JPH10189659A - Circuit board for mounting semiconductor device - Google Patents

Circuit board for mounting semiconductor device

Info

Publication number
JPH10189659A
JPH10189659A JP8350091A JP35009196A JPH10189659A JP H10189659 A JPH10189659 A JP H10189659A JP 8350091 A JP8350091 A JP 8350091A JP 35009196 A JP35009196 A JP 35009196A JP H10189659 A JPH10189659 A JP H10189659A
Authority
JP
Japan
Prior art keywords
wiring board
semiconductor element
semiconductor device
thermal expansion
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8350091A
Other languages
Japanese (ja)
Other versions
JP3318498B2 (en
Inventor
Masahiko Azuma
昌彦 東
Michio Shinozaki
道生 篠崎
Koichi Yamaguchi
浩一 山口
Masaya Kokubu
正也 国分
Yasuhide Tami
保秀 民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18408179&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10189659(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35009196A priority Critical patent/JP3318498B2/en
Priority to US08/939,563 priority patent/US6027791A/en
Publication of JPH10189659A publication Critical patent/JPH10189659A/en
Application granted granted Critical
Publication of JP3318498B2 publication Critical patent/JP3318498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To retain an electrical connection between a semiconductor package and a semiconductor device by a method wherein the semiconductor device is brazed to a wiring board, and specific filler which contains thermosetting resin is injected into a joint space between a semiconductor package and the semiconductor device and cured. SOLUTION: A semiconductor device A equipped with a connecting electrode is placed on a wiring board equipped with an insulating board 1 of thermal expansion coefficient of 8-25ppm/ deg.C at temperatures of 40-400 deg.C and a metallized wiring layer 2 provided onto the surface of the board 1. The metallized wiring layer 2 of the wiring board and the connecting electrode of the semiconductor device A are brazed together, and filler which contains at least thermosetting resin is injected into a space between the wiring board and the semiconductor device and hardened. The filler has such a thermal expansion coefficient of 20-50ppm/ deg.C at temperatures of 40-400 deg.C and a Young's modules of 5-10GPa in a temperature range of 40-400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子の実装
配線基板に関し、特に大型の表面実装型配線基板上に半
導体素子をロウ付し、さらにその配線基板と半導体素子
の間に樹脂を含む充填剤を注入硬化させた実装構造を有
する熱履歴特性、使用耐久性、信頼性に優れた半導体素
子実装配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board for mounting a semiconductor element, and more particularly, to a method for mounting a semiconductor element on a large-sized surface mounting wiring board, and further including a resin between the wiring board and the semiconductor element. The present invention relates to a semiconductor element mounting wiring board having a heat history characteristic, a use durability, and an excellent reliability having a mounting structure in which an agent is injected and cured.

【0002】[0002]

【従来の技術】従来、配線基板は、絶縁基板の表面或い
は内部にメタライズ配線層が配設された構造から成る。
又、この配線基板の代表的な例として、半導体素子、特
にLSI(大規模集積回路素子)等の半導体集積回路素
子を載置するための半導体素子収納用パッケージは、一
般にアルミナセラミックスから成る絶縁基板の表面及び
内部に、タングステン、モリブデン等の高融点金属粉末
から成る複数個のメタライズ配線層が配設され、上部に
載置される半導体素子と電気的に接続される。
2. Description of the Related Art Conventionally, a wiring board has a structure in which a metallized wiring layer is provided on the surface or inside of an insulating substrate.
A typical example of the wiring board is a semiconductor element housing package for mounting a semiconductor element, particularly a semiconductor integrated circuit element such as an LSI (large scale integrated circuit element), which is generally an insulating substrate made of alumina ceramics. A plurality of metallized wiring layers made of a high melting point metal powder such as tungsten and molybdenum are arranged on the surface and inside of the semiconductor device, and are electrically connected to a semiconductor element mounted thereon.

【0003】一般に、半導体素子の集積度が高まるほ
ど、半導体素子に形成される電極数も増大するが、これ
に伴いこれを収納する半導体収納用パッケージに於ける
端子数も増大することになる。
In general, as the degree of integration of a semiconductor device increases, the number of electrodes formed on the semiconductor device also increases. As a result, the number of terminals in a semiconductor housing package for housing the same increases.

【0004】電極数が増大するに伴い、対応する接続端
子の設置密度を変えない場合は、パッケージ自体の寸法
を大きくする必要があるが、最近では、パッケージの小
型化ニーズが強いため、その寸法増大には限界がある。
If the installation density of the corresponding connection terminals does not change as the number of electrodes increases, the size of the package itself needs to be increased. However, recently, there is a strong need to reduce the size of the package. Growth is limited.

【0005】従って、パッケージに於ける接続端子の設
置密度は勢い高く成らざるを得ないが、それも最近の半
導体素子の高度集積化傾向に対しては、従来のワイヤボ
ンディング方式の接続方法では十分な対応が困難にな
り、限界に近ずきつつある。
Therefore, the connection density of the connection terminals in the package must be rapidly increased. However, the conventional wire bonding connection method is not enough for the recent high integration tendency of semiconductor devices. Response has become difficult and is approaching its limits.

【0006】そのため、最近では、パッケージと半導体
素子との接続は、半導体素子の周辺からパッケージの接
続端子にワイヤーでつなぐワイヤボンディング方式から
半導体素子下面の接続用電極とパッケージの接続端子と
を直接ロウ付するフリップチップ仕様に移行しつつあ
る。
Therefore, recently, the connection between the package and the semiconductor element has been made by directly bonding the connection electrode on the lower surface of the semiconductor element and the connection terminal of the package by a wire bonding method in which a wire is connected from the periphery of the semiconductor element to the connection terminal of the package. It is shifting to the flip chip specification to be attached.

【0007】また、このフリップチップ仕様による接続
では、半導体素子とパッケージの間に熱硬化性の樹脂な
どの充填剤を注入、硬化させ、半導体素子のロウ付け接
続部を機械的に補強することがしばしば行われる。
In connection with the flip chip specification, a filler such as a thermosetting resin is injected between the semiconductor element and the package, and the filler is hardened to mechanically reinforce the brazed connection portion of the semiconductor element. Often done.

【0008】さらに、配線基板の実装構造は、前記半導
体素子が装着されたパッケージ(配線基板)の接続端子
と外部電極回路基板の配線導体とを電気的に接続して成
る。外部電極回路基板は、しばしば、プリント基板など
の樹脂成分を含有する有機質材料乃至有機質材料と無機
質材料との複合材で構成される。
Further, the mounting structure of the wiring board is formed by electrically connecting the connection terminals of the package (wiring board) on which the semiconductor element is mounted and the wiring conductors of the external electrode circuit board. The external electrode circuit board is often made of an organic material containing a resin component such as a printed board or a composite material of an organic material and an inorganic material.

【0009】[0009]

【発明が解決しようとする課題】上記のパッケージに於
ける絶縁基板としては、従来よりアルミナ、ムライトな
どのセラミックスが、200MPa以上の高強度を有
し、然もメタライズ配線層などとの多層化技術に於いて
信頼性の高い点で多用されているが、これらアルミナ等
の絶縁基板では、半導体素子を実装した実装構造体中に
於いて、半導体素子の作動時に発する熱が絶縁基板とプ
リント基板など樹脂成分を含む外部電気回路基板の両方
に繰り返し印加されると、パッケージ(配線基板)の絶
縁基板と外部電気回路基板との熱膨張係数差が10pp
m/℃以上と大きいために、それらの接続部間に熱応力
歪みが発生する。
Conventionally, ceramics such as alumina and mullite have a high strength of 200 MPa or more as an insulating substrate in the above-mentioned package, and have a multi-layered technology with a metallized wiring layer and the like. In the case of these insulating substrates made of alumina or the like, heat generated during operation of the semiconductor device in the mounting structure on which the semiconductor device is mounted is often used in the insulating substrate and the printed circuit board. When repeatedly applied to both the external electric circuit board containing the resin component, the difference in thermal expansion coefficient between the insulating substrate of the package (wiring board) and the external electric circuit board becomes 10 pp.
Since the temperature is as large as m / ° C. or more, thermal stress distortion occurs between these connection parts.

【0010】この熱応力は、パッケージの端子数が30
0未満程度と比較的少ないものの場合には、発生する熱
応力も小さく、その影響もあまり問題にならないが、接
続端子数が300以上の大型パッケージでは、発生する
熱応力も増大し、半導体素子の作動/停止サイクルによ
りこれがパッケージの半導体素子の実装部に繰り返し印
加されると、その応力歪みが該パッケージの接続端子と
外部電気回路基板の接続部との接合界面に集中し、その
応力歪みにより接続端子が絶縁基板から剥離したり、接
続端子が外部電気回路の配線導体から剥離する等により
接続不良を起こし、パッケージの接続端子を外部電極回
路の配線導体に長期にわたり安定的に電気的接続させる
ことが出来ないと云う致命的な欠陥を有していた。
This thermal stress is caused by the fact that the number of terminals of the package is 30.
In the case of a relatively small number of less than 0, the generated thermal stress is small and its influence is not so much a problem. However, in a large package having 300 or more connection terminals, the generated thermal stress increases and the When this is repeatedly applied to the mounting portion of the semiconductor element of the package by the start / stop cycle, the stress strain is concentrated on the joint interface between the connection terminal of the package and the connection portion of the external electric circuit board, and the connection is caused by the stress strain. A connection failure occurs due to the terminal peeling off from the insulating substrate or the connection terminal peeling off from the wiring conductor of the external electric circuit, and the connection terminal of the package is stably electrically connected to the wiring conductor of the external electrode circuit for a long time. Had a fatal defect that it could not be performed.

【0011】この不都合を解消するため、従来のアルミ
ナ、ムライト等のセラミックスに替えて、より熱膨張率
の大きい高熱膨張率ガラスセラミック、例えば、特開平
8−279574号、特願平8−322038号の明細
書中に記載されているようなガラスセラミック燒結体等
の材料を絶縁基板材料として用いることが検討された。
In order to solve this inconvenience, instead of conventional ceramics such as alumina and mullite, a glass ceramic having a high coefficient of thermal expansion having a higher coefficient of thermal expansion, for example, Japanese Patent Application Laid-Open No. Hei 8-279574 and Japanese Patent Application No. Hei 8-322038. The use of a material such as a glass-ceramic sintered body as described in the specification of U.S. Pat.

【0012】この高熱膨張率ガラスセラミックは、熱膨
張率が8乃至25ppm/℃とアルミナに比較してかな
り高く、上記したパッケージと外部電気回路基板の接続
部との間に生ずる接続不良は回避できる、しかしなが
ら、このような高熱膨張率ガラスセラミック燒結体を絶
縁基板材料として用いた場合には、今度は、シリコンよ
り成る半導体素子(熱膨張係数:2乃至3ppm)との
熱膨張差が大きくなり、半導体素子の接続用電極と絶縁
基板に設けられたメタライズ配線層との間に接続不良が
生ずるという新たな問題を生ずる。
This glass ceramic having a high coefficient of thermal expansion has a coefficient of thermal expansion of 8 to 25 ppm / .degree. C., which is considerably higher than that of alumina, so that the above-described connection failure between the package and the connection portion of the external electric circuit board can be avoided. However, when such a high-thermal-expansion glass-ceramic sintered body is used as an insulating substrate material, the difference in thermal expansion from a semiconductor element (coefficient of thermal expansion: 2 to 3 ppm) made of silicon is increased. A new problem arises in that a connection failure occurs between the connection electrode of the semiconductor element and the metallized wiring layer provided on the insulating substrate.

【0013】本発明者等は、上記した半導体素子のパッ
ケージ等の配線基板への実装時に於いて発生する熱応力
を緩和させる方法について種々検討を重ねた結果、半導
体素子と半導体パッケージとの間に充填される強化用の
充填剤の熱膨張係数とヤング率をある範囲に限定するこ
とにより、発生した熱応力が吸収され、応力歪みが緩和
されることを見い出し、本発明に至った。
The present inventors have conducted various studies on a method of alleviating the thermal stress generated at the time of mounting the semiconductor element on a wiring board such as a package or the like, and as a result, have found that the By limiting the thermal expansion coefficient and Young's modulus of the reinforcing filler to be filled to a certain range, it has been found that the generated thermal stress is absorbed and the stress distortion is reduced, and the present invention has been achieved.

【0014】従って、本発明は、半導体パッケージ等の
配線基板に半導体素子をロウ付し、この半導体パッケー
ジと半導体素子との接続部の間に熱硬化性樹脂を含む特
定の充填剤を注入硬化することにより、前記した欠陥が
完全に回避され、強固な、且つ長期にわたり安定した電
気的接続を維持させることの出来る長期使用信頼性に顕
著に優れた半導体素子実装配線基板を提供することを目
的とするものである。
Therefore, according to the present invention, a semiconductor element is brazed to a wiring board such as a semiconductor package or the like, and a specific filler containing a thermosetting resin is injected and cured between connecting portions between the semiconductor package and the semiconductor element. Accordingly, the above-described defect is completely avoided, and it is an object of the present invention to provide a semiconductor element mounting wiring board which is remarkably excellent in long-term use reliability capable of maintaining a strong and stable electric connection for a long time. Is what you do.

【0015】[0015]

【課題を解決するための手段】本発明によれば、40乃
至400℃に於ける熱膨張係数が8乃至25ppm/℃
の絶縁基板と、該絶縁基板表面に配設されたメタライズ
配線層とを備えた配線基板の表面に、接続用電極を備え
た半導体素子を載置し、前記配線基板のメタライズ配線
層と前記半導体素子の接続用電極とをロウ付し、且つ前
記配線基板と前記半導体素子との間に少なくとも熱硬化
性樹脂を含む充填剤を注入、硬化して成る半導体素子実
装配線基板であって、前記充填剤の硬化後の40乃至4
00℃に於ける熱膨張係数が20乃至50ppm/℃、
前記温度範囲に於けるヤング率が5乃至10GPaであ
ることを特徴とする半導体素子実装基板が提供される。
According to the present invention, the thermal expansion coefficient at 40 to 400 ° C. is 8 to 25 ppm / ° C.
A semiconductor element having connection electrodes is mounted on the surface of a wiring board having an insulating substrate and a metallized wiring layer provided on the surface of the insulating substrate, and the metallized wiring layer of the wiring board and the semiconductor A semiconductor element-mounted wiring board obtained by brazing an element connection electrode and injecting and curing a filler containing at least a thermosetting resin between the wiring board and the semiconductor element; 40 to 4 after curing of the agent
A coefficient of thermal expansion at 00 ° C. of 20 to 50 ppm / ° C.,
A semiconductor element mounting substrate is provided, wherein the Young's modulus in the temperature range is 5 to 10 GPa.

【0016】本発明のこの半導体素子実装配線基板に於
いては、半導体素子、配線基板、ロウ付け材の各々の熱
膨張係数の差によって生ずる熱応力を、前記熱膨張係数
とヤング率とを有する特定の充填剤を前記半導体素子と
前記配線基板との間に注入硬化させることにより、接合
部を補強すると共に、熱応力の低減化、分散化を達成す
る点が顕著な特徴である。
In the semiconductor element-mounted wiring board of the present invention, the thermal stress generated by the difference between the thermal expansion coefficients of the semiconductor element, the wiring board and the brazing material has the thermal expansion coefficient and the Young's modulus. It is a remarkable feature that, by injecting and hardening a specific filler between the semiconductor element and the wiring substrate, the bonding portion is reinforced and the thermal stress is reduced and dispersed.

【0017】これにより、半導体素子と配線基板に発生
する応力の集中が回避され、半導体素子と配線基板との
間で接続不良を起こすことが無く、長期にわたり確実
に、強固な電気的接続が保持され、長期使用に対しても
高い信頼性が担保される。
As a result, the concentration of stress generated in the semiconductor element and the wiring board is avoided, and no poor connection is caused between the semiconductor element and the wiring board, and a strong electrical connection is reliably maintained for a long period of time. Thus, high reliability is ensured even for long-term use.

【0018】[0018]

【発明の実施の態様】本発明に於いて用いられる配線基
板や、半導体素子収納用パッケージの絶縁基板は、40
乃至400℃に於ける熱膨張係数が8乃至25ppm/
℃であり、特に、40乃至400℃でのヤング率が20
0GPa以下である燒結体セラミックスから成る絶縁基
板が好ましく、該ヤング率は150GPa以下がより好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The wiring substrate used in the present invention and the insulating substrate of the package for accommodating a semiconductor element are 40
8 to 25 ppm /
° C, and especially the Young's modulus at 40 to 400 ° C is 20
An insulating substrate made of a sintered ceramic having a strength of 0 GPa or less is preferable, and the Young's modulus is more preferably 150 GPa or less.

【0019】このような燒結体として、例えば、前記特
願平8−322038号の明細書中に記載されているよ
うな、リチウム珪酸系ガラス、PbO系ガラス、ZnO
系ガラス、BaO系ガラス等のガラス成分にエンスタタ
イト、フォルステライト、フォルステライトとSiO2
系フィラー、MgO、ZrO2 、ペタライト等の各種セ
ラミックフィラーを混合し、焼成して得られた40〜4
00℃における熱膨張係数が8〜18ppm/℃の燒結
体を例示出来る。
Examples of such a sintered body include lithium silicate glass, PbO glass, ZnO, and the like as described in the specification of Japanese Patent Application No. 8-322038.
Enstatite, forsterite, forsterite and SiO 2
System filler, MgO, ZrO 2, and mixed various ceramic filler such as petalite, obtained by firing 40-4
A sintered body having a thermal expansion coefficient of 8 to 18 ppm / ° C. at 00 ° C. can be exemplified.

【0020】特に好適な燒結体としては、Li2 Oを5
乃至30重量%含有する屈伏点が400乃至800℃の
リチウム珪酸ガラスを20乃至80体積%と必須成分と
してフォルステライトとクォーツ又はフォルストライト
とクリストバライトとを20乃至80体積%の割合で含
有する成形体を焼成して得られた燒結体を挙げることが
出来る。
Particularly preferred sintered bodies are Li 2 O
Molded product containing 20 to 80% by volume of lithium silicate glass having a deformation point of 400 to 800 ° C. and containing forsterite and quartz or forstrite and cristobalite in an amount of 20 to 80% by volume. And a sintered body obtained by baking.

【0021】この燒結体は、均質の製品を再現性良く比
較的容易に製造できるだけでなく、ガラス成分として、
上記Li2 Oを5乃至30重量%含有するリチウム珪酸
ガラスを用いることにより、燒結後の燒結体中に高熱膨
張率のリチウムシリケート(例えば、Li2 SiO3
を析出することが出来、屈伏点が比較的低く、ガラスの
添加量が少なくても低温焼成が可能であるために、C
u,Ag等から成るメタライズ配線層と同時に焼成する
ことが出来るため好都合である。
This sintered body can not only produce a homogeneous product relatively easily with good reproducibility, but also as a glass component.
By using the lithium silicate glass containing 5 to 30% by weight of Li 2 O, a lithium silicate having a high coefficient of thermal expansion (for example, Li 2 SiO 3 ) is obtained in the sintered body after sintering.
Can be deposited, the yield point is relatively low, and low-temperature sintering is possible even with a small amount of glass.
This is advantageous because it can be fired simultaneously with the metallized wiring layer made of u, Ag or the like.

【0022】更に、用いるリチウム珪酸ガラスの屈伏点
が400乃至800℃であることにより、ガラス含有量
を低減しフィラー量を増加することが出来、又焼成収縮
開始温度を上昇させることが可能である。それにより、
成型時に添加された有機樹脂等の成型用バインダーを効
率的に除去できると共に、絶縁体と同時焼成されるメタ
ライズ層との焼成条件をマッチングさせることが出来
る。
Further, when the deformation point of the lithium silicate glass used is 400 to 800 ° C., the glass content can be reduced, the filler amount can be increased, and the firing shrinkage starting temperature can be raised. . Thereby,
It is possible to efficiently remove a molding binder such as an organic resin added at the time of molding, and to match the sintering conditions of the insulator and the metallized layer to be co-fired.

【0023】本発明で用いる少なくとも熱硬化樹脂を含
む充填剤としては、熱硬化性樹脂の硬化後の40乃至4
00℃に於ける熱膨張係数が20乃至50ppm/℃
で、同様の温度範囲に於けるヤング率が5乃至10GP
aの範囲の値を有するものであれば特に限定されるもの
でない。充填剤中に配合される好適な樹脂としては、例
えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エ
ポキシ樹脂、不飽和ポリエステル樹脂、フタル酸ジアリ
ル樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタ
ン樹脂等を挙げることが出来る。
The filler containing at least the thermosetting resin used in the present invention may be 40 to 4 after the thermosetting resin has been cured.
Coefficient of thermal expansion at 00 ° C is 20 to 50 ppm / ° C
And the Young's modulus in the same temperature range is 5 to 10 GP
There is no particular limitation as long as it has a value in the range of a. Examples of suitable resins to be incorporated into the filler include, for example, phenolic resins, urea resins, melamine resins, epoxy resins, unsaturated polyester resins, diallyl phthalate resins, polyimide resins, silicone resins, polyurethane resins, and the like. I can do it.

【0024】これらの内でも、ビスフェノール系エポキ
シ樹脂、フェノールノボラック系エポキシ樹脂、クレゾ
ールノボラック系エポキシ樹脂、ブロム化エポキシ樹
脂、脂環式エポキシ樹脂等のエポキシ樹脂が特に好まし
い。
Among them, epoxy resins such as bisphenol epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, brominated epoxy resin and alicyclic epoxy resin are particularly preferable.

【0025】本発明に於いて、特に好ましい硬化性樹脂
の具体例として、フェノールノボラック型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂を挙げること
が出来る。
In the present invention, specific examples of particularly preferred curable resins include phenol novolak type epoxy resins and cresol novolak type epoxy resins.

【0026】また、充填剤のヤング率および熱膨張係数
を前記の範囲に制御するためには、前に熱硬化性樹脂に
対して、石英ガラス、アルミナ、マイカ、ジルコニウム
シリケート、リチウムシリケートなどの無機物を前記樹
脂100重量部に対して、50〜300重量部を配合し
て調整される。
Further, in order to control the Young's modulus and the coefficient of thermal expansion of the filler within the above-mentioned ranges, the thermosetting resin must first be mixed with an inorganic substance such as quartz glass, alumina, mica, zirconium silicate, lithium silicate or the like. Is adjusted by mixing 50 to 300 parts by weight with respect to 100 parts by weight of the resin.

【0027】以下に、本発明の半導体実装配線基板を添
付図面に基き詳細に説明する。図1は、本発明の一例を
示す図であり、絶縁基板の表面或いは内部にメタライズ
配線層が配設された、いわゆる配線基板を基礎構造とす
るものであるが、この図の場合、配線基板としてBGA
型パッケージを用いた場合の実装構造を示している。
Hereinafter, a semiconductor-mounted wiring board according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view showing an example of the present invention, which is based on a so-called wiring board having a metallized wiring layer disposed on the surface or inside of an insulating substrate. As BGA
3 shows a mounting structure when a type package is used.

【0028】図1に於いて、Aは半導体素子、BはBG
A型パッケージである。パッケージBは、絶縁基板1と
メタライズ配線層2と接続端子3により構成される。一
方、半導体素子Aは、Si材料から成り、その下面には
接続用電極4が形成されている。
In FIG. 1, A is a semiconductor device, B is BG
It is an A type package. The package B includes an insulating substrate 1, a metallized wiring layer 2, and connection terminals 3. On the other hand, the semiconductor element A is made of a Si material, and a connection electrode 4 is formed on a lower surface thereof.

【0029】上記BGA型パッケージBに半導体素子A
を実装するには、図2の要部拡大図に示すようにパッケ
ージBの絶縁基板1上面のメタライズ配線層2のランド
部5に半導体素子Aの半田からなる接続用電極(半田バ
ンプ)4を載置当接させ、しかる後、約250乃至40
0℃の温度で加熱して半田バンプを溶融させて半導体素
子Aの接続用電極4を配線基板Bのランド部5に接合、
実装される。
A semiconductor element A is mounted on the BGA type package B.
2, a connection electrode (solder bump) 4 made of solder of the semiconductor element A is mounted on the land 5 of the metallized wiring layer 2 on the upper surface of the insulating substrate 1 of the package B as shown in the enlarged view of the main part of FIG. Place and contact, then about 250 to 40
Heating at a temperature of 0 ° C. to melt the solder bumps and join the connection electrodes 4 of the semiconductor element A to the land portions 5 of the wiring board B;
Implemented.

【0030】しかる後接合部の補強のために、熱硬化性
樹脂を含む充填剤6をこの半導体素子AとBGA型パッ
ケージBの間に注入し、約100乃至200℃の温度で
硬化させる。
Thereafter, in order to reinforce the joint, a filler 6 containing a thermosetting resin is injected between the semiconductor element A and the BGA type package B and cured at a temperature of about 100 to 200 ° C.

【0031】本発明に於いては、図1に示されるような
実装構造に於いて、硬化後の充填剤の熱膨張係数が20
乃至50ppm/℃で且つヤング率が5乃至10GPa
であることが特に重要である。
According to the present invention, in the mounting structure as shown in FIG.
~ 50ppm / ℃ and Young's modulus is 5 ~ 10GPa
It is particularly important that

【0032】この充填剤の熱膨張係数が20ppm/℃
より低い場合、高温または低温時の熱膨張、収縮が小さ
すぎて接続端子を圧迫し高応力が生じる。また、50p
pm/℃を越える場合は逆に高温、低温時の熱膨張収縮
が大きすぎ、同様に接続端子に高応力が生じる。
The thermal expansion coefficient of this filler is 20 ppm / ° C.
If the temperature is lower, the thermal expansion and shrinkage at high or low temperature are too small to compress the connection terminal and generate high stress. Also, 50p
If it exceeds pm / ° C., on the contrary, the thermal expansion and contraction at high and low temperatures is too large, and similarly high stress is generated in the connection terminals.

【0033】またヤング率が5GPaより低いと、充填
剤の応力変形が大きすぎ、接続端子の補強が不十分とな
り、10GPaより大きいと変形量が小さすぎ接続端子
との熱膨張差による歪みを吸収しきれない。
If the Young's modulus is lower than 5 GPa, the stress deformation of the filler is too large, and the reinforcement of the connection terminal is insufficient. If it is higher than 10 GPa, the deformation is too small to absorb the distortion due to the difference in thermal expansion with the connection terminal. I can't do it.

【0034】本発明に於いては、既に前述したように配
線基板を形成する絶縁基板はヤング率が200GPa以
下であると共に、その40〜400℃における熱膨張係
数が8乃至25ppm/℃であることがより好ましい。
In the present invention, as described above, the insulating substrate for forming the wiring substrate has a Young's modulus of 200 GPa or less and a coefficient of thermal expansion at 40 to 400 ° C. of 8 to 25 ppm / ° C. Is more preferred.

【0035】なお、図1において、配線基板Bの表面に
実装された半導体素子Aは、蓋体(図示せず)により気
密に封止される。この様なヤング率、熱膨張係数を有す
る絶縁基板を、前記充填剤と組合せで用いることによ
り、発生した熱応力を絶縁基板のたわみと歪みによって
吸収出来ると共に、熱膨張係数が接続端子や熱硬化性樹
脂のそれにより近いことにより発生する熱応力自体を小
さくすることが出来る。
In FIG. 1, the semiconductor element A mounted on the surface of the wiring board B is hermetically sealed by a lid (not shown). By using an insulating substrate having such Young's modulus and coefficient of thermal expansion in combination with the filler, the generated thermal stress can be absorbed by the bending and distortion of the insulating substrate, and the coefficient of thermal expansion can be reduced by the connection terminal and the thermosetting. The thermal stress itself generated by being closer to that of the conductive resin can be reduced.

【0036】この様な観点から本発明に於いては、絶縁
基板材料として、前述したLi2 Oを5乃至30重量%
含有する結晶性リチウム珪酸ガラスを20乃至80体積
%と少なくともフォルステライトとクォーツとを含むフ
ィラー成分20乃至80体積%とから成る混合物を成形
し、焼成したガラスセラミック燒結体を用いることが特
に好ましく、更に、結晶性リチウム珪酸ガラスとして、
その屈伏点が400〜650℃のものを用いることが好
ましい。
From such a viewpoint, in the present invention, the above-mentioned Li 2 O is used as an insulating substrate material in an amount of 5 to 30% by weight.
It is particularly preferable to use a glass-ceramic sintered body obtained by molding a mixture containing 20 to 80% by volume of a crystalline lithium silicate glass and 20 to 80% by volume of a filler component containing at least forsterite and quartz. Furthermore, as crystalline lithium silicate glass,
It is preferable to use one having a yield point of 400 to 650 ° C.

【0037】[0037]

【実施例】表1に示す各種セラミック材料について、5
×4×40mmの形状の燒結体を作製した後、各燒結体
についてヤング率、及び40乃至400℃に於ける熱膨
張係数を測定した。測定値を表1に示す。
EXAMPLES For various ceramic materials shown in Table 1, 5
After preparing sintered bodies having a shape of × 4 × 40 mm, the Young's modulus and the coefficient of thermal expansion at 40 to 400 ° C. were measured for each sintered body. Table 1 shows the measured values.

【0038】また、表1に示す各種セラミック材料を用
いて、それらに銅から成るメタライズ配線層及びスルー
ホールを形成し、その基板上面のスルーホールに接続す
る箇所に多数のCuメタライズから成る接続パッドを形
成し、パッケージ用配線基板を作製した。配線基板の厚
みは全て0.4mmとした。一方、Siからなり40乃
至400℃に於ける熱膨張係数が2.6ppm/℃であ
り、底面に半田バンプを形成した半導体素子を準備し
た。そして、この半導体素子の半田バンプを上記のパッ
ケージ用配線基板の接続パッドが接続されるように位置
合わせし、これをN2 の雰囲気中で350℃で3分間熱
処理し半導体素子の半田バンプを融解させて配線基板の
接続パッドに接続させた。
Further, using various ceramic materials shown in Table 1, metallized wiring layers and through-holes made of copper are formed in these ceramic materials, and a large number of connection pads made of Cu metallized are formed on the upper surface of the substrate at locations connected to the through-holes. Was formed to produce a package wiring board. The thickness of all the wiring boards was 0.4 mm. On the other hand, a semiconductor element made of Si, having a coefficient of thermal expansion at 40 to 400 ° C. of 2.6 ppm / ° C. and having a solder bump formed on the bottom surface was prepared. Then, the solder bumps of the semiconductor element are aligned so that the connection pads of the package wiring board are connected to each other, and are heat-treated at 350 ° C. for 3 minutes in an N 2 atmosphere to melt the solder bumps of the semiconductor element. This was connected to the connection pad of the wiring board.

【0039】その後半導体素子と配線基板との間に表2
に示す熱硬化性樹脂に対して、石英ガラス又はアルミナ
を表2の比率に配合し、混練して調製した充填剤を注入
し、180℃で2時間大気中で硬化させた。
After that, as shown in Table 2 between the semiconductor element and the wiring board.
The filler prepared by mixing quartz glass or alumina in the ratio shown in Table 2 with the thermosetting resin shown in Table 2 and kneading the mixture was injected, and cured at 180 ° C. for 2 hours in the atmosphere.

【0040】[0040]

【表1】 [Table 1]

【0041】(熱サイクル試験)上記のようにして半導
体素子をパッケージ基板に実装したものを試験サンプル
とし、−40℃と125℃の各温度に制御した恒温槽中
に試験サンプルをそれぞれ15分間ずつ保持した、これ
を1サイクルとし、このサイクルを最高1000回繰り
返した。
(Thermal Cycle Test) The semiconductor element mounted on the package substrate as described above was used as a test sample, and the test sample was placed in a thermostat controlled at -40 ° C. and 125 ° C. for 15 minutes each. This was kept as one cycle, and this cycle was repeated up to 1000 times.

【0042】そして、各サイクル毎に半導体素子とパッ
ケージ用基板との電気抵抗を測定し、電気抵抗に変化が
現れるまでのサイクル数をカウントした。結果を表2に
示す。
Then, the electric resistance between the semiconductor element and the package substrate was measured for each cycle, and the number of cycles until the electric resistance changed was counted. Table 2 shows the results.

【0043】[0043]

【表2】 [Table 2]

【0044】表1より明らかなように、充填剤の熱膨張
係数が20乃至50ppm/℃でヤング率が5乃至10
GPaである材料、即ち、試料No.4、5、9、1
0、16、17、21、22では、1000回までの熱
サイクル試験に於いて、半導体素子とパッケージ用基板
との間に電気抵抗変化は全く見られず、極めて安定で良
好な電気的接続を維持する。上記範囲外の試料、No.
1、2、3、6、7、8、11、12、13、14、1
5、18、19、20、23、24(本発明品外の試
料)では1000サイクル未満で抵抗変化が検出され、
実装後の信頼性に欠けることが判る。
As apparent from Table 1, the filler has a coefficient of thermal expansion of 20 to 50 ppm / ° C. and a Young's modulus of 5 to 10
GPa, that is, a sample No. 4, 5, 9, 1
At 0, 16, 17, 21, and 22, no change in electric resistance was observed between the semiconductor element and the package substrate in the thermal cycle test up to 1000 times, and an extremely stable and good electric connection was obtained. maintain. Samples outside the above range, no.
1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 1
In 5, 18, 19, 20, 23 and 24 (samples outside the scope of the present invention), a resistance change was detected in less than 1000 cycles,
It turns out that the reliability after mounting is lacking.

【0045】[0045]

【発明の効果】上述したとおり、本発明の半導体素子実
装回路基板によれば、半導体素子を配線基板上に実装し
た場合に、両者の熱膨張係数の差に起因する応力発生を
緩和し、半導体素子と配線基板とを長期にわたり正確、
且つ強固に電気的接続させることが可能となる。
As described above, according to the semiconductor element mounting circuit board of the present invention, when a semiconductor element is mounted on a wiring board, stress generation due to a difference in thermal expansion coefficient between the two is reduced. Element and wiring board accurate for a long time,
In addition, it is possible to make a strong electrical connection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に於けるボールグリッドアレイ(BG
A)型の半導体素子収納パッケージの実装構造を説明す
るための断面図。
FIG. 1 shows a ball grid array (BG) according to the present invention.
Sectional drawing for demonstrating the mounting structure of the semiconductor element storage package of A type.

【図2】図1の実装構造の要部部分拡大図。FIG. 2 is an enlarged view of a main part of the mounting structure of FIG. 1;

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 メタライズ配線層 3 接続端子 4 接続用電極(半田バンプ) 5 ランド部 6 樹脂層 7 外部電気回路基板 A 半導体素子 B BGA型パッケージ REFERENCE SIGNS LIST 1 insulating substrate 2 metallized wiring layer 3 connection terminal 4 connection electrode (solder bump) 5 land 6 resin layer 7 external electric circuit board A semiconductor element B BGA type package

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 浩一 鹿児島県国分市山下町1−4 京セラ株式 会社総合研究所内 (72)発明者 国分 正也 鹿児島県国分市山下町1−4 京セラ株式 会社総合研究所内 (72)発明者 民 保秀 鹿児島県国分市山下町1−4 京セラ株式 会社総合研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Koichi Yamaguchi 1-4, Yamashitacho, Kokubu-shi, Kagoshima Prefecture Within Kyocera Research Institute (72) Inventor Masaya Kokubu 1-4 Yamashitacho, Kokubu-shi, Kagoshima Kyocera Corporation Inside the research institute (72) Inventor Minami Yasuhide 1-4 in Yamashitacho, Kokubu-shi, Kagoshima Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 40乃至400℃に於ける熱膨張係数が
8乃至25ppm/℃の絶縁基板と該絶縁基板表面に配
設されたメタライズ配線層とを備えた配線基板の表面
に、接続用電極を備えた半導体素子を載置し、前記配線
基板のメタライズ配線層と前記半導体素子の接続用電極
とをロウ付し、且つ前記配線基板と前記半導体素子との
間に少なくとも熱硬化性樹脂を含む充填剤を注入、硬化
して成る半導体素子実装配線基板であって、前記充填剤
の硬化後の40乃至400℃に於ける熱膨張係数が20
乃至50ppm/℃、前記温度範囲に於けるヤング率が
5乃至10GPaであることを特徴とする半導体素子実
装配線基板。
An electrode for connection is provided on a surface of a wiring board including an insulating substrate having a thermal expansion coefficient of 8 to 25 ppm / ° C. at 40 to 400 ° C. and a metallized wiring layer disposed on the surface of the insulating substrate. Is mounted, a metallized wiring layer of the wiring substrate and a connection electrode of the semiconductor device are brazed, and at least a thermosetting resin is provided between the wiring substrate and the semiconductor device. What is claimed is: 1. A semiconductor element-mounted wiring board obtained by injecting and curing a filler, wherein said filler has a thermal expansion coefficient of 20 at 40 to 400 ° C. after curing.
A semiconductor element mounting wiring board, wherein the Young's modulus in the temperature range is 5 to 10 GPa.
【請求項2】 前記熱硬化性樹脂が、フェノールノボラ
ック型エポキシ樹脂、クレゾールノボラック型エポキシ
樹脂のいずれかである請求項1記載の半導体素子実装配
線基板。
2. The wiring board according to claim 1, wherein the thermosetting resin is one of a phenol novolak type epoxy resin and a cresol novolak type epoxy resin.
JP35009196A 1996-09-30 1996-12-27 Circuit board for mounting semiconductor elements Expired - Lifetime JP3318498B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35009196A JP3318498B2 (en) 1996-12-27 1996-12-27 Circuit board for mounting semiconductor elements
US08/939,563 US6027791A (en) 1996-09-30 1997-09-29 Structure for mounting a wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35009196A JP3318498B2 (en) 1996-12-27 1996-12-27 Circuit board for mounting semiconductor elements

Publications (2)

Publication Number Publication Date
JPH10189659A true JPH10189659A (en) 1998-07-21
JP3318498B2 JP3318498B2 (en) 2002-08-26

Family

ID=18408179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35009196A Expired - Lifetime JP3318498B2 (en) 1996-09-30 1996-12-27 Circuit board for mounting semiconductor elements

Country Status (1)

Country Link
JP (1) JP3318498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101176A (en) * 2001-09-26 2003-04-04 Hitachi Chem Co Ltd Compound material for wiring board and production method therefor
KR100811581B1 (en) * 2000-04-28 2008-03-10 소니 가부시끼 가이샤 Semiconductor device using bumps, method for fabricating same, and method for forming bumps
JP2012084923A (en) * 2012-01-20 2012-04-26 Hitachi Chem Co Ltd Composite material for wiring board and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176069B2 (en) * 2013-11-13 2017-08-09 住友電気工業株式会社 Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, group III nitride semiconductor device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811581B1 (en) * 2000-04-28 2008-03-10 소니 가부시끼 가이샤 Semiconductor device using bumps, method for fabricating same, and method for forming bumps
JP2003101176A (en) * 2001-09-26 2003-04-04 Hitachi Chem Co Ltd Compound material for wiring board and production method therefor
JP2012084923A (en) * 2012-01-20 2012-04-26 Hitachi Chem Co Ltd Composite material for wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
JP3318498B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
US6027791A (en) Structure for mounting a wiring board
JP3336240B2 (en) Semiconductor element mounting board
JP3318498B2 (en) Circuit board for mounting semiconductor elements
JP3842478B2 (en) Mounting structure of semiconductor device mounting wiring board
JP2000252392A (en) Wiring board for mounting semiconductor device and its mounting structure
JP3347583B2 (en) Wiring board mounting structure
JP2001015649A (en) Semiconductor element mounting wiring substrate and wiring substrate mounting structure
JP2000188362A (en) Mounting structure of semiconductor element
JP3699571B2 (en) Wiring board and its mounting structure
JP3740225B2 (en) Wiring board mounting structure
JP3323074B2 (en) Wiring board, package for housing semiconductor element and its mounting structure
JP3339999B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3744678B2 (en) Wiring board mounting structure
JP3610239B2 (en) Wiring board for mounting semiconductor device and mounting structure thereof
JP2000114424A (en) Semiconductor device mounting board
JPH09181220A (en) Semiconductor device
JP3502759B2 (en) Semiconductor element mounting structure and wiring board mounting structure
JP2000188299A (en) Mounting structure for semiconductor element
JP3210837B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP2000022017A (en) Ceramic wiring substrate and package structure thereof
JP3420447B2 (en) Wiring board mounting structure
JP3193275B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3305579B2 (en) Wiring board, semiconductor element storage package and mounting structure
JP3748315B2 (en) Wiring board, semiconductor element storage package and mounting structure
JP3692215B2 (en) Wiring board mounting structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100516

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100516

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

EXPY Cancellation because of completion of term