresponding to the opening and is connected to the back electrode. It is characterized by

【0012】つまり、上記微結晶シリコン半導体層を介
して取り出す電流が開口部に集中しても、第1導電型の
低抵抗の層を設けているため、太陽電池の曲線因子の低
下が抑制され、さらに光電変換効率を高めることができ
る。
That is, even if the current taken out through the microcrystalline silicon semiconductor layer is concentrated in the opening, the reduction of the fill factor of the solar cell is suppressed because the low resistance layer of the first conductivity type is provided. Moreover, the photoelectric conversion efficiency can be further increased.

【0013】また、第1絶縁層が、酸化シリコン膜であ
ることを特徴とする。
The first insulating layer is a silicon oxide film.

【0014】つまり、第1絶縁層はパッシベーション効
果の高い酸化シリコン膜で形成されることにより、シリ
コン半導体基板の絶縁層との界面でのキャリアの再結合
損失を抑える事ができ、製造工程での整合性もよい。な
お、第1絶縁膜に窒化シリコン膜を用いることもでき
る。
That is, since the first insulating layer is formed of a silicon oxide film having a high passivation effect, it is possible to suppress the recombination loss of carriers at the interface with the insulating layer of the silicon semiconductor substrate, and it is possible to suppress the recombination loss. Good consistency. Note that a silicon nitride film can be used as the first insulating film.

【0015】本発明の太陽電池の製造方法は、第1導電
型のシリコン半導体基板の一方面上に第2導電型のシリ
コン半導体層を形成する工程と、上記シリコン半導体基
板の他方面上の所定領域のみに第1絶縁層を形成する工
程と、上記所定領域を覆うように上記シリコン半導体基
板より高濃度の第1導電型微結晶シリコン半導体層を形
成する工程と、上記微結晶シリコン半導体層上に第2絶
縁層を形成する工程と、上記所定領域に対応して第2絶
縁層に開口部を形成する工程と、上記開口部を覆うよう
に裏面電極を形成して上記第1導電型微結晶シリコン半
導体層と接続する工程と、裏面電極形成後に300〜4
00℃の熱処理を行う工程と、を含むことを特徴とす
る。
A method of manufacturing a solar cell according to the present invention comprises a step of forming a second conductivity type silicon semiconductor layer on one surface of a first conductivity type silicon semiconductor substrate, and a predetermined step on the other surface of the silicon semiconductor substrate. Forming a first insulating layer only on the region; forming a first conductive type microcrystalline silicon semiconductor layer having a higher concentration than the silicon semiconductor substrate so as to cover the predetermined region; and on the microcrystalline silicon semiconductor layer. A step of forming a second insulating layer on the first insulating layer, a step of forming an opening in the second insulating layer corresponding to the predetermined region, and forming a back electrode to cover the opening to form the first conductive type fine layer. Step of connecting to the crystalline silicon semiconductor layer and 300 to 4 after forming the back surface electrode
And a step of performing heat treatment at 00 ° C.

【0016】本発明の太陽電池の製造方法によれば、熱
処理温度を上昇させることができ、第1絶縁層によって
裏面電極と離された所定領域上の周辺の微結晶シリコン
半導体層の品質向上によって、裏面電界効果を高める事
ができる。
According to the method of manufacturing a solar cell of the present invention, the heat treatment temperature can be raised, and the quality of the peripheral microcrystalline silicon semiconductor layer on a predetermined region separated from the back electrode by the first insulating layer can be improved. The back surface field effect can be enhanced.

【0017】さらに、本発明の太陽電池の製造方法は、
第1導電型のシリコン半導体基板の一方面上に第2導電
型のシリコン半導体層を形成する工程と、上記シリコン
半導体基板の他方面上の所定領域のみに第1絶縁層を形
成する工程と、上記所定領域を覆うように上記シリコン
半導体基板より高濃度の第1導電型微結晶シリコン半導
体層を形成する工程と、上記微結晶シリコン半導体層上
に第2絶縁層を形成する工程と、上記所定領域に対応し
て第2絶縁層に開口部を形成する工程と、第1導電型で
あって上記微結晶シリコン半導体層より低抵抗の層を上
記微結晶シリコン半導体層に上記開口部に対応させて形
成する工程と、上記開口部を覆うように裏面電極を形成
して上記低抵抗の層と接続する工程と、裏面電極形成後
に300〜400℃の熱処理を行う工程と、を含むこと
を特徴とする。
Furthermore, the method of manufacturing the solar cell of the present invention comprises:
A step of forming a second conductivity type silicon semiconductor layer on one surface of the first conductivity type silicon semiconductor substrate, and a step of forming a first insulating layer only in a predetermined region on the other surface of the silicon semiconductor substrate, Forming a first conductive type microcrystalline silicon semiconductor layer having a higher concentration than the silicon semiconductor substrate so as to cover the predetermined region; forming a second insulating layer on the microcrystalline silicon semiconductor layer; A step of forming an opening in the second insulating layer corresponding to the region; and a layer of the first conductivity type having a resistance lower than that of the microcrystalline silicon semiconductor layer is caused to correspond to the opening in the microcrystalline silicon semiconductor layer. And a step of forming a back surface electrode so as to cover the opening and connecting to the low resistance layer, and a step of performing heat treatment at 300 to 400 ° C. after forming the back surface electrode. And

【0018】本発明の太陽電池の製造方法によれば、熱
処理温度を上昇させることができ、第1絶縁層によって
裏面電極と離された所定領域上の周辺の微結晶シリコン
半導体層の品質向上によって、裏面電界効果を高める事
ができる上に、開口部の抵抗を低くできるので、太陽電
池の曲線因子の低下を抑制できる。
According to the method of manufacturing a solar cell of the present invention, the heat treatment temperature can be raised, and the quality of the peripheral microcrystalline silicon semiconductor layer on the predetermined region separated from the back electrode by the first insulating layer can be improved. Since the back surface field effect can be enhanced and the resistance of the opening can be reduced, it is possible to suppress the reduction of the fill factor of the solar cell.

【0019】[0019]

【発明の実施の形態】本発明に係る太陽電池とその製造
方法を実施例に基づき以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A solar cell according to the present invention and a method for manufacturing the same will be described below based on Examples.

【0020】図1に、本発明の実施例に係る太陽電池の
断面構造を示す。ここでP型シリコン半導体基板11の
光入射面側にN型シリコン半導体層12が形成されてい
る。N型シリコン半導体層12の表面は、入射光の反射
を低減するために凹凸にされている。N型シリコン半導
体層12はシリコン酸化膜層13によって覆われてお
り、シリコン酸化膜層13は反射防止膜層14によって
覆われている。光照射により発生した表面からの電流
は、シリコン酸化膜層13と反射防止膜層14を貫通し
てN型シリコン半導体層12に接続されたグリッド電極
15を介して取り出される。P型シリコン半導体基板1
1の光入射面側と反対側の裏面上には、部分的にシリコ
ン酸化膜16が形成されている。P型シリコン半導体基
板11とシリコン酸化膜16を覆うように、基板と同じ
P型の不純物が高濃度に添加された裏面電界層を形成す
るP+ 型微結晶シリコン層17が形成されている。P+
型微結晶シリコン層17は絶縁膜層18によって覆われ
ており、絶縁膜層18は裏面電極19によって覆われて
いる。裏面電極19は、シリコン酸化膜16が形成され
ている領域20の内部に設けられ絶縁膜層18の無い開
口部21でP+ 型微結晶シリコン層17と接続されてい
る。裏面からの電流はこの裏面電極19を介して取り出
される。
FIG. 1 shows a sectional structure of a solar cell according to an embodiment of the present invention. Here, the N-type silicon semiconductor layer 12 is formed on the light incident surface side of the P-type silicon semiconductor substrate 11. The surface of the N-type silicon semiconductor layer 12 is made uneven so as to reduce reflection of incident light. The N-type silicon semiconductor layer 12 is covered with a silicon oxide film layer 13, and the silicon oxide film layer 13 is covered with an antireflection film layer 14. The current generated from the surface by the light irradiation is taken out through the grid electrode 15 which penetrates the silicon oxide film layer 13 and the antireflection film layer 14 and is connected to the N-type silicon semiconductor layer 12. P-type silicon semiconductor substrate 1
A silicon oxide film 16 is partially formed on the back surface opposite to the light incident surface side of 1. A P + -type microcrystalline silicon layer 17 is formed so as to cover the P-type silicon semiconductor substrate 11 and the silicon oxide film 16 and form a back surface electric field layer in which the same P-type impurities as the substrate are added at a high concentration. P +
The microcrystalline silicon layer 17 is covered with an insulating film layer 18, and the insulating film layer 18 is covered with a back surface electrode 19. The back electrode 19 is connected to the P + -type microcrystalline silicon layer 17 through an opening 21 provided inside the region 20 where the silicon oxide film 16 is formed and having no insulating film layer 18. The current from the back surface is taken out through the back surface electrode 19.

【0021】次に、上記太陽電池の製造方法について、
図2に基づき説明する。図2は、上記太陽電池の製造フ
ローを示す図である。
Next, with respect to the method for manufacturing the above solar cell,
A description will be given based on FIG. FIG. 2 is a diagram showing a manufacturing flow of the solar cell.

【0022】まず、単結晶のP型シリコン半導体基板1
1(100mmφ,300μm厚、比抵抗:数Ω−c
m)を洗浄した後、表面が凹凸になるように異方性エッ
チングを行った(ステップS1)。ここで、単結晶のP
型シリコン半導体基板の替わりに、多結晶のP型シリコ
ン半導体基板を用いることもできる。この場合の表面凹
凸形成は、レーザを用いて溝を掘ったり、機械的に溝を
掘る方法により行う。
First, a single crystal P-type silicon semiconductor substrate 1
1 (100 mmφ, 300 μm thickness, specific resistance: several Ω-c
After cleaning m), anisotropic etching was performed so that the surface becomes uneven (step S1). Where single crystal P
Instead of the type silicon semiconductor substrate, a polycrystalline P type silicon semiconductor substrate can also be used. In this case, the surface unevenness is formed by digging a groove with a laser or by mechanically digging a groove.

【0023】次に、オキシ塩化燐(POCl3) を用い
た気相拡散によって燐(P)をP型シリコン半導体基板
11の表面に拡散してN型シリコン半導体層12を形成
しPN接合を形成した(ステップS2)。続いて、光入
射面と反対側のP型シリコン半導体基板11の裏面側を
硝酸とフッ酸の混合液を用いてエッチングして、裏面側
に形成されているN型シリコン半導体層12を除去した
(ステップS3)。続いて、熱酸化により入射面側のシ
リコン酸化膜層13と裏面側全面のシリコン酸化膜16
とを同時に形成した(ステップS4)。さらに、光入射
側に窒化シリコン膜からなる反射防止膜層14をプラズ
マCVD法により形成した。
Next, phosphorus (P) is diffused on the surface of the P-type silicon semiconductor substrate 11 by vapor phase diffusion using phosphorus oxychloride (POCl 3 ) to form an N-type silicon semiconductor layer 12 and form a PN junction. (Step S2). Then, the back surface side of the P-type silicon semiconductor substrate 11 opposite to the light incident surface was etched using a mixed solution of nitric acid and hydrofluoric acid to remove the N-type silicon semiconductor layer 12 formed on the back surface side. (Step S3). Subsequently, the silicon oxide film layer 13 on the incident surface side and the silicon oxide film 16 on the entire back surface side are thermally oxidized.
And were simultaneously formed (step S4). Further, an antireflection film layer 14 made of a silicon nitride film was formed on the light incident side by a plasma CVD method.

【0024】次に、フォトエッチング法を用いて、裏面
側のシリコン酸化膜16のパターニングを行い、後にP
+ 型微結晶シリコン層17と裏面電極19とが接続され
る予定の開口部21を含む領域20にシリコン酸化膜1
6を形成した(ステップS5)。領域20に形成された
シリコン酸化膜16は、P型シリコン半導体基板11と
後に形成されるP+ 型微結晶シリコン層17とを部分的
に分離する絶縁層となり、領域20のP型シリコン半導
体基板11の絶縁層の再結合損失を低減して、領域20
以外のP+ 型微結晶シリコン層17とP型シリコン半導
体基板11の界面での裏面電界効果を高める働きに優れ
ており、最適である。
Next, the silicon oxide film 16 on the back surface side is patterned by using a photo-etching method, and then P
The silicon oxide film 1 is formed in the region 20 including the opening 21 where the + type microcrystalline silicon layer 17 and the back surface electrode 19 are to be connected.
6 was formed (step S5). The silicon oxide film 16 formed in the region 20 serves as an insulating layer for partially separating the P-type silicon semiconductor substrate 11 and the P + -type microcrystalline silicon layer 17 to be formed later, and the P-type silicon semiconductor substrate in the region 20 is formed. 11 to reduce the recombination loss of the insulating layer,
Other than the above, it has an excellent function of enhancing the back surface field effect at the interface between the P + type microcrystalline silicon layer 17 and the P type silicon semiconductor substrate 11, and is optimal.

【0025】次に、プラズマCVD法により、P+ 型微
結晶シリコン層17を膜厚200nmでP型シリコン半
導体基板11の裏面とシリコン酸化膜層16とを覆って
形成した(ステップS6)。上記プラズマCVD法によ
るP+ 型微結晶シリコン層17の形成条件として、例え
ば、ガス種はSiH4 (またはSi26)とB26の混
合ガス、ガス流量比はH2/SiH4=150、B26
SiH4=0.01、ガス圧力は20Pa、基板温度は
150℃、RFパワーは100W(13.56MHz)
である。
Next, a P + type microcrystalline silicon layer 17 having a film thickness of 200 nm was formed by plasma CVD so as to cover the back surface of the P type silicon semiconductor substrate 11 and the silicon oxide film layer 16 (step S6). As conditions for forming the P + -type microcrystalline silicon layer 17 by the plasma CVD method, for example, the gas species is a mixed gas of SiH 4 (or Si 2 H 6 ) and B 2 H 6 , and the gas flow rate ratio is H 2 / SiH 4. = 150, B 2 H 6 /
SiH 4 = 0.01, gas pressure 20 Pa, substrate temperature 150 ° C., RF power 100 W (13.56 MHz)
It is.

【0026】次に、プラズマCVD法により、窒化シリ
コン膜からなる絶縁膜層18を膜厚200nmでP+
微結晶シリコン層17上に形成する(ステップS7)。
続いて、フォトエッチング法を用いて、絶縁膜層18の
パターニングを行い(ステップS8)、微結晶シリコン
層17と裏面電極19が接続される開口部21を開口し
てから、真空蒸着法でAlを裏面全面に蒸着し、裏面電
極19を形成する(ステップS9)。
Next, the insulating film layer 18 made of a silicon nitride film is formed on the P + -type microcrystalline silicon layer 17 with a film thickness of 200 nm by the plasma CVD method (step S7).
Subsequently, the insulating film layer 18 is patterned by using a photo-etching method (step S8), an opening portion 21 for connecting the microcrystalline silicon layer 17 and the back surface electrode 19 is opened, and then Al is formed by a vacuum evaporation method. Is vapor-deposited on the entire back surface to form a back surface electrode 19 (step S9).

【0027】次に、フォトエッチング法を用いて光入射
側のシリコン酸化膜層13及び反射防止膜層14を開口
して、Ti,Pd,Agの順に金属を蒸着により堆積し
て、リフトオフ法により、グリッド電極15を形成する
(ステップS10)。
Next, the photo-etching method is used to open the silicon oxide film layer 13 and the antireflection film layer 14 on the light incident side, a metal is deposited in order of Ti, Pd, and Ag by vapor deposition, and the lift-off method is used. , The grid electrode 15 is formed (step S10).

【0028】最後に、水素(H2) ガス雰囲気中で熱処
理を行い(ステップS11)、太陽電池は完成する。本
実施例においては熱処理による太陽電池の特性変化を調
べるため、200℃,300℃,400℃,500℃の
4通りの温度で、各々10分間の熱処理を行った。雰囲
気は、窒素(N2)ガス、水素(H2)ガス、アルゴン
(Ar)ガスあるいはこれらの混合ガスが適当である。
Finally, heat treatment is performed in a hydrogen (H 2 ) gas atmosphere (step S11) to complete the solar cell. In this example, in order to examine the characteristic change of the solar cell due to the heat treatment, heat treatment was performed for 10 minutes at each of four temperatures of 200 ° C, 300 ° C, 400 ° C and 500 ° C. The atmosphere is preferably nitrogen (N 2 ) gas, hydrogen (H 2 ) gas, argon (Ar) gas or a mixed gas thereof.

