JP2994735B2 - Solar cell - Google Patents
Solar cellInfo
- Publication number
- JP2994735B2 JP2994735B2 JP2326292A JP32629290A JP2994735B2 JP 2994735 B2 JP2994735 B2 JP 2994735B2 JP 2326292 A JP2326292 A JP 2326292A JP 32629290 A JP32629290 A JP 32629290A JP 2994735 B2 JP2994735 B2 JP 2994735B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- back surface
- solar cell
- layer
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims description 44
- 230000005684 electric field Effects 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 11
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 9
- 229910052990 silicon hydride Inorganic materials 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000005215 recombination Methods 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体太陽電池に関し、特に、太陽電池の光
電変換効率の改善に関するものである。Description: TECHNICAL FIELD The present invention relates to a semiconductor solar cell, and more particularly, to an improvement in the photoelectric conversion efficiency of a solar cell.
[従来の技術] 半導体太陽電池はp−n接合を利用したエネルギ変換
器である。その変換効率を高めるための1手段として、
半導体基板の光入射側と反対側の裏面に基板本体と同じ
導電型であって高い不純物濃度の裏面電界層(BSF層と
も呼ばれる)を形成し、裏面近傍で光生成されるキャリ
アを内部電界で効率的に収集する方法が知られている。[Prior Art] A semiconductor solar cell is an energy converter using a pn junction. As one means to increase the conversion efficiency,
A back surface electric field layer (also referred to as a BSF layer) of the same conductivity type as the substrate body and having a high impurity concentration is formed on the back surface opposite to the light incident side of the semiconductor substrate. Methods for efficiently collecting are known.
従来、この裏面電界層の形成には、アルミニウムペー
スト材料をシリコン基板の裏面に印刷した後に、約700
℃の温度で焼成して形成する方法が多用されている。ア
ルミニウムペーストから半導体基板内へのアルミニウム
の拡散によって裏面電界層を形成するとともに、同時に
アルミニウムの裏面電極も形成され得るのである。Conventionally, this backside electric field layer is formed by printing an aluminum paste material on the backside of a silicon substrate and then forming the backside electric field layer by about 700 mm.
A method of firing and forming at a temperature of ° C. is often used. The back surface electric field layer is formed by diffusion of aluminum from the aluminum paste into the semiconductor substrate, and at the same time, a back surface electrode of aluminum can be formed.
しかし、この方法は、高い変換効率が得られる薄型基
板であるたとえば200μm以下の厚さの基板を用いた場
合に適用すれば、基板の反りや割れを生じる。そこで、
薄型基板を用いる場合には三臭化ホウ素(BBr3)を用い
て熱拡散法で裏面電界層を形成する方法が提案されてい
る。However, if this method is applied to a case where a thin substrate that can obtain high conversion efficiency is used, for example, a substrate having a thickness of 200 μm or less, the substrate may be warped or cracked. Therefore,
When a thin substrate is used, a method of forming a back surface electric field layer by a thermal diffusion method using boron tribromide (BBr 3 ) has been proposed.
[発明が解決しようとする課題] これらの先行技術のいずれの場合においても、裏面電
界層の不純物濃度を高めれば高い内部電界強度が得られ
るが、裏面電界層の層質の低下が生じ、裏面電界層内で
のキャリアの再結合が多くなる。したがって、高濃度の
不純物の添加は、逆に光電変換効率の低下を招くという
課題がある。[Problems to be Solved by the Invention] In any of these prior arts, a high internal electric field strength can be obtained by increasing the impurity concentration of the back surface field layer, but the quality of the back surface field layer is deteriorated, and Carrier recombination in the electric field layer increases. Therefore, there is a problem that the addition of a high-concentration impurity causes a reduction in photoelectric conversion efficiency.
このような先行技術の課題に鑑み、本発明は裏面電界
層の層質を低下させることなく不純物濃度の高い裏面電
界層を形成することによって、裏面電界層内でのキャリ
アの再結合が少なくて光電変換効率の高い太陽電池を提
供することを目的としている。In view of such a problem of the prior art, the present invention forms a back surface electric layer having a high impurity concentration without deteriorating the layer quality of the back surface electric layer, thereby reducing carrier recombination in the back surface electric layer. An object is to provide a solar cell with high photoelectric conversion efficiency.
[課題を解決するための手段] 本発明による太陽電池は、第1導電型の半導体基板
と、その基板内において光入射側に形成された第2導電
型の半導体層と、基板の光入射側の反対側の裏面上に形
成されていて複数の開口部を有する絶縁層と、その絶縁
層上に形成されていて基板より高濃度の第1導電型不純
物を含んだ裏面電界層とを含むことを特徴としている。[Means for Solving the Problems] A solar cell according to the present invention includes a semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on a light incident side in the substrate, and a light incident side of the substrate. An insulating layer having a plurality of openings formed on the back surface opposite to the above, and a back surface electric field layer formed on the insulating layer and containing a first conductivity type impurity at a higher concentration than the substrate. It is characterized by.
[作用] 本発明による太陽電池においては、裏面電界層が絶縁
層の限定された複数の開口を介して基板に接続されてい
るので、その基板と裏面電界層との界面近傍におけるキ
ャリアの再結合を著しく減少させることができる。[Operation] In the solar cell according to the present invention, since the back surface field layer is connected to the substrate through the plurality of openings defined by the insulating layer, recombination of carriers near the interface between the substrate and the back surface field layer is performed. Can be significantly reduced.
[実施例] 第1A図は、本発明に関連する1つの参考例としての太
陽電池の概略的な断面図である。p型単結晶シリコン基
板25の光入射側にn型層24が形成されている。n型層24
の表面は、入射光の反射を低減するために、たとえばエ
ッチングなどによって凹凸にされている。n型層24はシ
リコン酸化膜23によって覆われており、シリコン酸化膜
23は反射防止膜22によって覆われている。電流は、シリ
コン酸化膜23と反射防止膜22を貫通してn型層24に接続
されたグリッド電極21を介して取出される。Example FIG. 1A is a schematic sectional view of a solar cell as one reference example related to the present invention. An n-type layer 24 is formed on the light incident side of a p-type single crystal silicon substrate 25. n-type layer 24
Is made uneven by, for example, etching to reduce the reflection of incident light. The n-type layer 24 is covered with the silicon oxide film 23,
23 is covered with an antireflection film 22. The current is extracted through a grid electrode 21 that penetrates through the silicon oxide film 23 and the antireflection film 22 and is connected to the n-type layer 24.
p型基板25の光入射側と反対側の裏面上には、同じp
型の不純物が高濃度に添加された微結晶混合質水素化シ
リコン膜からなる裏面電界層26が形成されている。裏面
電界層26は裏面金属電極27によって覆われている。微結
晶混合質水素化シリコン膜26は、プラズマ化学気相成長
法(プラズマCVD法)によって形成することができ、微
結晶と非晶質の混合した水素化シリコンからなってい
る。プラズマCVD法には、直流放電,ラジオ波(RF)放
電,マイクロ波放電およびこれらを組合わせた方法、さ
らにはマイクロ波を用いた電子サイクロトロン共鳴法な
どの方法を用いることができる。これらの製膜方法は周
知であって多くの文献が存在するので、ここでは説明を
省略する。On the back surface of the p-type substrate 25 opposite to the light incident side, the same p
A back surface electric field layer 26 made of a microcrystalline mixed silicon hydride film to which high-type impurities are added at a high concentration is formed. The back surface electric field layer 26 is covered by a back surface metal electrode 27. The microcrystalline mixed silicon hydride film 26 can be formed by a plasma chemical vapor deposition method (plasma CVD method), and is composed of mixed silicon hydride of microcrystal and amorphous. As the plasma CVD method, a direct current discharge, a radio wave (RF) discharge, a microwave discharge, a method combining these, and a method such as an electron cyclotron resonance method using a microwave can be used. Since these film forming methods are well known and there are many documents, description thereof is omitted here.
第1B図は、第1A図の太陽電池のn型層24,p型基板25お
よび裏面電界層26におけるエネルギバンド構造を拡大し
て示している。水平の一点鎖線Fは、フェルミエネルギ
レベルを表わしている。フェルミレベルFより上側の曲
線Cは導電帯の下限のエネルギレベルを表わし、下側の
曲線Vは価電子帯の上限のエネルギレベルを表わしてい
る。FIG. 1B shows an enlarged energy band structure in the n-type layer 24, the p-type substrate 25, and the back surface electric field layer 26 of the solar cell of FIG. 1A. The horizontal dashed-dotted line F represents the Fermi energy level. The curve C above the Fermi level F represents the lower energy level of the conduction band, and the lower curve V represents the upper energy level of the valence band.
微結晶混合質シリコン膜26はp型の不純物が高濃度に
添加されているので、p型基板25内において裏面電界層
26の近傍に強電界領域VGが形成される。この強電界領域
VGは、光電変換によって生じた空孔を効率的に裏面電界
層26内に引抜くように作用する。また、微結晶混合質水
素化シリコン膜26は、単結晶シリコン基板25より大きな
エネルギ禁制帯幅を有しているので基板25を透過してき
た光をほとんど吸収せず、裏面金属電極27で反射された
光が基板25内へ戻されるのを許容する。さらに、基板25
と裏面電界層26との界面において、導電帯Cに高い電位
障壁CBが形成されるので、その界面近傍における基板25
内の電子は裏面電界層26内への逆拡散が阻止され、裏面
電界層26内における正孔との再結合が低減される。Since the p-type impurity is added to the microcrystalline mixed silicon film 26 at a high concentration, the back surface electric field layer is formed in the p-type substrate 25.
A strong electric field region V G is formed in the vicinity of 26. This strong electric field area
V G acts pores generated by photoelectric conversion as efficiently pulled to the back surface field layer 26. In addition, the microcrystalline mixed silicon hydride film 26 has a larger energy bandgap than the single crystal silicon substrate 25, and therefore hardly absorbs light transmitted through the substrate 25, and is reflected by the back metal electrode 27. Allowed light to be returned into the substrate 25. In addition, the substrate 25
And at the interface between the back surface field layer 26, since the higher potential barrier C B to the conduction band C is formed, the substrate 25 at the vicinity of the interface
The electrons in the inside are prevented from back-diffusion into the back surface field layer 26, and recombination with holes in the back surface field layer 26 is reduced.
以上のように、微結晶混合質水素化シリコン膜の裏面
電界層26を用いることによって、裏面電界層26内での光
吸収損失が少なく、高濃度不純物添加に基づく層質の低
下による裏面電界層26内でのキャリアの再結合の増大を
伴うことなく強い内部電界を形成することができ、太陽
電池の光電変換効率を高めることができる。As described above, by using the back surface electric field layer 26 of the microcrystalline mixed silicon hydride film, light absorption loss in the back surface electric layer 26 is small, and the back surface electric layer A strong internal electric field can be formed without increasing the recombination of carriers in 26, and the photoelectric conversion efficiency of the solar cell can be increased.
第2図は、本発明の第1実施例による太陽電池を示す
断面図である。第2図の太陽電池は第1A図のものと類似
しているが、シリコン基板25の底面はシリコン酸化膜28
によって覆われている。シリコン酸化膜28には複数のド
ット状の開孔が開けられており、シリコン酸化膜28の底
面を覆うように形成された微結晶混合質水素化シリコン
膜の裏面電界層26はそれらの開孔を介して基板25に接続
されている。すなわち、第2図の太陽電池においては裏
面電界層26が限定された複数の開孔を介して基板25に接
続されているので、基板25と裏面電界層26との界面近傍
におけるキャリアの再結合を一層減少させることができ
る。FIG. 2 is a sectional view showing a solar cell according to the first embodiment of the present invention. The solar cell of FIG. 2 is similar to that of FIG. 1A, except that the bottom surface of the silicon substrate 25 is a silicon oxide film 28.
Covered by A plurality of dot-shaped openings are formed in the silicon oxide film 28, and the back surface field layer 26 of the microcrystalline mixed silicon hydride film formed so as to cover the bottom surface of the silicon oxide film 28 Is connected to the substrate 25 via the. That is, in the solar cell of FIG. 2, since the back surface field layer 26 is connected to the substrate 25 through a plurality of limited openings, carrier recombination near the interface between the substrate 25 and the back surface field layer 26 is performed. Can be further reduced.
第3図は、本発明に関連するもう1つの参考例として
の太陽電池を示す断面図である。第3図の太陽電池も第
1A図のものに類似しているが、p型シリコン基板25内に
おいてp型の裏面電界層26との界面近傍に高濃度のp型
層29が形成されている。このp型層29は、裏面電界層26
よりも低濃度であるが、基板25よりも高濃度の不純物を
含んでおり、裏面電界層26による強電界領域を基板25の
内部に向けて広げるように作用する。すなわち、第3図
の太陽電池においては、基板25の内部で裏面電界層26か
ら遠い位置にある正孔をも効率的に裏面電界層26内へ引
抜くことが可能であり、光電変換効率が高められる。FIG. 3 is a sectional view showing a solar cell as another reference example related to the present invention. The solar cell in Fig. 3
Although similar to that of FIG. 1A, a high concentration p-type layer 29 is formed in the p-type silicon substrate 25 near the interface with the p-type backside electric field layer 26. This p-type layer 29 is
Although it has a lower concentration than that of the substrate 25, it contains impurities at a higher concentration than the substrate 25, and acts to expand the strong electric field region of the back surface electric field layer 26 toward the inside of the substrate 25. That is, in the solar cell of FIG. 3, holes located far from the back surface field layer 26 inside the substrate 25 can be efficiently extracted into the back surface field layer 26, and the photoelectric conversion efficiency is reduced. Enhanced.
第4図は、本発明の第2実施例による太陽電池を示す
断面図である。第4図の太陽電池は第2図と第3図の太
陽電池の構造を兼ね備えており、裏面電界層26はシリコ
ン酸化膜28の複数の開孔を介して高濃度のp型層29に接
続されている。したがって、第4図の太陽電池は、第2
図と第3図太陽電池の光電変換特性を兼ね備えている。FIG. 4 is a sectional view showing a solar cell according to a second embodiment of the present invention. The solar cell of FIG. 4 has the structure of the solar cell of FIGS. 2 and 3, and the back surface electric field layer 26 is connected to the high concentration p-type layer 29 through a plurality of openings of the silicon oxide film 28. Have been. Therefore, the solar cell of FIG.
FIG. 3 and FIG. 3 have the photoelectric conversion characteristics of the solar cell.
第5図は、本発明の第3実施例による太陽電池を示す
断面図である。第5図の太陽電池は第4図のものに類似
しているが、高濃度のp型層29が酸化膜28の複数の開口
部付近のみに限定して形成されている。第5図の太陽電
池においては、基板25よりは少し層質が劣る高濃度のp
型層29の領域を必要以上に大きくせず、p型層29内での
キャリアの再結合を低減するように意図されている。FIG. 5 is a sectional view showing a solar cell according to a third embodiment of the present invention. The solar cell of FIG. 5 is similar to that of FIG. 4, except that a high-concentration p-type layer 29 is formed only in the vicinity of a plurality of openings of the oxide film. In the solar cell shown in FIG. 5, a high concentration p
It is intended to reduce the recombination of carriers in the p-type layer 29 without making the area of the type layer 29 unnecessarily large.
以上の実施例では、p型の単結晶シリコン基板を用い
た場合について説明したが、n型基板を用いた場合にも
本発明は同様に適用し得ることが理解されよう。その場
合、n型基板の光入射側の不純物層はp型であり、裏面
電界層である微結晶混合質水素化シリコン膜はn型の不
純物を高濃度に添加したものが用いられる。また、シリ
コン基板は単結晶に限らず、多結晶のシリコン基板を用
いることも可能である。In the above embodiment, the case where a p-type single crystal silicon substrate is used has been described. However, it will be understood that the present invention can be similarly applied to a case where an n-type substrate is used. In this case, the impurity layer on the light incident side of the n-type substrate is p-type, and the microcrystalline mixed silicon hydride film serving as the back surface electric field layer is formed by adding an n-type impurity at a high concentration. Further, the silicon substrate is not limited to a single crystal, and a polycrystalline silicon substrate can be used.
[発明の効果] 以上のように、本発明によれば、裏面電界層が絶縁層
の限定された複数の開口を介して基板に接続されている
ので、基板と裏面電界層との界面近傍におけるキャリア
の再結合を著しく減少させることができる。すなわち、
本発明によれば、光電変換効率の高い太陽電池を提供す
ることができる。[Effects of the Invention] As described above, according to the present invention, since the back surface electric field layer is connected to the substrate through the plurality of openings defined by the insulating layer, the vicinity of the interface between the substrate and the back surface electric field layer is reduced. Carrier recombination can be significantly reduced. That is,
According to the present invention, a solar cell having high photoelectric conversion efficiency can be provided.
第1A図は本発明に関連する1つの参考例としての太陽電
池の概略的な断面図である。 第1B図は、第1A図の太陽電池におけるエネルギバンド構
造の拡大図である。 第2図は、本発明の第1実施例による太陽電池の概略的
な断面図である。 第3図は、本発明に関連するもう1つの参考例としての
太陽電池の概略的な断面図である。 第4図は、本発明の第2実施例による太陽電池の概略的
な断面図である。 第5図は、本発明の第3実施例による太陽電池を示す概
略的な断面図である。 図において、21はグリッド電極、22は反射防止膜、23は
シリコン酸化膜、24はn型シリコン層、25はp型シリコ
ン基板、26はp型の微結晶混合質水素化シリコン膜、27
は裏面金属電極、28はシリコン酸化膜、そして、29は高
濃度のp型シリコン層を示す。 なお、各図において、同一符号は同一内容または相当部
分を示す。FIG. 1A is a schematic sectional view of a solar cell as one reference example related to the present invention. FIG. 1B is an enlarged view of the energy band structure in the solar cell of FIG. 1A. FIG. 2 is a schematic sectional view of a solar cell according to a first embodiment of the present invention. FIG. 3 is a schematic sectional view of a solar cell as another reference example related to the present invention. FIG. 4 is a schematic sectional view of a solar cell according to a second embodiment of the present invention. FIG. 5 is a schematic sectional view showing a solar cell according to a third embodiment of the present invention. In the figure, 21 is a grid electrode, 22 is an antireflection film, 23 is a silicon oxide film, 24 is an n-type silicon layer, 25 is a p-type silicon substrate, 26 is a p-type microcrystalline mixed silicon hydride film, 27
Denotes a back metal electrode, 28 denotes a silicon oxide film, and 29 denotes a high concentration p-type silicon layer. In each drawing, the same reference numerals indicate the same contents or corresponding parts.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/04-31/078
Claims (2)
半導体層と、 前記基板の光入射側の反対側の裏面上に形成されていて
複数の開口部を有する絶縁層と、 前記絶縁層上に形成されていて前記基板より高濃度の第
1導電型不純物を含む裏面電界層を含んでいることを特
徴とする太陽電池。1. A solar cell, comprising: a semiconductor substrate of a first conductivity type; a semiconductor layer of a second conductivity type formed on a light incident side in the substrate; and a back surface of the substrate opposite to the light incident side. An insulating layer formed on the insulating layer and having a plurality of openings; and a back surface electric field layer formed on the insulating layer and containing a first conductive type impurity at a higher concentration than the substrate. Solar cells.
コン膜からなることを特徴とする請求項1に記載の太陽
電池。2. The solar cell according to claim 1, wherein said back surface electric field layer is made of a microcrystalline mixed silicon hydride film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2326292A JP2994735B2 (en) | 1990-11-27 | 1990-11-27 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2326292A JP2994735B2 (en) | 1990-11-27 | 1990-11-27 | Solar cell |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9322705A Division JP2999985B2 (en) | 1997-11-25 | 1997-11-25 | Solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04192569A JPH04192569A (en) | 1992-07-10 |
JP2994735B2 true JP2994735B2 (en) | 1999-12-27 |
Family
ID=18186144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2326292A Expired - Fee Related JP2994735B2 (en) | 1990-11-27 | 1990-11-27 | Solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2994735B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2711276B1 (en) * | 1993-10-11 | 1995-12-01 | Neuchatel Universite | Photovoltaic cell and method of manufacturing such a cell. |
US8404970B2 (en) * | 2009-05-01 | 2013-03-26 | Silicor Materials Inc. | Bifacial solar cells with back surface doping |
JP2012060080A (en) * | 2010-09-13 | 2012-03-22 | Ulvac Japan Ltd | Crystal solar battery and method for producing the same |
JP2013012606A (en) * | 2011-06-29 | 2013-01-17 | Sanyo Electric Co Ltd | Solar cell and manufacturing method thereof |
KR20140022515A (en) * | 2012-08-13 | 2014-02-25 | 엘지전자 주식회사 | Solar cell |
-
1990
- 1990-11-27 JP JP2326292A patent/JP2994735B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04192569A (en) | 1992-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4123723B1 (en) | Passivated contact structure and solar cell comprising the same, cell assembly, and photovoltaic system | |
AU2023282191B2 (en) | Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system | |
US3990101A (en) | Solar cell device having two heterojunctions | |
US9608131B2 (en) | Solar cell having doped semiconductor heterojunction contacts | |
CN115241298B (en) | Solar cells and preparation methods thereof, photovoltaic modules | |
US4900369A (en) | Solar cell | |
US20140102524A1 (en) | Novel electron collectors for silicon photovoltaic cells | |
CN101203962A (en) | Heterocontact solar cells with reverse geometry in layer structure | |
CN116259679A (en) | Solar cell and photovoltaic module | |
JP7618868B1 (en) | Solar cell and its manufacturing method, photovoltaic module | |
JPH0795603B2 (en) | Photovoltaic device | |
JP2994735B2 (en) | Solar cell | |
JP2999985B2 (en) | Solar cell | |
US20230317866A1 (en) | Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system | |
US11837671B2 (en) | Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system | |
JPH05102504A (en) | Photovoltaic element | |
US12009440B2 (en) | Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system | |
US12218258B2 (en) | Doped region structure and solar cell comprising the same, cell assembly, and photovoltaic system | |
JPH08111537A (en) | Solar battery | |
JPH10178198A (en) | Metal-semiconductor optical device | |
JPH0573357B2 (en) | ||
JPH0823109A (en) | Solar battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |