JPH10183275A - Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy - Google Patents

Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy

Info

Publication number
JPH10183275A
JPH10183275A JP31584097A JP31584097A JPH10183275A JP H10183275 A JPH10183275 A JP H10183275A JP 31584097 A JP31584097 A JP 31584097A JP 31584097 A JP31584097 A JP 31584097A JP H10183275 A JPH10183275 A JP H10183275A
Authority
JP
Japan
Prior art keywords
phase
copper alloy
less
concentration
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31584097A
Other languages
Japanese (ja)
Inventor
Ryuji Matsubara
隆二 松原
Nobuyuki Ashie
伸之 芦江
Katsuaki Nakamura
克昭 中村
Masanao Hamazaki
正直 濱崎
Toru Uchida
亨 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP31584097A priority Critical patent/JPH10183275A/en
Publication of JPH10183275A publication Critical patent/JPH10183275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Domestic Plumbing Installations (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a Cu-Zn-Sn alloy for a member in contact with water, excellent in dezincification resistance and machinability, by subjecting a Cu-Zn- Sn alloy of specified composition to heating and cooling under respectively specified temp. conditions and changing its structure. SOLUTION: In producing a Cu-Zn-Sn alloy having a composition consisting of 0.9-3.0% Sn, 37-45% Zn, and the balance Cu, the alloy is heat-treated at 500-550 deg.C for 30sec and then cooled down to 350 deg.C at <=0.4 deg.C/sec cooling rate. In the structure of this alloy, γ-phases of >=3% content are precipitated at 3-20% area occupancy in the grain boundaries of α-phases having >=0.5% Sn content and 40-97% area occupancy, or the γ-phases are precipitated in the grain boundaries of the α-phases and β-phases having >=1.5% Sn content and 0-40% area occupancy. By this method, the Cu-Zn-Sn alloy, remarkably improved in dezincification resistance and machinability and having excellent properties required of a member in contact with water, such as water tap, can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCu−Zn−Sn系
の銅合金、銅合金からなる水栓金具等の接水部材及び銅
合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cu-Zn-Sn-based copper alloy, a water-contact member such as a faucet fitting made of a copper alloy, and a method for producing a copper alloy.

【0002】[0002]

【従来の技術】JISに規定される基本的な銅合金素材
として、鍛造用黄銅棒(JIS O一3771)、快削
黄銅同棒(JIS C−3604)、ネーバル黄銅棒
(JISC一4641)、高力黄銅棒(JIS O一6
782)が知られている。
2. Description of the Related Art As basic copper alloy materials specified in JIS, brass bars for forging (JIS O-13771), brass bars for free cutting (JIS C-3604), naval brass bars (JISC-16461), High strength brass bar (JIS O-16
782) are known.

【0003】しかしながら製品の多様化によって銅合金
に要求される特性も製品特有のものとなり、これに対応
すべく種々の提案がなされている。例えば、特公昭61
−58540号公報には、Cu−Zn一Sn系の銅合金
にPb,Fe,Ni,Sb及びPを添加し、実質的にα
相とした銅合金が開示され、特開平6−108184号
公報には、Cu−Zn−Sn系の銅合金にPb,Fe,
Ni,Sb及びPを添加した合金素材に対し、熱間で押
出または抽伸せしめた後に500〜600℃で30分一
3時問熱処理して実質的にα相とすることが開示されて
いる。
[0003] However, with the diversification of products, the characteristics required for copper alloys also become unique to products, and various proposals have been made in response to this. For example, Tokiko Sho 61
Japanese Patent Application No. 58540 discloses a method of adding Pb, Fe, Ni, Sb and P to a Cu—Zn—Sn based copper alloy to substantially form α.
JP-A-6-108184 discloses a Cu-Zn-Sn-based copper alloy containing Pb, Fe,
It is disclosed that an alloy material to which Ni, Sb and P are added is subjected to hot extrusion or drawing and then heat-treated at 500 to 600 ° C. for 30 minutes to 13 hours to substantially form an α phase.

【0004】銅同合金の結晶組織構造としては、α相、
β相、γ相がある。これら各相の特性を図1に示す。α
相はZn当量を37wt%以下とした場合に現れ、耐食
性、延性に優れるが、強度及び切削性において劣る。β
相はZn当量を37wt%以上とした場含に現れ、加工
性はよいが耐食性に極めて劣る。γ相はSnを所定量以
上添加した場合に現れ耐食性及び強度には優れるが極め
て脆弱である。ここで、銅合金の耐食性は主として耐脱
亜鉛腐食性を指す。脱亜鉛腐食性とは、CuとZnのイ
オン化傾向の違いから、水中には亜鉛が優先的に溶出し
やすく、その結果Cuのみが残り、時間の経過とともに
強度が低下する現象を言い、Cu一Zn系合金を用いた
場含に間題となる。
[0004] The crystal structure of the copper alloy is α phase,
There are β phase and γ phase. FIG. 1 shows the characteristics of these phases. α
The phase appears when the Zn equivalent is 37 wt% or less, and is excellent in corrosion resistance and ductility, but inferior in strength and machinability. β
The phase appears when the Zn equivalent is 37 wt% or more, and the workability is good but the corrosion resistance is extremely poor. The γ phase appears when Sn is added in a predetermined amount or more, and is excellent in corrosion resistance and strength but extremely weak. Here, the corrosion resistance of the copper alloy mainly refers to the dezincification corrosion resistance. Dezincification corrosion refers to a phenomenon in which zinc is easily eluted preferentially in water due to the difference in ionization tendency between Cu and Zn, and as a result, only Cu remains and the strength decreases with time. This is a problem when a Zn-based alloy is used.

【0005】[0005]

【発明が解決しようとする課題】上述したように、特公
昭61−58540号公報或いは特開平6−10818
4号公報にあっては、耐食性に極めて劣るβ相や脆弱な
γ相を析出させず、実質的にα単相として耐脱亜鉛腐食
性を高めるようにしている。
As described above, Japanese Patent Publication No. 61-58540 or Japanese Patent Application Laid-Open No. 6-10818.
In Japanese Patent Publication No. 4 (1993), a β phase and a brittle γ phase, which are extremely poor in corrosion resistance, are not precipitated, and the dezincification corrosion resistance is substantially increased as a single α phase.

【0006】しかしながら、実質的にα単相とした場合
には、切削性等の加工性に劣り、また熱間鍛造用として
使用しにくいため、鋳造用の素材として用いることにな
り、鋳造の場合には歩留りが悪い。
However, when the α-phase is substantially used, it is inferior in workability such as machinability and is difficult to use for hot forging, so it is used as a material for casting. Yield is poor.

【0007】[0007]

【課題を解決するための手段】従来にあっては、耐脱亜
鉛腐食性に劣るβ相、硬く脆弱なγ相についてはできる
だけ析出させないようにしていたが、β相にあっては切
削性や熱間鍛造性に優れ、またγ相については硬いため
にγ相を起点として切削が進行するという点に着目して
本発明をなしたものである。
Means for Solving the Problems Conventionally, the β phase, which is inferior to dezincification corrosion resistance, and the hard and brittle γ phase are prevented from precipitating as much as possible. The present invention has been made by paying attention to the fact that the hot forging property is excellent and the γ phase is hard, so that the cutting proceeds from the γ phase as a starting point.

【0008】即ち、本発明に係るCu一Zn−Sn系の
銅合金は、α相の粒界にSn濃度が3.0wt%以上の
γ相を面積占有比率が3%以上20%以下となる割合で
析出せしめた。この銅合金は実質的にβ相を含まない。
また、本発明に係る他のCu一Zn一Sn系の銅合金
は、α相とβ相との粒界にSn濃度が3.0wt%以上
のγ相を面積占有比率が3%以上20%以下となる割合
で析出せしめた。この銅合金はβ相の廻りをγ相が取り
囲む構成となる。
That is, in the Cu-Zn-Sn based copper alloy according to the present invention, the area occupancy ratio of the γ phase having a Sn concentration of 3.0 wt% or more at the grain boundary of the α phase is 3% or more and 20% or less. Precipitated in proportions. This copper alloy contains substantially no β phase.
In another Cu-Zn-Sn-based copper alloy according to the present invention, a γ phase having an Sn concentration of 3.0 wt% or more is present at a grain boundary between an α phase and a β phase with an area occupancy ratio of 3% or more and 20% or more. Precipitated in the following ratio. This copper alloy has a configuration in which the γ phase surrounds the β phase.

【0009】γ相の面積占有比率を3%以上20%以下
とするのは、3%未満ではγ相の析出の効果、つまり耐
脱亜鉛腐食性の効果が薄く、逆に20%を超えると素材
として脆くなってしまう。
The reason why the area occupancy ratio of the γ phase is 3% or more and 20% or less is that when the content is less than 3%, the effect of precipitation of the γ phase, that is, the effect of dezincification corrosion resistance is small, and conversely, when it exceeds 20%. It becomes brittle as a material.

【0010】また、α相中のSn濃度が0.5wt%以
上、β相中のSn濃度が1.5wt%未満であれば、α
相の面積占有比率が97%以下40%以上で、β相の面
積占有比率が0%以上40%以下となり、α相中のSn
濃度が0.5wt%以上、β相中のSn濃度が1.5w
t%以上であれば、α相の面積占有比率が97%以下2
0%以上で、β相の面積占有比率が0%以上60%以下
となる。
If the Sn concentration in the α phase is 0.5 wt% or more and the Sn concentration in the β phase is less than 1.5 wt%, α
When the area occupancy of the phase is 97% or less and 40% or more, the area occupancy of the β phase is 0% or more and 40% or less, and Sn in the α phase
The concentration is 0.5 wt% or more, and the Sn concentration in the β phase is 1.5 w
If it is not less than t%, the area occupation ratio of the α phase is not more than 97% 2
At 0% or more, the area occupation ratio of the β phase becomes 0% or more and 60% or less.

【0011】また、α相の粒界間、またはα相とβ相と
の粒界にγ相を析出せしめる方法としては、Cu一Zn
−Sn系の銅合金素材に対し、500℃以上550℃以
下で30秒以上の熱処理を施し、次いで350℃までの
冷却速度を0.4℃/秒以下として冷却する。
As a method for precipitating a γ phase between the α-phase grain boundaries or the α- and β-phase grain boundaries, Cu—Zn
The Sn-based copper alloy material is subjected to a heat treatment at 500 ° C. or more and 550 ° C. or less for 30 seconds or more, and then cooled at a cooling rate of 350 ° C. or less to 0.4 ° C./second or less.

【0012】また、α相の粒界間、またはα相とβ相と
の粒界にγ相を析出せしめる他の方法としては、Cu−
Zn−Sn系の銅合金素材に対し、400℃以上500
℃以下で30秒以上の熱処理を施し、次いで冷却する。
Another method for precipitating a γ phase between the grain boundaries of the α phase or at the grain boundaries of the α phase and the β phase includes Cu-
400 ° C or more and 500 for Zn-Sn based copper alloy material
A heat treatment is performed at a temperature of not more than 30 ° C. for 30 seconds or more, and then cooling is performed.

【0013】また、α相の粒界間、またはα相とβ相と
の粒界にγ相を析出せしめる更なる他の方法は、Cu−
Zn一Sn系の銅合金素材に対し、500℃以上550
℃以下で30秒以上の熱処理を施し、次いで350℃ま
での冷却速度を0.4℃/秒以上4℃/秒以下として冷
却する。
Still another method for precipitating a γ phase between grain boundaries of the α phase or at the grain boundary between the α phase and the β phase is Cu—
500 ° C or more and 550 for Zn-Sn based copper alloy material
A heat treatment is performed at 30 ° C. or less for 30 seconds or more, and then the cooling rate to 350 ° C. is set to 0.4 ° C./sec to 4 ° C./sec.

【0014】以上の熱処理と冷却速度制御については、
すなわち、結晶構造が変態する温度域として、γ相が析
出する第1温度域と、この第1温度域以上の温度域でγ
相が析出しない第2温度域とを有する銅合金の製造方法
において、第2温度域まで加熱し、その後第1温度域の
上限温度から下限温度までの冷却速度を制御することに
よって、γ相の面積占有比率を調整することを特徴と
し、冷却速度を4℃/秒以下にして第1温度域を冷却中
にγ相を析出させ、好ましくはγ相の面積占有比率を3
%以上にする。
Regarding the above heat treatment and cooling rate control,
That is, as the temperature range in which the crystal structure is transformed, the first temperature range in which the γ phase is precipitated and the temperature range higher than the first temperature range are γ.
In the method for producing a copper alloy having a second temperature range in which a phase does not precipitate, heating to the second temperature range, and then controlling the cooling rate from the upper limit temperature to the lower limit temperature in the first temperature range, The method is characterized in that the area occupancy ratio is adjusted, and the cooling rate is set to 4 ° C./sec or less to precipitate the γ phase while cooling the first temperature range.
% Or more.

【0015】これをCu−Zn−Sn系の銅合金に適用
すると、冷却速度を制御することによってγ相中のSn
濃度調整が可能となり、好ましくはγ相中のSn濃度を
3.0wt%以上にする。
When this is applied to a Cu—Zn—Sn-based copper alloy, Sn in the γ phase can be controlled by controlling the cooling rate.
The concentration can be adjusted. Preferably, the Sn concentration in the γ phase is adjusted to 3.0 wt% or more.

【0016】本発明は、Cu−Zn−Sn系の銅合金に
おいて、γ相の面積占有比率を3%以上にすることによ
り、硬質なγ相より強度が向上するとともに、γ相より
軟質なα又はβ相とγ相の粒界の硬度差により切削性が
向上する。ここで、γ相は脆く多すぎると延性が低下す
るため、γ相の面積占有比率の上限は20%以下が好ま
しい。また、Sn濃度は、γ相を析出させ易くするため
及び耐脱亜鉛腐食性向上のためには0.9wt%以上が
必要であり、熱間延性のためには3.0wt%以下が望
ましい。
According to the present invention, in a Cu—Zn—Sn based copper alloy, by increasing the area occupancy of the γ phase to 3% or more, the strength is improved as compared with the hard γ phase and the α is softer than the γ phase. Alternatively, the machinability is improved due to the hardness difference between the grain boundaries of the β phase and the γ phase. Here, since the γ phase is too brittle and the ductility is reduced when it is too large, the upper limit of the area occupation ratio of the γ phase is preferably 20% or less. Further, the Sn concentration is required to be 0.9 wt% or more for facilitating the precipitation of the γ phase and for improving the dezincification corrosion resistance, and desirably 3.0 wt% or less for hot ductility.

【0017】次に耐脱亜鉛腐食性向上のためには、α+
γ2相の結晶構造を有するものではγ相中のSn濃度が
3.0wt%以上、α+β+γ3相の結晶構造を有する
ものでは、γ相中のSn濃度が3.0wt%以上であっ
てβ相の周囲はγ相で取リ囲まれていること、又はβ相
中のSn濃度が1.5wt%以上であることが必要であ
る。尚、α+β+γ3相でβ相の面積占有比率を15%
以上にすれば、β相も切削性向上に寄与する。
Next, in order to improve the dezincification corrosion resistance, α +
Those having a crystal structure of the γ2 phase have a Sn concentration of 3.0 wt% or more in the γ phase, and those having a crystal structure of the α + β + γ3 phase have a Sn concentration of 3.0 wt% or more in the γ phase The surroundings must be surrounded by the γ phase, or the Sn concentration in the β phase must be 1.5 wt% or more. The α + β + γ3 phase has an area occupancy ratio of the β phase of 15%.
In this case, the β phase also contributes to the improvement of the machinability.

【0018】ここで、β相の面積占有比率が35%以上
では、β相中の平均Sn濃度が1.5wt%以上であっ
ても耐脱亜鉛腐食性が確保できない場合があることを発
明者らは確認している。
Here, when the area occupation ratio of the β phase is 35% or more, even if the average Sn concentration in the β phase is 1.5 wt% or more, it is sometimes impossible to secure the dezincification corrosion resistance. Have confirmed.

【0019】これは以下のように考えられる。まず、β
相中のγ相との粒界近傍では局所的にSn濃度が低い部
分が生じ、局所的に脱亜鉛腐食を起こす場合がある。こ
こでβ相の面積占有比率が35%以上であると、β相の
結晶粒同士が隔離されにくく、隣り合うβ相を介して脱
亜鉛腐食部分が伝搬するのである。
This can be considered as follows. First, β
In the vicinity of the grain boundary with the γ phase in the phase, a portion where the Sn concentration is low is locally generated, which may cause local dezincification corrosion. Here, when the area occupation ratio of the β phase is 35% or more, the crystal grains of the β phase are not easily separated from each other, and the dezincification corrosion portion propagates through the adjacent β phase.

【0020】そこで本発明では、β相中の平均Sn濃度
を2.5wt%以上にすることによって、局所的にSn
濃度が低いγ相との粒界近傍でもSn濃度を確保して、
局所的な脱亜鉛腐食を低減するのである。
Therefore, in the present invention, the average Sn concentration in the β phase is set to 2.5 wt% or more to locally
The Sn concentration is ensured even near the grain boundary with the low concentration γ phase,
It reduces local dezincification corrosion.

【0021】さらにβ相の面積占有比率が40%以上の
場合には、脱亜鉛腐食部分がより伝搬しやすいため、β
相中のSn濃度を3.0wt%以上にすることによっ
て、局所的な脱亜鉛腐食をより低減するのである。
Further, when the area occupation ratio of the β phase is 40% or more, the dezincified corrosion portion is more easily propagated.
By making the Sn concentration in the phase 3.0 wt% or more, local dezincification corrosion is further reduced.

【0022】なお、以上のγ相の一部又は全部が、高温
域からの冷却によりβ相が変態したものである場合に、
本発明を適用することが好ましい。なぜならば、β相か
らγ相への変態時には、周囲のSnがγ相に取り込まれ
ることにより、γ相周囲のβ相ではSn濃度が低下しが
ちであるからである。
When a part or all of the above γ phase is a β phase transformed by cooling from a high temperature range,
It is preferable to apply the present invention. This is because at the time of transformation from the β phase to the γ phase, the Sn concentration in the β phase around the γ phase tends to decrease because the surrounding Sn is taken into the γ phase.

【0023】更に、本発明に係る銅合金にあっては、Z
n当量が37wt%以上45wt%以下であり、本発明
は上記の銅合金からなる接水部材を含む。接水部材とし
ては、例えば給水栓、給湯器、温水洗浄便座等に利用さ
れる取付金具、給水管、接続管、バルブ等の部品や配管
が挙げられる。
Further, in the copper alloy according to the present invention, Z
The n equivalent is 37 wt% or more and 45 wt% or less, and the present invention includes a water contact member made of the above copper alloy. Examples of the water contacting member include fittings used for a water faucet, a water heater, a hot water flush toilet seat, and the like, and parts such as a water supply pipe, a connection pipe, a valve, and piping.

【0024】[0024]

【発明の実施の形態】図2は種々の組成のCu−Zn−
Sn系の試料1〜7に対して行った銅合金の組成(特に
Sn)と耐食性(耐脱亜鉛腐食性)との実験結果を示し
たものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows Cu-Zn-
It shows the results of experiments on the composition (particularly, Sn) and corrosion resistance (anti-zinc corrosion resistance) of a copper alloy performed on Sn-based samples 1 to 7.

【0025】耐食性は日本伸銅協会技術標準(JBMA
T−303)による脱亜鉛腐食試験を行い評価した。
耐脱亜鉛腐食性の判定基準はJBMAT−303に示し
てある基準、即ち、脱亜鉛浸透探さ方向が加工方向と平
行な場合には最大脱亜鉛浸透深さ100μm以下を良
(○)、また脱亜鉛浸透深さ方向が加工方向と直角な場
合には最大脱亜鉛浸透深さ70μm以下を良(○)とし
た。この図2から、γ相の面積占有比率は3.0%以上
20%以下であれば、耐食性が向上することが分る。ま
た、熱間での鍛造性についても特に問題はなかった。
The corrosion resistance is based on the Japan Copper and Brass Association technical standard (JBMA).
T-303) was evaluated by performing a zinc removal corrosion test.
The criterion for determining the dezincification corrosion resistance is the criterion shown in JBMAT-303. That is, when the direction of the dezincing penetration search is parallel to the processing direction, the maximum dezincing penetration depth of 100 μm or less is good (○). When the zinc penetration depth direction was perpendicular to the processing direction, the maximum zinc removal depth of 70 μm or less was regarded as good (○). FIG. 2 shows that the corrosion resistance is improved when the area occupancy ratio of the γ phase is 3.0% or more and 20% or less. In addition, there was no particular problem regarding hot forgeability.

【0026】また、図3はγ相の面積占有比率を3.5
%及び5.2%とした本発明に係る銅合金素材と快削黄
銅棒(JIS C−3604)、γ相の面積占有比率を
2.1%とした比較例及びα相単相の銅合金素材に対
し、切削試験を行った結果を示すものである。この図3
から、本発明に係る銅合金素材の切削抵抗指数は切削性
が最も良いとされる快削黄銅棒の90%以上に達し、切
削性については良好な特性を有していることが分る。
FIG. 3 shows that the area occupation ratio of the γ phase is 3.5.
% And 5.2% of the copper alloy material according to the present invention, a free-cutting brass bar (JIS C-3604), a comparative example in which the area occupancy ratio of the γ phase is 2.1%, and an α phase single phase copper alloy It shows the result of performing a cutting test on the material. This figure 3
From this, it can be seen that the cutting resistance index of the copper alloy material according to the present invention reaches 90% or more of the free-cutting brass bar which is considered to have the best machinability, and that the copper alloy material has good machinability.

【0027】一方、図4(a)は図2の試料7の銅合金
の結晶構造を示す顕微鏡写真の写し、l(b)は(a)
に基づいて作成した図、図5(a)は試料4の銅合金の
結晶構造を示す顕微鏡写真の写し、(b)は(a)に基
づいて作成した図である。図4に示す結晶構造は、α相
の粒界にγ相が析出・成長し、β相が殆ど消失してお
り、また図5に示す結晶構造は、α相とβ相を含み、α
相とβ相との粒界にβ相を取り囲むようにγ相が析出し
ていることが分る。
On the other hand, FIG. 4 (a) is a photomicrograph showing the crystal structure of the copper alloy of Sample 7 in FIG. 2, and l (b) is (a).
FIG. 5A is a copy of a micrograph showing the crystal structure of the copper alloy of Sample 4, and FIG. 5B is a diagram prepared based on FIG. The crystal structure shown in FIG. 4 has a γ phase precipitated and grown at the grain boundary of the α phase, and the β phase has almost disappeared. The crystal structure shown in FIG.
It can be seen that the γ phase is precipitated at the grain boundary between the phase and the β phase so as to surround the β phase.

【0028】図6(a)乃至(c)は本発明に係る接水
部材の製造方法の工程を示すブロック図であり、同図
(a)に示す方法にあっては、Cu−Zn一Sn系の銅
合金素材に対し成形を施し、この成形体に対し500℃
以上550℃以下で30秒以上の熱処理を施し、次いで
350℃までの冷却速度を0.4℃/秒以下として冷却
し、この後切削加工、研磨、メツキ組み立てを行う。
FIGS. 6A to 6C are block diagrams showing steps of a method for manufacturing a wetted member according to the present invention. In the method shown in FIG. 6A, Cu--Zn-Sn Forming is applied to the copper alloy material of the system, and 500 ° C
Heat treatment is performed at a temperature of 550 ° C. or less for 30 seconds or more, and then cooling is performed at a cooling rate of 350 ° C. or less at a rate of 0.4 ° C./sec or less.

【0029】また、同図(b)に示す方法にあっては、
Cu一Zn−Sn系の銅合金素材に対し成形を施し、こ
の成形体に対し400℃以上500℃以下で30秒以上
の熱処埋を施し、次いで冷却した後に切削加工、研磨、
メツキ組み立てを行う。この方法と同図(a)に示す方
法とは、冷却速度を0.4℃/秒以下にするか否かにお
いて異なる。前記したように400℃以上500℃以下
で熱処理を行う場合にはγ相は必ず析出するので、冷却
速度は任意である。
In the method shown in FIG.
The Cu-Zn-Sn-based copper alloy material is subjected to molding, the molded body is subjected to heat treatment at 400 ° C or more and 500 ° C or less for 30 seconds or more, and then cooled, then cut, polished,
Perform the assembly. This method differs from the method shown in FIG. 3A in whether or not the cooling rate is set to 0.4 ° C./sec or less. As described above, when heat treatment is performed at a temperature of 400 ° C. or more and 500 ° C. or less, a γ phase is necessarily precipitated, and thus the cooling rate is arbitrary.

【0030】更に、同図(c)に示す方法にあっては、
Cu−Zn−Sn系の銅合金素材に対し成形を施し、こ
の成形体に対し500℃以上550℃以下で保持時間を
30秒以上の熱処理を施し、次いで成形体を350℃ま
での冷却速度を0.4℃/秒以上4℃/秒以下として冷
却し、この後切削加工等を施す。
Further, in the method shown in FIG.
The Cu-Zn-Sn-based copper alloy material is subjected to molding, and the molded body is subjected to a heat treatment at a temperature of 500 ° C or more and 550 ° C or less for a holding time of 30 seconds or more. Cooling is performed at 0.4 ° C./sec or more and 4 ° C./sec or less, and thereafter, cutting and the like are performed.

【0031】また、図7は従来の製造方法の工程を示す
ブロツク図であり、これと前記した本発明方法とを比較
すると、本発明に係る方法が従来の鋳造に基づく方法よ
りも工程数が滅少していることが分る。
FIG. 7 is a block diagram showing the steps of the conventional manufacturing method. Comparing this with the above-mentioned method of the present invention, the method of the present invention has a smaller number of steps than the conventional casting-based method. You can see that it is a little extinct.

【0032】図8は、試料3の組成割合のCu−Zn一
Sn系の銅合金に対して、熱処理の温度および時間を変
化させて熱処理した場合の、析出するγ相の面積占有比
率(%)を示したものであり、この図8から500℃以
下ではγ相の面積占有比率(%)を3%以上にするには
30秒以上の保持時間が必要であることが分る。また、
熱処埋温度が550℃になると、保持時間を長くしても
γ相の面積占有比率は増加せず、逆に減少する傾向を示
す。したがって、γ相の面積占有比率(%)を31%以
上にするには熱処理温度を550℃以下とすべきであ
る。
FIG. 8 shows the area occupancy ratio (%) of the precipitated γ-phase when the Cu—Zn—Sn-based copper alloy having the composition ratio of Sample 3 was heat-treated while changing the temperature and time of the heat treatment. FIG. 8 shows that at a temperature of 500 ° C. or less, a holding time of 30 seconds or more is required to make the area occupation ratio (%) of the γ phase 3% or more. Also,
When the heat treatment temperature becomes 550 ° C., the area occupancy ratio of the γ phase does not increase even if the holding time is lengthened, but tends to decrease. Therefore, in order to make the area occupation ratio (%) of the γ phase 31% or more, the heat treatment temperature should be 550 ° C. or less.

【0033】図9は、試料3の組成割合のCu−Zn−
Sn系の銅合金に対して、熱処理後の冷却条件を変化さ
せて析出するγ相の面積占有比率(%)を示したもので
あり、この図9から500℃以上では、水冷で3%以上
の面積占有比率(%)を得ることは難しく、更に350
℃までの冷却速度は遅い方が面積占有比率(%)が多く
なリ4℃/秒以下とするのが好ましいことが分る。
FIG. 9 shows the composition ratio of Cu-Zn-
FIG. 9 shows the area occupation ratio (%) of the γ phase precipitated by changing the cooling conditions after the heat treatment with respect to the Sn-based copper alloy. It is difficult to obtain the area occupation ratio (%) of
It can be seen that it is preferable to set the cooling rate to 4 ° C./sec or less at a lower cooling rate to 4 ° C./sec, where the area occupation ratio (%) is larger.

【0034】次に図10に、α+β+γ3相におけるβ
相の面積占有比率(%)、β相中のSn濃度(%)と、
耐食性の関係を示す。ここで、耐食性は日本伸銅協会技
術標準(JBMA T−303)による脱亜鉛腐食試験
に従う加工方向と直角な場合の腐食深さ(μm)を示
し、最大脱亜鉛浸透深さが70μm以下を良(○)とし
た。
Next, FIG. 10 shows that β in the α + β + γ3 phase
Phase area occupancy ratio (%), Sn concentration in β phase (%),
Shows the relationship between corrosion resistance. Here, the corrosion resistance indicates the corrosion depth (μm) perpendicular to the working direction according to the dezincification corrosion test according to the Japan Copper and Brass Association Technical Standard (JBMA T-303), and the maximum dezincification penetration depth is 70 μm or less. (O)

【0035】図10からわかるように、β相の面積占有
比率が35%以下の場合には、β相中のSn濃度が1.
5wt%以上であれば耐食性は良好であるが、β相の面
積占有比率が35%以上40%以下の場合に耐食性を良
好にするにはβ相中のSn濃度が2.5wt%以上必要
であり、β相の面積占有比率が40%以上の場合にはβ
相中のSn濃度は3.0wt%以上必要である。
As can be seen from FIG. 10, when the area occupation ratio of the β phase is 35% or less, the Sn concentration in the β phase becomes 1.%.
If the content is 5 wt% or more, the corrosion resistance is good. However, if the area occupation ratio of the β phase is 35% or more and 40% or less, the Sn concentration in the β phase needs to be 2.5 wt% or more to improve the corrosion resistance. When the area occupation ratio of the β phase is 40% or more, β
The Sn concentration in the phase needs to be 3.0 wt% or more.

【0036】これは以下のように考えられる。まず、β
相中のγ相との粒界近傍では局所的にSn濃度が低い部
分が生じ、局所的に脱亜鉛腐食を起こす場合がある。な
ぜならば、本実施形態のγ相は高温域からの冷却により
β相が変態したものであるため、β相からγ相への変態
時に周囲のSnを取り込んで、γ相周囲のβ相ではSn
濃度を低下させるからである。
This can be considered as follows. First, β
In the vicinity of the grain boundary with the γ phase in the phase, a portion where the Sn concentration is low is locally generated, which may cause local dezincification corrosion. Because, in the present embodiment, the β phase is transformed by cooling from a high temperature range, the surrounding Sn is taken in at the time of transformation from the β phase to the γ phase, and the Sn in the β phase around the γ phase
This is because the concentration is reduced.

【0037】ここでβ相の面積占有比率が35%以上で
あると、β相の結晶粒同士がα相により隔離されにくい
ため、隣り合うβ相を介して脱亜鉛腐食部分が伝搬する
のであるが、β相中の平均Sn濃度を2.5wt%以上
にすれば、γ相との粒界近傍のβ相中Sn濃度を比較的
高いレベルで維持できるため、局所的な脱亜鉛腐食を低
減するのである。
If the area occupation ratio of the β phase is 35% or more, since the β phase crystal grains are unlikely to be separated from each other by the α phase, the dezincified corrosion portion propagates through the adjacent β phase. However, if the average Sn concentration in the β phase is set to 2.5 wt% or more, the Sn concentration in the β phase near the grain boundary with the γ phase can be maintained at a relatively high level, thereby reducing local dezincification corrosion. You do it.

【0038】図11乃至図14は、本発明に係る銅合金
を適用した各種接水部材の例を示す図である。図11に
示す水栓金具は、一次圧のかかる接水耐圧部となる本体
に、二次圧側となる接水非耐圧部の継手を介して同じく
二次圧側となるスパウトを接続している。図12に示す
接水部材は、管材が接続されるエルボー部材に本発明に
係る銅合金からなる鍛造品を用いている。図13に示す
接水部材は、シヤワーを取り付けたホースヘの接続金具
に本発明に係る銅合金からなる鍛造品を用いている。更
に図14に示す接水部材は、管材のジョイント部材とし
て本発明に係る銅合金からなる鍛造品を用いている。
FIGS. 11 to 14 show examples of various water-contact members to which the copper alloy according to the present invention is applied. In the faucet fitting shown in FIG. 11, a spout which is also on the secondary pressure side is connected to a main body which is a water and pressure resistant part to which a primary pressure is applied, via a joint of a water non-pressure resistant part which is a secondary pressure side. The water contact member shown in FIG. 12 uses a forged product made of the copper alloy according to the present invention for the elbow member to which the pipe is connected. The water contact member shown in FIG. 13 uses a forged product made of the copper alloy according to the present invention as a fitting for a hose to which a shower is attached. Further, the water contact member shown in FIG. 14 uses a forged product made of the copper alloy according to the present invention as a joint member of a pipe.

【0039】[0039]

【発明の効果】以上に説明した如く本発明に係るCu一
Zn−Sn系の銅合金は、α相の粒界またはα相とβ相
との粒界にSn濃度が3.0wt%以上のγ相を、面積
占有比率が3%以上20%以下となる割合で析出せしめ
たので、耐脱亜鉛腐食性を大幅に向上させることができ
る。特に、β相が存在する場合であってもβ相の廻りを
γ相が取り囲むため、β相が存在しても耐脱亜鉛腐食性
が劣ることがない。
As described above, the Cu-Zn-Sn based copper alloy according to the present invention has a Sn concentration of 3.0 wt% or more at the grain boundary of the α phase or the grain boundary of the α phase and the β phase. Since the γ phase is precipitated at a ratio where the area occupation ratio is 3% or more and 20% or less, the dezincification corrosion resistance can be significantly improved. In particular, even when the β phase exists, the γ phase surrounds the periphery of the β phase, so that even if the β phase exists, the dezincification corrosion resistance does not deteriorate.

【0040】また、β相が存在する場含には、それ自体
で切削性が向上するが、β相がなくても、γ相が存在す
ると、γ相は硬いためにγ相を起点として切削が進行す
るので切削性は向上する。
In addition, when the β phase is present, the machinability itself is improved. However, even if there is no β phase, if the γ phase is present, since the γ phase is hard, the cutting is started from the γ phase. Progresses, so that the machinability is improved.

【0041】一方、本発明方法に係る銅合金の製造方法
によれば、冷却速度等をコントロールすることで、α相
の粒界間、またはα相とβ相との粒界にγ相を析出せし
めることができる。更に、本発明に係る銅合金からなる
接水部材によれば、耐脱亜鉛腐食性に優れ且つ製作容易
な接水部材を提供することができる。
On the other hand, according to the method for producing a copper alloy according to the method of the present invention, by controlling the cooling rate and the like, the γ phase is precipitated between the α-phase grain boundaries or the α- and β-phase grain boundaries. I can do it. Further, according to the water-contacting member made of the copper alloy according to the present invention, it is possible to provide a water-contacting member excellent in dezincification corrosion resistance and easy to manufacture.

【0042】つまり、一般に配管等の接水部材の肉厚と
しては、水圧等に耐え得る肉厚の他に、耐用年数分の腐
食による減少を見込んだ厚みにする必要があるが、本発
明に係るCu−Zn一Sn系の銅合金を使用すると、耐
脱亜鉛腐食性に優れ、酸性水(次亜塩素酸)に対する耐
性もあるため、接水耐圧部材、接水非耐圧部材の肉厚を
いずれも薄くしつつ十分な耐久性を発揮することができ
る。具体的には、給水栓のJIS規格では一次圧のかか
る接水耐圧金属部には17.5kg/cm2の耐圧性能
が要求されており、これに経時的に腐食による肉厚の減
少を加味して、従来にあっては100m mの円筒形状の
水栓金具部品の最低肉厚を1.0m m〜1.5m mとして
いたが、本発明に係る銅合金を用いることで、最低肉厚
を0.8mm〜1.2m mにまで薄肉化が可能になった。
That is, in general, the thickness of the water-contacting member such as a pipe must be not only a thickness that can withstand water pressure and the like, but also a thickness that is expected to be reduced by corrosion for a service life. When such a Cu—Zn—Sn based copper alloy is used, it is excellent in dezincification corrosion resistance and also resistant to acidic water (hypochlorous acid). Any of them can exhibit sufficient durability while being thin. Specifically, the JIS standard for hydrants requires a pressure-resistant performance of 17.5 kg / cm2 for a water-resistant metal part to which a primary pressure is applied, taking into account the decrease in wall thickness due to corrosion over time. Thus, in the past, the minimum wall thickness of the cylindrical faucet fitting part of 100 mm was 1.0 mm to 1.5 mm, but by using the copper alloy according to the present invention, the minimum wall thickness was reduced. The thickness can be reduced to 0.8 mm to 1.2 mm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】α相、β相、γ相の特性Fig. 1 Characteristics of α phase, β phase and γ phase

【図2】Cu−Zn−Sn系の試料1〜7に対して行っ
た銅合金の組成と耐食性との実験結果
FIG. 2 shows the results of experiments on the composition and corrosion resistance of copper alloys performed on Cu-Zn-Sn-based samples 1 to 7

【図3】本発明に係る銅合金素材と快削黄銅棒及びα相
単相の銅合金素材に対し、切削試験を行った結果
FIG. 3 shows a result of a cutting test performed on a copper alloy material according to the present invention, a free-cutting brass bar, and an α-phase single-phase copper alloy material.

【図4】(a)は試料7の銅合金の結晶構造を示す顕微
鏡写真の写し、(b)は(a)に基づいて作成した図
4A is a copy of a micrograph showing the crystal structure of the copper alloy of Sample 7, and FIG. 4B is a diagram prepared based on FIG.

【図5】(a)は試料4の銅合金の結晶構造を示す顕微
鏡写真の写し、(b)は(a)に基づいて作成した図
FIG. 5A is a photomicrograph showing the crystal structure of the copper alloy of Sample 4, and FIG. 5B is a diagram prepared based on FIG.

【図6】(a)及び(b)は本発明に係る接水部材の製
造方法の工程を示すブロツク図
FIGS. 6A and 6B are block diagrams showing steps of a method for manufacturing a wetted member according to the present invention.

【図7】従来の製造方法の工程を示すブロツク図FIG. 7 is a block diagram showing steps of a conventional manufacturing method.

【図8】試料3の銅合金についての、熱処理の温度およ
び時間に対するγ相の面積占有比率の関係
FIG. 8 shows the relationship between the area occupation ratio of the γ phase and the temperature and time of the heat treatment for the copper alloy of Sample 3.

【図9】試料3の銅合金についての、熱処理後の冷却条
件に対するγ相の面積占有比率の関係
FIG. 9 shows the relationship between the area occupation ratio of the γ phase and the cooling conditions after heat treatment for the copper alloy of Sample 3.

【図10】本発明に係る銅合金のβ相の面積占有比率
(%)、β相中のSn濃度(%)と、耐食性の関係
FIG. 10 shows the relationship between the area occupancy ratio (%) of the β phase, the Sn concentration (%) in the β phase, and the corrosion resistance of the copper alloy according to the present invention.

【図11】本発明に係る銅合金を適用した各種接水部材
の例を示す図
FIG. 11 is a view showing an example of various water-contact members to which the copper alloy according to the present invention is applied.

【図12】本発明に係る銅合金を適周した各種接水部材
の例を示す図
FIG. 12 is a view showing an example of various water-contacting members in which the copper alloy according to the present invention is appropriately rotated.

【図13】本発明に係る銅合金を適用した各種接水部材
の例を示す図
FIG. 13 is a view showing an example of various water-contact members to which the copper alloy according to the present invention is applied.

【図14】本発明に係る銅合金を適用した各種接水部材
の例を示す図
FIG. 14 is a view showing an example of various water-contact members to which the copper alloy according to the present invention is applied.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 640 C22F 1/00 640A 681 681 682 682 691 691B 691C 692 692A 692B (72)発明者 濱崎 正直 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 内田 亨 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 640 C22F 1/00 640A 681 681 682 682 692 691 691B 691C 692 692A 692B (72) Inventor Masanao Hamasaki Kokura, Kitakyushu, Fukuoka Prefecture (2-1) Toru Uchida Inventor Toru Uchida 2-1-1 Nakajima, Kitakyushu-shi, Fukuoka Prefecture

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】 Cu−Zn−Sn系の銅合金であって、
この銅合金はSn濃度が0.9wt%以上3.0wt%
以下で、α相の粒界またはα相とβ相の粒界にγ相が析
出し、このγ相の面積占有比率は3%以上20%以下
で、且つγ相中のSn濃度が3.0wt%以上であるこ
とを特徴とする銅合金。
1. A Cu—Zn—Sn based copper alloy,
This copper alloy has a Sn concentration of 0.9 wt% or more and 3.0 wt%.
In the following, a γ phase is precipitated at a grain boundary of an α phase or a grain boundary of an α phase and a β phase, the area occupation ratio of the γ phase is 3% or more and 20% or less, and the Sn concentration in the γ phase is 3. A copper alloy characterized by being at least 0 wt%.
【請求項2】 請求項1に記載の銅合金において、前記
β相の周囲はγ相で取リ囲まれていることを特徴とする
銅合金。
2. The copper alloy according to claim 1, wherein said β phase is surrounded by a γ phase.
【請求項3】 請求項2に記載の銅合金において、前記
α相中のSn濃度が0.5wt%以上、β相中のSn濃
度が1.5wt%未満であることを特徴とする銅合金。
3. The copper alloy according to claim 2, wherein the Sn concentration in the α phase is 0.5 wt% or more and the Sn concentration in the β phase is less than 1.5 wt%. .
【請求項4】 請求項1に記載の銅合金において、前記
α相中のSn濃度が0.5wt%以上、β相中のSn濃
度が1.5wt%以上であることを特徴とする銅合金。
4. The copper alloy according to claim 1, wherein the Sn concentration in the α phase is 0.5 wt% or more, and the Sn concentration in the β phase is 1.5 wt% or more. .
【請求項5】 請求項3に記載の銅合金において、前記
α相の面積占有比率が97%以下40%以上で、β相の
面積占有比率が0%以上40%以下であることを特徴と
する銅合金。
5. The copper alloy according to claim 3, wherein the α phase has an area occupancy of 97% or less and 40% or more, and the β phase has an area occupancy of 0% or more and 40% or less. Copper alloy.
【請求項6】 請求項4に記載の銅合金において、前記
α相の面積占有比率が97%以下20%以上で、β相の
面積占有比率が0%以上60%以下であることを特徴と
する銅合金。
6. The copper alloy according to claim 4, wherein the area occupancy of the α phase is 97% or less and 20% or more, and the area occupancy of the β phase is 0% or more and 60% or less. Copper alloy.
【請求項7】 請求項1乃至請求項6に記載の銅合金に
おいて、Zn当量が37wt%以上45wt%以下であ
ることを特徴とする銅合金。
7. The copper alloy according to claim 1, wherein a Zn equivalent is 37 wt% or more and 45 wt% or less.
【請求項8】 請求項1乃至請求項6に記載の銅合金を
材料としたことを特徴とする接水部材。
8. A water-contact member made of the copper alloy according to claim 1.
【請求項9】 請求項8に記載の接水部材において、こ
の接水部材は水栓金具であることを特徴とする接水部
材。
9. The water contact member according to claim 8, wherein the water contact member is a faucet.
【請求項10】 請求項1,請求項3または請求項5に
記載の銅合金を製造する方法であって、この方法はCu
一Zn一Sn系の銅合金素材に対し、500℃以上55
0℃以下で30秒以上の熱処埋を施し、次いで350℃
までの冷却速度を0.4℃/秒以下として冷却すること
を特徴とする銅合金の製造方法。
10. A method for producing a copper alloy according to claim 1, 3 or 5, wherein the method comprises the steps of:
500 ° C or more and 55 for 1 Zn-1 Sn based copper alloy material
Perform heat treatment at 0 ° C or less for 30 seconds or more, then 350 ° C
A method for producing a copper alloy, wherein cooling is performed at a cooling rate of 0.4 ° C./second or less.
【請求項11】 請求項1,請求項2または請求項5に
記載の銅合金を製造する方法であって、この方法はCu
−Zn−Sn系の銅合金素材に対し、400℃以上50
0℃以下で30秒以上の熱処理を施し、次いで冷却する
ことを特徴とする銅合金の製造方法。
11. A method for producing a copper alloy according to claim 1, 2 or 5, wherein the method comprises the steps of:
-400 ° C or more and 50 for Zn-Sn based copper alloy material
A method for producing a copper alloy, comprising performing a heat treatment at 0 ° C. or less for 30 seconds or more, and then cooling.
【請求項12】 請求項1,請求項4または請求項6に
記載の銅合金を製造する方法であって、この方法はCu
−Zn一Sn系の銅合金素材に対し、500℃以上55
0℃以下で30秒以上の熱処理を施し、次いで350℃
までの冷却速度を0.4℃/秒以上4℃/秒以下として
冷却することを特徴とする銅合金の製造方法。
12. A method for producing a copper alloy according to claim 1, 4 or 6, wherein the method comprises the steps of:
-500 ° C or more and 55 for Zn-Sn based copper alloy material
Heat treatment at 0 ° C or less for 30 seconds or more, then 350 ° C
A method for producing a copper alloy, comprising cooling at a cooling rate of 0.4 ° C./sec to 4 ° C./sec.
【請求項13】 請求項1に記載の銅合金を製造する方
法であって、結晶構造が変態する温度域として、γ相が
析出する第1温度域と、この第1温度域以上の温度域で
γ相が析出しない第2温度域とを有し、前記第2温度域
まで加熱した後、前記第1温度域の上限温度から下限温
度までの冷却速度を制御することによって、γ相の面積
占有比率を調整することを特徴とする銅合金の製造方
法。
13. The method for producing a copper alloy according to claim 1, wherein the temperature range in which the crystal structure is transformed is a first temperature range in which a γ phase is precipitated, and a temperature range higher than the first temperature range. And a second temperature range in which the γ phase does not precipitate, and after heating to the second temperature range, controlling the cooling rate from the upper limit temperature to the lower limit temperature of the first temperature range, thereby obtaining the area of the γ phase. A method for producing a copper alloy, comprising adjusting an occupancy ratio.
【請求項14】 結晶構造が変態する温度域として、γ
相が析出する第1温度域と、この第1温度域以上の温度
域でγ相が析出しない第2温度域とを有する銅合金の製
造方法において、前記第2温度域まで加熱し、その後前
記第1温度域の上限温度から下限温度までの冷却速度を
制御することによって、γ相の面積占有比率を調整する
ことを特徴とする銅合金の製造方法。
14. The temperature range in which the crystal structure is transformed is γ
In a method for producing a copper alloy having a first temperature range in which a phase precipitates and a second temperature range in which a γ phase does not precipitate in a temperature range equal to or higher than the first temperature range, heating to the second temperature range, A method for producing a copper alloy, comprising controlling a cooling rate from an upper limit temperature to a lower limit temperature of a first temperature range to adjust an area occupancy ratio of a γ phase.
【請求項15】 請求項14に記載の銅合金の製造方法
において、前記冷却速度が4℃/秒以下であることを特
徴とする銅合金の製造方法。
15. The method for producing a copper alloy according to claim 14, wherein the cooling rate is 4 ° C./sec or less.
【請求項16】 請求項14又は15に記載の銅合金に
おいて、γ相の面積占有比率が3%以上であることを特
徴とする銅合金の製造方法。
16. The method for producing a copper alloy according to claim 14, wherein the area occupation ratio of the γ phase is 3% or more.
【請求項17】 請求項14乃至16に記載の銅合金の
製造方法において、Cu−Zn−Sn系の銅合金につい
て、前記冷却速度を制御することによってγ相中のSn
濃度を調整することを特徴とする銅合金の製造方法。
17. The method for producing a copper alloy according to claim 14, wherein the Cu—Zn—Sn-based copper alloy contains Sn in the γ phase by controlling the cooling rate.
A method for producing a copper alloy, comprising adjusting the concentration.
【請求項18】 請求項17に記載の銅合金において、
γ相中のSn濃度が3.0wt%以上であることを特徴
とする銅合金の製造方法。
18. The copper alloy according to claim 17, wherein
A method for producing a copper alloy, wherein the Sn concentration in the γ phase is 3.0 wt% or more.
【請求項19】 Cu−Zn−Sn系の銅合金であっ
て、γ相の面積占有比率が3%以上である銅合金
19. A Cu—Zn—Sn based copper alloy, wherein the area occupation ratio of the γ phase is 3% or more.
【請求項20】 請求項19に記載の銅合金において、
γ相の面積占有比率が20%以下であることを特徴とす
る銅合金。
20. The copper alloy according to claim 19,
A copper alloy, wherein the area occupation ratio of the γ phase is 20% or less.
【請求項21】 請求項19又は20に記載の銅合金に
おいて、Sn濃度が0.9wt%以上3.0wt%以下
であることを特徴とする銅合金。
21. The copper alloy according to claim 19, wherein the Sn concentration is 0.9 wt% or more and 3.0 wt% or less.
【請求項22】 請求項19乃至21に記載の銅合金に
おいて、α+γ2相の結晶構造を有するとともに、γ相
中のSn濃度が3.0wt%以上であることを特徴とす
る銅合金。
22. The copper alloy according to claim 19, wherein the copper alloy has an α + γ2 phase crystal structure and a Sn concentration in the γ phase is 3.0 wt% or more.
【請求項23】 請求項19乃至21に記載の銅合金に
おいて、α+β+γ3相の結晶構造を有するとともに、
γ相中のSn濃度が3.0wt%以上であって、β相の
周囲はγ相で取リ囲まれていることを特徴とする銅合
金。
23. The copper alloy according to claim 19, which has an α + β + γ3 phase crystal structure,
A copper alloy, wherein the Sn concentration in the γ phase is 3.0 wt% or more, and the periphery of the β phase is surrounded by the γ phase.
【請求項24】 請求項19乃至21に記載の銅合金に
おいて、α+β+γ3相の結晶構造を有するとともに、
β相中のSn濃度が1.5wt%以上であることを特徴
とする銅合金。
24. The copper alloy according to claim 19, having a crystal structure of α + β + γ3 phase,
A copper alloy, wherein the Sn concentration in the β phase is 1.5 wt% or more.
【請求項25】 請求項24に記載の銅合金において、
β相の面積占有比率が35%以下であることを特徴とす
る銅合金。
25. The copper alloy according to claim 24,
A copper alloy, wherein the area occupation ratio of the β phase is 35% or less.
【請求項26】 請求項24に記載の銅合金において、
β相の面積占有比率が35%以上40%以下、β相中の
Sn濃度が2.5wt%以上であることを特徴とする銅
合金。
26. The copper alloy according to claim 24,
A copper alloy, wherein the area occupation ratio of the β phase is 35% or more and 40% or less, and the Sn concentration in the β phase is 2.5% by weight or more.
【請求項27】 請求項24に記載の銅合金において、
β相の面積占有比率が40%以上、β相中のSn濃度が
3.0wt%以上であることを特徴とする銅合金。
27. The copper alloy according to claim 24,
A copper alloy, wherein the area occupancy of the β phase is 40% or more, and the Sn concentration in the β phase is 3.0% by weight or more.
【請求項28】 請求項19乃至請求項27に記載の銅
合金において、γ相の一部又は全部は、高温域からの冷
却によりβ相が変態したものであることを特徴とする銅
合金。
28. The copper alloy according to claim 19, wherein a part or all of the γ phase is a β phase transformed by cooling from a high temperature range.
【請求項29】 請求項19乃至請求項28に記載の銅
合金において、Zn当量が37wt%以上45wt%以
下であることを特徴とする銅合金。
29. The copper alloy according to claim 19, wherein the Zn equivalent is not less than 37 wt% and not more than 45 wt%.
【請求項30】 請求項19乃至請求項29に記載の銅
合金を材料としたことを特徴とする接水部材。
30. A water-contact member made of the copper alloy according to claim 19.
【請求項31】 請求項30に記載の接水部材におい
て、この接水部材は水栓金具であることを特徴とする接
水部材。
31. The water contact member according to claim 30, wherein the water contact member is a faucet.
JP31584097A 1996-11-01 1997-10-31 Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy Pending JPH10183275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31584097A JPH10183275A (en) 1996-11-01 1997-10-31 Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29177596 1996-11-01
JP8-291775 1997-05-20
JP31584097A JPH10183275A (en) 1996-11-01 1997-10-31 Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy

Publications (1)

Publication Number Publication Date
JPH10183275A true JPH10183275A (en) 1998-07-14

Family

ID=26558699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31584097A Pending JPH10183275A (en) 1996-11-01 1997-10-31 Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy

Country Status (1)

Country Link
JP (1) JPH10183275A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024628A1 (en) * 1997-11-11 1999-05-20 Toto Ltd. Metallic material, brass, and process for producing the same
JP2003239078A (en) * 2001-12-12 2003-08-27 Nippon Parkerizing Co Ltd Surface treatment method for lead-containing copper alloy and member in contact with water made of the same copper alloy
US6942742B2 (en) 2003-02-13 2005-09-13 Dowa Mining Co., Ltd. Copper-based alloy excellent in dezincing resistance
US20150275333A1 (en) * 2012-10-31 2015-10-01 Kitz Corporation Brass alloy and processed part and wetted part
JP2018162517A (en) * 2018-04-20 2018-10-18 株式会社キッツ Manufacturing method of water supply equipment made of copper alloy in faucet fitting or valve, and water supply equipment made of copper alloy
JP2020528965A (en) * 2017-08-11 2020-10-01 株式会社Lixilグループ Use of copper alloys, sanitary ware, and methods for producing sanitary ware
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024628A1 (en) * 1997-11-11 1999-05-20 Toto Ltd. Metallic material, brass, and process for producing the same
US6458222B1 (en) 1997-11-11 2002-10-01 Toto Ltd. Metal material, brass and method for manufacturing the same
JP3951604B2 (en) * 1997-11-11 2007-08-01 Toto株式会社 Metal material, brass and manufacturing method thereof
JP2003239078A (en) * 2001-12-12 2003-08-27 Nippon Parkerizing Co Ltd Surface treatment method for lead-containing copper alloy and member in contact with water made of the same copper alloy
US6942742B2 (en) 2003-02-13 2005-09-13 Dowa Mining Co., Ltd. Copper-based alloy excellent in dezincing resistance
US20150275333A1 (en) * 2012-10-31 2015-10-01 Kitz Corporation Brass alloy and processed part and wetted part
US10006106B2 (en) * 2012-10-31 2018-06-26 Kitz Corporation Brass alloy and processed part and wetted part
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same
JP2020528965A (en) * 2017-08-11 2020-10-01 株式会社Lixilグループ Use of copper alloys, sanitary ware, and methods for producing sanitary ware
JP2021073374A (en) * 2017-08-11 2021-05-13 株式会社Lixil Copper alloy, use of copper alloy, and method for producing sanitary fitting
US11767577B2 (en) 2017-08-11 2023-09-26 Lixil Corporation Copper alloy, use of a copper alloy, sanitary fitting and method for producing a sanitary fitting
JP2018162517A (en) * 2018-04-20 2018-10-18 株式会社キッツ Manufacturing method of water supply equipment made of copper alloy in faucet fitting or valve, and water supply equipment made of copper alloy

Similar Documents

Publication Publication Date Title
EP0947592B1 (en) Copper alloy and method of manufacturing same
US6599378B1 (en) Copper-based alloy, method for production of the alloy, and products using the alloy
JP5028657B2 (en) High-strength copper alloy sheet with little anisotropy and method for producing the same
JP3917304B2 (en) Free-cutting copper alloy
JP6266737B2 (en) Brass alloy with excellent resistance to stress corrosion cracking, processed parts and wetted parts
TW201102446A (en) Copper alloy sheet and method for producing same
JP2000119775A (en) Lead-free free cutting copper alloy
EP1008664B1 (en) Copper-based alloy excellent in corrosion resistance, hot workability, and resistance to stress corrosion cracking, and process for producing the copper-based alloy
JPH10183275A (en) Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy
JP2000239765A (en) Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof
JP2000169919A (en) Lead-free copper base alloy material
JP2002030364A (en) High strength free cutting brass
JP2003193157A (en) Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same
JP5062829B2 (en) Brass material and method for producing brass material
JP3375883B2 (en) Brass forged valves and plugs and forged brass parts of valves and plugs
EP1508625A1 (en) Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
EP2215278A1 (en) Copper tin nickel phosphorus alloys with improved strength and formability
TW473552B (en) Brass material, brass tube and their production method
JPH10330870A (en) Sanitary pipe made of brass alloy
JPH07207387A (en) Copper-based alloy excellent in corrosion resistance and hot workability
JPH07197152A (en) Copper base alloy-made hot extruding/forging material having excellent corrosion resistance and its production
JP3732305B2 (en) Copper base alloy having excellent corrosion resistance, hot workability and stress corrosion cracking resistance, and method for producing the copper base alloy
JPH08337831A (en) Copper alloy for die casting excellent in corrosion resistance, production of the same alloy and faucet using the same alloy
Ali Heat Treating of Brasses