【0029】上記製造方法により作製した本発明の太陽
電池と、図4に示した従来構造の太陽電池(構造上、裏
面のシリコン酸化膜がない点と、熱処理温度を250℃
とした点が異なり、他の製造条件が本発明と同じ)と
を、AM1.5のスペクトルで100mW/cm2 の光
のもとで電流―電圧特性を測定したところ、本発明の太
陽電池は300℃と400℃で熱処理したものが、従来
の太陽電池より高い光電変換効率が得られた。また、図
3には、400℃で熱処理した本発明の太陽電池の内部
収集効率(実線)と、H2 ガス中で250℃、10分の
熱処理をした図4に示した従来の太陽電池の内部収集効
率(破線)とを比較して示す。本発明の太陽電池は、裏
面電界効果の向上により波長1000nm以上の長波長
の光が有効に光電変換されていることが判る。なお、内
部収集効率は、短絡状態の太陽電池で光電変換されて出
力される短絡電流について、照射光の波長毎に吸収した
フォトン数に対して出力されるキャリア数(出力電流を
単位電荷で割った値)の比率を示す。
The solar cell of the present invention manufactured by the above manufacturing method and the solar cell of the conventional structure shown in FIG. 4 (the structure has no silicon oxide film on the back surface, and the heat treatment temperature is 250 ° C.
And other manufacturing conditions are the same as those of the present invention), and the current-voltage characteristics were measured under the light of 100 mW / cm 2 in the spectrum of AM1.5. The ones heat-treated at 300 ° C. and 400 ° C. had higher photoelectric conversion efficiency than the conventional solar cells. 3 shows the internal collection efficiency (solid line) of the solar cell of the present invention heat-treated at 400 ° C., and the conventional solar cell shown in FIG. 4 heat-treated at 250 ° C. for 10 minutes in H 2 gas. The internal collection efficiency (broken line) is shown for comparison. It can be seen that the solar cell of the present invention effectively photoelectrically converts light having a long wavelength of 1000 nm or more due to the improvement of the back surface field effect. The internal collection efficiency is defined as the number of carriers output (the output current divided by the unit charge) with respect to the number of photons absorbed for each wavelength of the irradiation light in the short-circuit current photoelectrically converted and output by the solar cell in the short-circuited state. Value).

【0030】図5に、本発明の他の実施例に係る太陽電
池の断面構造を示す。図1と同一部材には同一符号を付
し、説明は省略する。図1の太陽電池と異なる点は、P
+ 型微結晶シリコン層17内で開口部21近傍に、P+
型微結晶シリコン層17よりも低抵抗の層22が形成さ
れており、低抵抗の層22は裏面金属19に電気的に接
続されている。
FIG. 5 shows a sectional structure of a solar cell according to another embodiment of the present invention. The same members as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The difference from the solar cell of FIG. 1 is P
In the + type microcrystalline silicon layer 17, P + is formed in the vicinity of the opening 21.
A layer 22 having a lower resistance than the type microcrystalline silicon layer 17 is formed, and the low resistance layer 22 is electrically connected to the back surface metal 19.

【0031】次に、上記太陽電池の製造方法は、図2に
示した製造フローにおいて、ステップS8とステップS
9との間にさらに別の工程を導入したものである。つま
り、開口部21を形成した後に、P+ 型微結晶シリコン
層17の開口部21に、レーザ光を照射することによ
り、その部分をポリシリコン化することにより、P+
ポリシリコンの低抵抗の層22を得たものである。ここ
で、低抵抗の層22を形成するのにレーザ光を用いてい
るので、フォトエッチ工程が不要で、工程が簡略化で
き、コストを下げることできる。レーザ光としては、A
rFエキシマレーザ(波長:195nm)、KrFエキ
シマレーザ(波長:248nm)、XeClエキシマレ
ーザ(波長:308nm)等が使用できる。照射レーザ
光量は、500mJ/cm2としたが、これに限られる
ものではない。なお、レーザ光を照射する際に、光量を
少なくして、低抵抗の層22を、P+型微結晶シリコン
層としてもよい。
Next, in the manufacturing method of the above-mentioned solar cell, in the manufacturing flow shown in FIG. 2, step S8 and step S8 are performed.
It is the one in which another step is introduced between the first and second steps. In other words, after the opening 21 is formed, the opening 21 of the P + -type microcrystalline silicon layer 17 is irradiated with a laser beam to convert the portion into polysilicon, thereby reducing the resistance of the P + -type polysilicon. The layer 22 of is obtained. Here, since laser light is used to form the low-resistance layer 22, a photo-etching step is not necessary, the steps can be simplified, and the cost can be reduced. The laser light is A
An rF excimer laser (wavelength: 195 nm), a KrF excimer laser (wavelength: 248 nm), a XeCl excimer laser (wavelength: 308 nm), or the like can be used. The irradiation laser light amount was set to 500 mJ / cm 2 , but it is not limited to this. Note that when the laser light is emitted, the light amount may be reduced and the low-resistance layer 22 may be a P + -type microcrystalline silicon layer.

【0032】また、レーザ光を照射する雰囲気に、3塩
化ボロン(BCl3)、トリメチルボロン(B(CH3
3)、ジボラン等のP型のドーパントガスを加えておけ
ば、より低抵抗の層22が得られ、正孔を効率よく導出
することができる。
Further, in the atmosphere for irradiating the laser beam, boron trichloride (BCl 3 ), trimethylboron (B (CH 3 ))
3 ), if a P-type dopant gas such as diborane is added, a layer 22 having a lower resistance can be obtained, and holes can be efficiently led out.

【0033】なお、レーザ光を絶縁膜層18上からP+
型微結晶シリコン層17に照射して低抵抗の層22を形
成した後で開口部21を開口することも可能である。
The laser light is emitted from above the insulating film layer 18 to P +
It is also possible to form the low-resistance layer 22 by irradiating the type microcrystalline silicon layer 17 and then open the opening 21.

【0034】以上の実施例では、P型シリコン半導体基
板を用いた場合について説明したが、N型シリコン基板
を用いた場合にも適用できる。その場合、N型シリコン
基板の光入射側に拡散される不純物はP型のボロン
(B)などであり、裏面電界層である微結晶シリコン層
はN型の不純物を高濃度に添加されたものが用いられ
る。
In the above embodiments, the case of using the P-type silicon semiconductor substrate has been described, but the present invention can be applied to the case of using the N-type silicon substrate. In that case, the impurity diffused to the light incident side of the N-type silicon substrate is P-type boron (B) or the like, and the microcrystalline silicon layer which is the back surface electric field layer is a high-concentration N-type impurity. Is used.

【0035】[0035]

【発明の効果】本発明によれば、太陽電池の裏面電界効
果をより向上できるので、光電変換効率を高めることが
できる。
According to the present invention, the back surface field effect of the solar cell can be further improved, so that the photoelectric conversion efficiency can be increased.

【0036】また、太陽電池の曲線因子を向上できるの
で、さらに光電変換効率を高めることができる。
Further, since the fill factor of the solar cell can be improved, the photoelectric conversion efficiency can be further improved.

【0037】また、製造工程の熱処理を高温にできるた
め、製造工程上の熱処理マージンを増加させることがで
きる。
Since the heat treatment in the manufacturing process can be performed at a high temperature, the heat treatment margin in the manufacturing process can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の太陽電池の断面構造を示す図
である。
FIG. 1 is a diagram showing a cross-sectional structure of a solar cell according to an example of the present invention.

【図2】本発明の実施例の太陽電池の製造フローを示す
図である。
FIG. 2 is a diagram showing a manufacturing flow of a solar cell according to an example of the present invention.

【図3】本発明の太陽電池の内部収集効率の波長依存性
を示す図である。
FIG. 3 is a diagram showing wavelength dependence of internal collection efficiency of the solar cell of the present invention.

【図4】従来の太陽電池の断面構造を示す図である。FIG. 4 is a diagram showing a cross-sectional structure of a conventional solar cell.

【図5】本発明の他の実施例の太陽電池の断面構造を示
す図である。
FIG. 5 is a diagram showing a cross-sectional structure of a solar cell according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 P型シリコン半導体基板 12 N型シリコン半導体層 13 シリコン酸化膜層 14 反射防止膜層 15 グリッド電極 16 シリコン酸化膜 17 P+ 型微結晶シリコン層 18 絶縁膜層 19 裏面電極 20 シリコン酸化膜16が形成された領域 21 開口部 22 低抵抗の層11 P-type silicon semiconductor substrate 12 N-type silicon semiconductor layer 13 Silicon oxide film layer 14 Antireflection film layer 15 Grid electrode 16 Silicon oxide film 17 P + type microcrystalline silicon layer 18 Insulating film layer 19 Backside electrode 20 Silicon oxide film 16 Formed area 21 Opening 22 Low resistance layer

フロントページの続き (72)発明者 山嵜 一郎 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 小松 雄爾 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 南森 孝幸 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内Front page continuation (72) Inventor Ichiro Yamazaki, 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Co., Ltd. (72) Yuji Komatsu 22-22, Nagaike-cho, Abeno-ku, Osaka, Osaka Sharp Corporation (72) Inventor Takayuki Minamimori 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光入射側の第1導電型のシリコン半導体
基板上に第2導電型のシリコン半導体層が設けられ、 光入射側と反対側の上記シリコン半導体基板上に第1絶
縁層が所定領域のみに設けられ、 上記シリコン半導体基板より高濃度の第1導電型の微結
晶シリコン半導体層が上記所定領域を覆うように設けら
れ、 上記所定領域に対応する開口部を有する第2絶縁層が上
記微結晶シリコン半導体層上に設けられ、 裏面電極が上記開口部を覆うように設けられ上記微結晶
シリコン半導体層と導通することを特徴とする太陽電
池。
1. A second-conductivity-type silicon semiconductor layer is provided on a first-conductivity-type silicon semiconductor substrate on the light-incident side, and a first insulating layer is provided on the silicon-semiconductor substrate opposite to the light-incident side. A second insulating layer which is provided only in the region, is provided so as to cover the predetermined region with a first-conductivity-type microcrystalline silicon semiconductor layer having a higher concentration than the silicon semiconductor substrate, and has an opening corresponding to the predetermined region. A solar cell provided on the microcrystalline silicon semiconductor layer, wherein a back electrode is provided so as to cover the opening and electrically connected to the microcrystalline silicon semiconductor layer.
【請求項2】 第1導電型であって上記微結晶シリコン
半導体層より低抵抗の層が、上記開口部に対応して上記
微結晶シリコン半導体層に設けられると共に上記裏面電
極に接続されていることを特徴とする請求項1に記載の
太陽電池。
2. A layer of the first conductivity type having a resistance lower than that of the microcrystalline silicon semiconductor layer is provided in the microcrystalline silicon semiconductor layer corresponding to the opening and is connected to the back electrode. The solar cell according to claim 1, wherein the solar cell is a solar cell.
【請求項3】 第1絶縁層が、酸化シリコン膜、窒化シ
リコン膜のいづれかであることを特徴とする請求項1,
2に記載の太陽電池。
3. The first insulating layer is either a silicon oxide film or a silicon nitride film.
The solar cell according to 2.
【請求項4】 第1導電型のシリコン半導体基板の一方
面上に第2導電型のシリコン半導体層を形成する工程
と、 上記シリコン半導体基板の他方面上の所定領域のみに第
1絶縁層を形成する工程と、 上記所定領域を覆うように上記シリコン半導体基板より
高濃度の第1導電型微結晶シリコン半導体層を形成する
工程と、 上記微結晶シリコン半導体層上に第2絶縁層を形成する
工程と、 上記所定領域に対応して第2絶縁層に開口部を形成する
工程と、 上記開口部を覆うように裏面電極を形成して上記第1導
電型微結晶シリコン半導体層と接続する工程と、 裏面電極形成後に300〜400℃の熱処理を行う工程
と、を含むことを特徴とする太陽電池の製造方法。
4. A step of forming a second conductivity type silicon semiconductor layer on one surface of a first conductivity type silicon semiconductor substrate, and a step of forming a first insulating layer only in a predetermined region on the other surface of the silicon semiconductor substrate. Forming step, forming a first conductivity type microcrystalline silicon semiconductor layer having a higher concentration than the silicon semiconductor substrate so as to cover the predetermined region, and forming a second insulating layer on the microcrystalline silicon semiconductor layer A step of forming an opening in the second insulating layer corresponding to the predetermined region, and a step of forming a back surface electrode so as to cover the opening and connecting to the first conductivity type microcrystalline silicon semiconductor layer. And a step of performing a heat treatment at 300 to 400 ° C. after forming the back surface electrode, the method for producing a solar cell.
【請求項5】 第1導電型のシリコン半導体基板の一方
面上に第2導電型のシリコン半導体層を形成する工程
と、 上記シリコン半導体基板の他方面上の所定領域のみに第
1絶縁層を形成する工程と、 上記所定領域を覆うように上記シリコン半導体基板より
高濃度の第1導電型微結晶シリコン半導体層を形成する
工程と、 上記微結晶シリコン半導体層上に第2絶縁層を形成する
工程と、 上記所定領域に対応して第2絶縁層に開口部を形成する
工程と、 第1導電型であって上記微結晶シリコン半導体層より低
抵抗の層を上記微結晶シリコン半導体層に上記開口部に
対応させて形成する工程と、 上記開口部を覆うように裏面電極を形成して上記低抵抗
の層と接続する工程と、 裏面電極形成後に300〜400℃の熱処理を行う工程
と、を含むことを特徴とする太陽電池の製造方法。
5. A step of forming a second conductivity type silicon semiconductor layer on one surface of a first conductivity type silicon semiconductor substrate, and a step of forming a first insulating layer only on a predetermined region on the other surface of the silicon semiconductor substrate. Forming step, forming a first conductivity type microcrystalline silicon semiconductor layer having a higher concentration than the silicon semiconductor substrate so as to cover the predetermined region, and forming a second insulating layer on the microcrystalline silicon semiconductor layer A step of forming an opening in the second insulating layer corresponding to the predetermined region, and a layer of a first conductivity type having a resistance lower than that of the microcrystalline silicon semiconductor layer is formed on the microcrystalline silicon semiconductor layer. A step of forming corresponding to the opening, a step of forming a back surface electrode so as to cover the opening and connecting to the low resistance layer, and a step of performing heat treatment at 300 to 400 ° C. after forming the back surface electrode, Including Method of manufacturing a solar cell according to claim.
JP30725395A 1995-07-25 1995-11-27 Solar cell and method of manufacturing the same Expired - Fee Related JP3158028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30725395A JP3158028B2 (en) 1995-07-25 1995-11-27 Solar cell and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-188997 1995-07-25
JP18899795 1995-07-25
JP30725395A JP3158028B2 (en) 1995-07-25 1995-11-27 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0997916A true JPH0997916A (en) 1997-04-08
JP3158028B2 JP3158028B2 (en) 2001-04-23

