JPS5861681A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS5861681A
JPS5861681A JP56160577A JP16057781A JPS5861681A JP S5861681 A JPS5861681 A JP S5861681A JP 56160577 A JP56160577 A JP 56160577A JP 16057781 A JP16057781 A JP 16057781A JP S5861681 A JPS5861681 A JP S5861681A
Authority
JP
Japan
Prior art keywords
film
electron
substrate
solar cell
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160577A
Other languages
Japanese (ja)
Inventor
Masahide Sugano
菅野 雅秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56160577A priority Critical patent/JPS5861681A/en
Publication of JPS5861681A publication Critical patent/JPS5861681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To eliminate current leakage resulting from P-N junction and to obtain a large photo response characteristic by providing an oxide film between the semiconductor thin film and semiconductor substrate at the light sensible surface. CONSTITUTION:An oxide film 32 is formed on the P type single crystal Si substrate 1. The N type polycrystal Si film 42 is then formed over the layer 32. Thereafter the electrodes 3, 4 are formed on both front and rear sides. When the electron and hole pair excited and generated by the light beam within the substrate 1 moves in the direction to the film 32 by the diffusion, the hole receives a force in the direction as becoming far from the film 32 due to a bending of energy band in the vicinity of film 32, while electron receives a force in the direction as becoming near to the film 32. Therefore, the electron and hole are isolated and the hole remains in the substrate 1 while the electron moves to the film 32. The film 32 is very thin and the electron having reached the vicinity of film 32 passes easily through the film 32 and reaches the film 42. The electron and hole pair generated in the substrate 1 in the above process is converged as the carrier. The electron and hole pair generated in the film 42 is also converged as the carrier by the similar process.

Description

【発明の詳細な説明】 本発明は太陽電池に関するものである。[Detailed description of the invention] The present invention relates to solar cells.

太陽電池は、光を直接に電力へ変換しうるトランスジュ
ーサとして、石油などの化石エネルギに代るエネルギ源
の一つである太陽エネルギの利用の一翼を担う潜在的能
力を有するが、太陽電池製造に必要なエネルギをはじめ
、多くの資源が必要であり、したがって太陽電池の価格
も高いものとなっている0また、太陽電池の製造に、費
したエネルギを太陽電池による発電で得ようとするなら
ば、10年ないし20年という長い期間が必要であり、
2     − この期間は太陽電池の寿命に匹敵している。つまり、電
力源として見た場合、太陽電池は決して経済的でなかっ
たのである。
Solar cells, as transducers that can directly convert light into electricity, have the potential to play a role in the use of solar energy, which is an energy source that can replace fossil energy such as oil. Many resources are required, including the necessary energy, and therefore the price of solar cells is high.0Also, if you try to obtain the energy spent on manufacturing solar cells by generating electricity with solar cells, , it takes a long period of 10 to 20 years,
2 - This period is comparable to the lifetime of a solar cell. In other words, when viewed as a power source, solar cells were never economical.

この間頭を解決する一つの方法として、太陽電池の変換
効率を大きくすることが行なわれている。
One way to solve this problem is to increase the conversion efficiency of solar cells.

変換効率が大きければ、同じ太陽の光エネルギからよシ
多くの電力を発生でき、したがって電力から見た価格は
小さくなるわけである。
If the conversion efficiency is high, more electricity can be generated from the same amount of solar energy, and the price of electricity will therefore be lower.

変換効率を大きくするためには、基板中の少数キャリア
の寿命増長、光スペクトル応答の改善による出力電流の
増加が最も効果がある。
The most effective way to increase conversion efficiency is to increase the lifetime of minority carriers in the substrate and increase the output current by improving the optical spectrum response.

ここで従来の太陽電池について図を用いて説明を行うに
本発明に係る太陽電池は特に光スペクトル応答の改善を
目的としているので、従来の太陽電池の説明もこの点を
中心に行う。
Here, a conventional solar cell will be explained using figures. Since the solar cell according to the present invention is particularly aimed at improving the optical spectrum response, the explanation of the conventional solar cell will also be centered on this point.

第1図は従来用いられてきた一般的な太陽電池の断面斜
視図である。1はP形シリコン基板、2はn膨拡散層、
3は表面電極、4は裏面電極である。
FIG. 1 is a cross-sectional perspective view of a conventionally used general solar cell. 1 is a P-type silicon substrate, 2 is an n-swelled diffusion layer,
3 is a front electrode, and 4 is a back electrode.

光はn膨拡散層2のある面側よ逆入射し、n形拡散層2
及びp形シリコン基板1で吸収され、電子正孔対が生成
される。生成された電子正孔対の一部は再結合して消滅
し、電流を発生しないが、p形シリコン基板とn膨拡散
層との界面にあるpN接合まで電子正孔対が到達すれば
、電子と正孔が分離され、電流を発生する。以上は一般
的な光電流の発生過程であるO n膨拡散層2は、非常に不純物濃度が大きく、一般に結
晶欠陥も多い0したがってn膨拡散層2での少数キャリ
アの寿命は非常に短い。このために、n形拡散層中で発
生した電子正孔対は、あまり充電流生成に寄与しない。
The light is reversely incident on the side where the n-swelled diffusion layer 2 is located, and the light enters the n-type diffusion layer 2.
and is absorbed by the p-type silicon substrate 1, and electron-hole pairs are generated. Some of the generated electron-hole pairs recombine and disappear and no current is generated, but if the electron-hole pairs reach the pN junction at the interface between the p-type silicon substrate and the n-swelled diffusion layer, Electrons and holes are separated, generating an electric current. The above is a general photocurrent generation process. The n-swelled diffusion layer 2 has a very high impurity concentration and generally has many crystal defects. Therefore, the lifetime of minority carriers in the n-swelled diffusion layer 2 is very short. For this reason, the electron-hole pairs generated in the n-type diffusion layer do not contribute much to the generation of charge current.

このような理由により、n膨拡散層2の厚さはできる限
り簿くするのが、光スペクトル応答改善の良い方法であ
り、従来広く行なわれてきた。しかし、簿い拡散層を均
一に形成することは極めて困難であり、もし薄い拡散層
を均一に形成できたとしても、そのような簿い拡散層は
、表面電極3を形成する時に表面電極3が容易につきぬ
け、p形シリコン基板1とn膨拡散層2が短絡されてし
まう。したがって、従来の太陽電池では、n膨拡散層2
の厚さは2ミクロンないし0.5ミクロン程度にとどま
っており、これ以上溝くすることは不可能であった。
For these reasons, it is a good method to improve the optical spectrum response to reduce the thickness of the n-swelled diffusion layer 2 as much as possible, and this has been widely practiced in the past. However, it is extremely difficult to form a thin diffusion layer uniformly, and even if a thin diffusion layer can be formed uniformly, such a thin diffusion layer will be difficult to form when forming the surface electrode 3. easily penetrates, and the p-type silicon substrate 1 and the n-swelled diffusion layer 2 are short-circuited. Therefore, in the conventional solar cell, the n-swelled diffusion layer 2
The thickness of the grooves remained at about 2 microns to 0.5 microns, and it was impossible to make them more grooved.

簿い拡散層を均一に形成するという点からは、第2図に
示す方法も行なわれている。第2図はその構造断面図で
あり、12はn形エピタキシャル層である。尚、第1図
に示した従来の太陽電池と同一の構成要素には、同一の
番号を付しである0第2図に示した太陽電池の特徴は、
p形シリコン基板1上にn形エピタキシャル層12を形
成して7)N接合を形成していることである0均一なエ
ピタキシャル層は0.5ミクロン程度の厚さでも形成可
能であり、したがって第2図に示した太陽電池は、光ス
ペクトル応答の改善が期待できる0しかし、エピタキシ
ャル成長により形成しf?:、PNN接合リーク電流が
大きく、そのためにエピタキシャル層形成後、熱処理を
再度行うなど、PN接合のリーク電流を減じる過程を設
けなければならないという問題が発生する。また、表面
電極形成時のPN接合短絡の問題に対しては、第2図に
示した太陽電池は何らl解決の方法を提供していない。
From the point of view of uniformly forming a thin diffusion layer, the method shown in FIG. 2 is also used. FIG. 2 is a cross-sectional view of its structure, and 12 is an n-type epitaxial layer. The same components as those of the conventional solar cell shown in Fig. 1 are given the same numbers.The features of the solar cell shown in Fig. 2 are as follows.
An n-type epitaxial layer 12 is formed on a p-type silicon substrate 1 to form a 7) N junction.A uniform epitaxial layer can be formed with a thickness of about 0.5 microns, so The solar cell shown in Figure 2 is formed by epitaxial growth, which is expected to improve the optical spectral response. :, the PNN junction leakage current is large, which causes a problem that a process must be provided to reduce the leakage current of the PN junction, such as performing heat treatment again after forming the epitaxial layer. Furthermore, the solar cell shown in FIG. 2 does not provide any solution to the problem of PN junction short circuit during the formation of surface electrodes.

光スペクトル応答改善の方法の一つとして第3図に示す
ショットキ接合を用いた太陽電池もある。
As one method for improving optical spectral response, there is also a solar cell using a Schottky junction as shown in FIG.

第3図はその構造断面図であり、22はショットキ電極
である。また、第1図に示した太陽電池と同一の構成要
素には同一の番号を付しである。
FIG. 3 is a sectional view of its structure, and 22 is a Schottky electrode. Further, the same components as those of the solar cell shown in FIG. 1 are given the same numbers.

第3図において、ショットキ電極22は光を透過させな
ければならないため、簿く形成される。
In FIG. 3, since the Schottky electrode 22 must transmit light, it is formed sparingly.

しかし極端に簿くすると、膜の形成が困難となり、ショ
ットキ電極22の厚さは一定以上に簿くならない。した
がって、ショットキ電極22による光の反射は避けられ
ず、これによる光スペクトル応答の低下が発生する。
However, if the thickness is too small, it becomes difficult to form a film, and the thickness of the Schottky electrode 22 cannot exceed a certain level. Therefore, reflection of light by the Schottky electrode 22 is unavoidable, resulting in a decrease in optical spectrum response.

本発明は、このような従来の太陽電池の欠点を補う新規
な構造を有する太陽電池を提供することを目的とする。
An object of the present invention is to provide a solar cell having a novel structure that compensates for the drawbacks of such conventional solar cells.

即ち、光スペクトル応答、特に旬波長光の応答を大きく
し、しかもPN接合でのリーク電流がなく、さらには表
面電極形成時に発生しゃすいPN接合短絡の問題をも解
決した太陽電池を提供することを目的とするものである
That is, to provide a solar cell that increases the optical spectrum response, especially the response to light at the peak wavelength, has no leakage current at the PN junction, and also solves the problem of PN junction short circuit that easily occurs when forming surface electrodes. The purpose is to

第4図に、本発明に係る太陽電池の構造断面図を示す。FIG. 4 shows a structural sectional view of the solar cell according to the present invention.

図中32は酸化膜、42はn形多結晶シリコン膜(以後
、n−poly膜と略記する)である。第1図に示した
従来の太陽電池と同じ構成要素には、同じ番号を付しで
ある。第4図に示した太陽電池の動作の説明を容易にす
るため、エネルギバンド構造の概略を第6図に示す。5
oはフェルミ準位、51は電子正孔対、52は電子、5
3は正孔である。また第4図に示した本発明に係る太陽
電池の構成要素と同一部分には同じ番号を付した。
In the figure, 32 is an oxide film, and 42 is an n-type polycrystalline silicon film (hereinafter abbreviated as n-poly film). Components that are the same as those of the conventional solar cell shown in FIG. 1 are given the same numbers. In order to facilitate explanation of the operation of the solar cell shown in FIG. 4, an outline of the energy band structure is shown in FIG. 6. 5
o is the Fermi level, 51 is an electron-hole pair, 52 is an electron, 5
3 is a hole. Further, the same parts as those of the solar cell according to the present invention shown in FIG. 4 are given the same numbers.

第4図に示した太陽電池の製造は、例えば次のようにす
る。即ち、約10・cmO比抵抗のp形単結晶シリコン
基板を、酸化性雰囲気中で熱処理し、約30オングスト
ロームの酸化膜を形成する。これは、熱処理に用いる炉
の形状等の条件により、雰囲気の成分、熱処理温度が異
るが、例えば乾燥、酸素雰囲気中で600’C110分
の熱処理を行う。
The solar cell shown in FIG. 4 is manufactured, for example, as follows. That is, a p-type single crystal silicon substrate having a specific resistance of about 10 cmO is heat treated in an oxidizing atmosphere to form an oxide film of about 30 angstroms. Although the components of the atmosphere and the heat treatment temperature vary depending on the conditions such as the shape of the furnace used for the heat treatment, for example, the heat treatment is performed in a dry, oxygen atmosphere at 600°C for 110 minutes.

次に周知のCVD技術で比抵抗oO01Ω・e呪n形多
社晶シリコン、[を10ooオングストロームの厚さに
形成する。最後に、表裏両面に電極を形成して完成する
Next, a resistivity oO01Ω/e-type multilayer crystal silicon film with a thickness of 100 angstroms is formed using a well-known CVD technique. Finally, electrodes are formed on both the front and back sides to complete the process.

本発明における太陽電池は後述のように動作する。即ち
、P形シリコン基板1中に、光によって励起発生した電
子正孔対51が、酸化膜32の方向へ拡散により移動す
ると、酸化膜近傍のエネルギバンドの曲りにより、正孔
は酸化膜から遠ざかる方向に力を受け、電子は酸化膜3
2に近ずく方向に力を受ける0このため、電子正孔対は
分離され、正孔はP形シリコン基板中に残り、電子は酸
化膜32の方へ移動する。
The solar cell in the present invention operates as described below. That is, when electron-hole pairs 51 excited and generated by light move in the P-type silicon substrate 1 by diffusion toward the oxide film 32, the holes move away from the oxide film due to the bending of the energy band near the oxide film. The electrons receive a force in the direction of the oxide film 3
Therefore, the electron-hole pair is separated, the hole remains in the P-type silicon substrate, and the electron moves toward the oxide film 32.

酸化膜32は非常に薄く、その厚さは数十オングストロ
ームであるため、酸化膜32の近傍1/(J+]達した
電子52は、トンネル効果で容易に酸イし膜32を通過
し、n−poly膜42膜上2る。以上述べた過程でP
形シリコン基板1中に発生した電子正孔対がキャリアと
して収集される0またn−poly膜42中で発生した
電子圧(L対も前述した過程でキャリアとして収集され
る。
Since the oxide film 32 is very thin, with a thickness of several tens of angstroms, the electrons 52 that have reached the vicinity of 1/(J+) of the oxide film 32 easily pass through the oxide film 32 due to the tunnel effect, and become n -Poly film 42 on the film.In the process described above, P
The electron-hole pairs generated in the shaped silicon substrate 1 are collected as carriers, and the electron pressure (L pairs) generated in the n-poly film 42 are also collected as carriers in the process described above.

即ち、酸化膜32の近傍に達した正孔53は、トンネル
効果で酸化膜32を通過し、P形シリコン基板1中に達
するのである。
That is, the holes 53 that have reached the vicinity of the oxide film 32 pass through the oxide film 32 due to the tunnel effect and reach the inside of the P-type silicon substrate 1.

本発明に係る太陽電池の特徴は、酸化膜32の存在であ
り、また受光面がn−poly膜42膜上2な半導体簿
膜で構成されている七いうことである。
The solar cell according to the present invention is characterized by the presence of the oxide film 32, and that the light-receiving surface is composed of two semiconductor films on the n-poly film 42.

酸化膜32の存在により、第2図に示した太陽電池のよ
うな、P、N接合のリーク電流の心配はない。即ち、酸
化膜32の存在のため、第6図に示した本発明に係る太
陽電池にはPN接合は存在せず、PN接合に起因するリ
ーク電流はありえ々いのである。
Due to the presence of the oxide film 32, there is no need to worry about leakage current at the P and N junctions as in the solar cell shown in FIG. That is, due to the presence of the oxide film 32, there is no PN junction in the solar cell according to the present invention shown in FIG. 6, and leakage current due to the PN junction is likely to occur.

受光面が、n−poly膜42膜上2な半導体簿膜で構
成されると、n−poly膜42中でも電子正孔対を発
生させることができ、第3図に示したショットキ形の太
陽電池のような光の反射の問題はなくなる。また、n−
poly膜42膜上2一な簿い膜とすることは極めて容
易であり、現在のCDV技術で、0.1ミクロンの厚さ
に形成することも困難ではない。つまり第4図に示した
本発明の太陽電池は、短波長光に対する光スペクトル応
答を、第1図に示した従来の太陽電池に比べて大きくで
きるのである。
When the light-receiving surface is composed of two semiconductor films on the n-poly film 42, electron-hole pairs can be generated even in the n-poly film 42, and the Schottky solar cell shown in FIG. This eliminates the problem of light reflection. Also, n-
It is extremely easy to form a uniform thin film on the poly film 42, and it is not difficult to form it to a thickness of 0.1 micron using the current CDV technology. In other words, the solar cell of the present invention shown in FIG. 4 can have a larger optical spectrum response to short wavelength light than the conventional solar cell shown in FIG. 1.

また、表面電極形成時には、酸化膜32の存在により、
n−po17膜42とP形シリコン基板1とが短絡され
るのが防止できる。
Furthermore, when forming the surface electrode, due to the presence of the oxide film 32,
It is possible to prevent the n-po17 film 42 and the P-type silicon substrate 1 from being short-circuited.

以上述べてきたように、本発明に係る太陽電池は、極め
て簿くかつ均一な半導体簿膜を受光面とし1形成するこ
とを可能とすることで、特に短波長光に対する光スペク
トル応答を大きくし、しかもPN接合に起因するリーク
電流を々くす効果を有スルモのであるofだ、受光面の
半導体簿膜と半導体基板との間に酸化膜を設けることに
より、電極形成時に発生するPN接合短絡の問題をなく
す効果も有する0
As described above, the solar cell according to the present invention can increase the optical spectrum response particularly to short wavelength light by making it possible to form an extremely thin and uniform semiconductor film on the light receiving surface. Moreover, it has the effect of reducing leakage current caused by the PN junction. By providing an oxide film between the semiconductor substrate on the light-receiving surface and the semiconductor substrate, the PN junction short circuit that occurs during electrode formation can be reduced. It also has the effect of eliminating problems0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一般的な太陽電池の断面斜視図、第2図
はPN接合をエピタキシャル成長によって形成した太陽
電池の構造断面図、第3図はショットキ形の太陽電池の
構造断面図、第4図は本発明に係る太陽電池の構造断面
図、第5図は本発明に係る太陽電池のエネルギバンドを
示した概略図である。 1・・・・・・P形シリコン基板、32・・・・・・酸
化膜、42・・・・・・n形多結晶シリコン膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第4図 第5図
Fig. 1 is a cross-sectional perspective view of a conventional general solar cell, Fig. 2 is a structural cross-sectional view of a solar cell in which a PN junction is formed by epitaxial growth, Fig. 3 is a structural cross-sectional view of a Schottky solar cell, and Fig. 4 is a structural cross-sectional view of a solar cell with a PN junction formed by epitaxial growth. The figure is a cross-sectional view of the structure of the solar cell according to the present invention, and FIG. 5 is a schematic diagram showing the energy band of the solar cell according to the present invention. 1... P-type silicon substrate, 32... Oxide film, 42... N-type polycrystalline silicon film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] p又はnいずれか一方の導電形を有する半導体基板と、
前記の半導体基板上に形成された酸化膜と、前記の酸化
膜上に形成され、前記半導体基板とは逆の導電14.を
有する半導体簿膜とからなるととを特徴とする太陽電池
a semiconductor substrate having either p or n conductivity type;
an oxide film formed on the semiconductor substrate; and a conductive layer 14 formed on the oxide film and having a conductivity opposite to that of the semiconductor substrate. A solar cell characterized by comprising a semiconductor film having a
JP56160577A 1981-10-07 1981-10-07 Solar battery Pending JPS5861681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160577A JPS5861681A (en) 1981-10-07 1981-10-07 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160577A JPS5861681A (en) 1981-10-07 1981-10-07 Solar battery

Publications (1)

Publication Number Publication Date
JPS5861681A true JPS5861681A (en) 1983-04-12

Family

ID=15717967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160577A Pending JPS5861681A (en) 1981-10-07 1981-10-07 Solar battery

Country Status (1)

Country Link
JP (1) JPS5861681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656664A1 (en) * 1993-11-30 1995-06-07 Canon Kabushiki Kaisha Polycrystalline silicon photoelectric transducer and process for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656664A1 (en) * 1993-11-30 1995-06-07 Canon Kabushiki Kaisha Polycrystalline silicon photoelectric transducer and process for its production
US5575862A (en) * 1993-11-30 1996-11-19 Canon Kabushiki Kaisha Polycrystalline silicon photoelectric conversion device and process for its production

Similar Documents

Publication Publication Date Title
US4828628A (en) Solar cell
US5053083A (en) Bilevel contact solar cells
CN108666376B (en) P-type back contact solar cell and preparation method thereof
WO2002091482A2 (en) Silicon solar cell with germanium backside solar cell
JPS6215864A (en) Manufacture of solar cell
US4276137A (en) Control of surface recombination loss in solar cells
KR102547804B1 (en) Bifacial silicon solar cell and method for manufacturing the same
CN220543926U (en) Solar cell and photovoltaic module
US4160678A (en) Heterojunction solar cell
JP2007019259A (en) Solar cell and its manufacturing method
JP2661676B2 (en) Solar cell
US4525593A (en) Inverted, optically enhanced solar cell
JP3206350B2 (en) Solar cell
US20080092950A1 (en) Solar Cell Structure With Rear Contacts and Current Collection by Transistor Effect, and Procedure for its Manufacture
JPH01125988A (en) Solar cell element
JP3448098B2 (en) Crystalline silicon solar cells
JPS6111475B2 (en)
JPS5861681A (en) Solar battery
CN114744064A (en) Solar cell, production method and photovoltaic module
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
WO2022228342A1 (en) Contact structure applied to tunneling type solar cell, solar cell having contact structure and manufacturing method therefor
CN118507598B (en) Solar cell, manufacturing method thereof and photovoltaic module
CN220692036U (en) N-type contact passivation battery with local PN junction
JPH0521821A (en) Photoelectric converter
KR100965827B1 (en) A fabrication method of a solar cell and a solar cell fabricated thereby