Family

ID=26505259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30725395A Expired - Fee Related JP3158028B2 (en) 1995-07-25 1995-11-27 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3158028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100273A1 (en) 2003-05-09 2004-11-18 Shin-Etsu Handotai Co., Ltd. Solar cell and process for producing the same
EP2626914A2 (en) 2012-02-10 2013-08-14 Shin-Etsu Chemical Co., Ltd. Solar Cell and Method of Manufacturing the Same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100273A1 (en) 2003-05-09 2004-11-18 Shin-Etsu Handotai Co., Ltd. Solar cell and process for producing the same
EP1630873A1 (en) * 2003-05-09 2006-03-01 Shin-Etsu Handotai Company Limited Solar cell and process for producing the same
EP1630873A4 (en) * 2003-05-09 2007-03-14 Shinetsu Handotai Kk Solar cell and process for producing the same
AU2004237524B2 (en) * 2003-05-09 2009-09-17 Shin-Etsu Chemical Co., Ltd. Solar cell and process for producing the same
US8030223B2 (en) 2003-05-09 2011-10-04 Shin-Etsu Chemical Co., Ltd. Solar cell and method of fabricating the same
EP2626914A2 (en) 2012-02-10 2013-08-14 Shin-Etsu Chemical Co., Ltd. Solar Cell and Method of Manufacturing the Same
KR20130092494A (en) 2012-02-10 2013-08-20 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell and method of manufacturing the same
US9871156B2 (en) 2012-02-10 2018-01-16 Shin-Etsu Chemical Co., Ltd. Solar cell and method of manufacturing the same
EP3712968A1 (en) 2012-02-10 2020-09-23 Shin-Etsu Chemical Co., Ltd. Solar cell manufacturing method

Also Published As

Publication number Publication date
JP3158028B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
US11605750B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US9608131B2 (en) Solar cell having doped semiconductor heterojunction contacts
US8349644B2 (en) Mono-silicon solar cells
CA2181281C (en) Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
AU655092B2 (en) Method for manufacture of a solar cell and solar cell
KR101160112B1 (en) A fabricating method of buried contact solar cell
JP2002270879A (en) Semiconductor device
JP2931498B2 (en) Solar cell and method of manufacturing the same
US4781765A (en) Photovoltaic device
JPH0969643A (en) Solar battery and its manufacturing method
JPH0795603B2 (en) Photovoltaic device
JP3193287B2 (en) Solar cell
JP2003152205A (en) Photoelectric conversion element and its manufacturing method
JP2661676B2 (en) Solar cell
JP3158028B2 (en) Solar cell and method of manufacturing the same
JP3346907B2 (en) Solar cell and method of manufacturing the same
JP4441377B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH0823114A (en) Solar cell
JPH1041531A (en) Solar battery and its manufacture
US5242504A (en) Photovoltaic device and manufacturing method therefor
JP3459949B2 (en) Crystalline silicon solar cell and method of manufacturing the same
JPH09181343A (en) Photoelectric conversion device
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPH08111537A (en) Solar battery
JPH06283732A (en) Solar cell and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees