JPH10180321A - Learning control method in rolling mill - Google Patents

Learning control method in rolling mill

Info

Publication number
JPH10180321A
JPH10180321A JP8348013A JP34801396A JPH10180321A JP H10180321 A JPH10180321 A JP H10180321A JP 8348013 A JP8348013 A JP 8348013A JP 34801396 A JP34801396 A JP 34801396A JP H10180321 A JPH10180321 A JP H10180321A
Authority
JP
Japan
Prior art keywords
rolling
error
model
learning control
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8348013A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
治 山本
Takayuki Ohara
孝幸 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8348013A priority Critical patent/JPH10180321A/en
Publication of JPH10180321A publication Critical patent/JPH10180321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve thickness precision and shape precision even in the case of rolling a thick plate by learning a model error every the kind of steel, a rolling dimension and a work roll to be used and reflecting the error in the initial rolling schedule of the subsequent rolling stock. SOLUTION: The load model error from actual operating data is successively learned on not only the model error among respective paths but also the high reproducible factor of a rolling load model, i.e., every the kind of steel, the rolling size and the work roll, and the error is reflected in the subsequent rolling stock. By this way, the setup precision of the rolling mill is improved, consequently, thickness precision and shape precision are improved even in the case of rolling the thick plate. Also, since the hysteresis temperature is not varied in the rolling under the same condition, both temperature model error and correction taken in are simultaneously executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧延機のセットア
ップモデルを用いて算出された計算値と実際の圧延の結
果得られる実績値との差により前記モデルを修正する圧
延機の学習制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a learning control method for a rolling mill that corrects a model based on a difference between a calculated value calculated using a setup model of a rolling mill and an actual value obtained as a result of actual rolling. .

【0002】[0002]

【従来の技術】圧延機で圧延する際には、適正なロール
開度や圧延速度等を得るために計算機により操作量の予
測計算を行い、その予測計算値に基づいて各操作量を設
定するようにしている。このようにして設定された操作
量による圧延において、製品に要求される所定の厚み精
度が得られるか否かは前記予測計算に使用するセットア
ップモデルの精度に依存する。
2. Description of the Related Art When rolling with a rolling mill, a calculation of a manipulated variable is performed by a computer in order to obtain an appropriate roll opening, a rolling speed, and the like, and each manipulated variable is set based on the predicted calculated value. Like that. Whether or not a predetermined thickness accuracy required for a product can be obtained in rolling with the operation amount set in this way depends on the accuracy of a setup model used for the prediction calculation.

【0003】一般に、圧延機のセットアップモデルの精
度を向上させる方法として、実績値に基づき前記モデル
による計算時に補正を加える学習制御が行われている。
前記モデルの中で厚み精度に大きな影響を与える数式モ
デルとして圧延荷重式があり、この圧延荷重式の学習制
御方法として(1)式に示す補正係数Kを学習する方法
が行われている。
In general, as a method of improving the accuracy of a setup model of a rolling mill, learning control is performed in which correction is performed at the time of calculation by the model based on actual values.
Among the above-mentioned models, there is a rolling load equation as a mathematical model that greatly affects the thickness accuracy, and a method of learning a correction coefficient K shown in equation (1) is used as a learning control method of the rolling load equation.

【0004】P=K・P0 …(1) ここで、Pは圧延荷重予測値、P0 は数式モデル計算
値、Kは補正係数を示す。
P = K · P 0 (1) where P is a predicted rolling load value, P 0 is a mathematical model calculation value, and K is a correction coefficient.

【0005】補正係数Kの学習方法としては、特開昭6
2−267009号公報に記載のように、各パス間での
学習制御に加えて各スラブ間での学習制御を行う方法が
知られている。
A method of learning the correction coefficient K is disclosed in
As described in Japanese Patent Application Laid-Open No. 2-26709, a method of performing learning control between slabs in addition to learning control between paths is known.

【0006】具体的には、鋼種に応じて変形抵抗と摩擦
係数とに分類して学習するもので、学習対象材料の鋼種
が前回と異なるときは計算値と実績値との誤差を同一鋼
種内でばらつきの少ない変形抵抗の誤差として学習し、
前回と同一のときは計算値と実績値との誤差を鋼種の変
化によるばらつきが少ない摩擦係数の誤差として学習し
てセットアップモデルの精度向上を図ったものである。
More specifically, learning is performed by classifying into the deformation resistance and the friction coefficient according to the steel type, and when the steel type of the learning target material is different from the previous one, the error between the calculated value and the actual value is set within the same steel type. Learning as an error of deformation resistance with little variation,
At the same time as the previous time, the error between the calculated value and the actual value is learned as the error of the friction coefficient, which has little variation due to the change of the steel type, to improve the accuracy of the setup model.

【0007】[0007]

【発明が解決しようとする課題】ところで、厚板圧延の
ような多種多様なサイズの圧延材を圧延する上では、圧
延サイズが大きく変化する場合がある。
When rolling rolled materials of various sizes, such as thick plate rolling, the rolled size may vary greatly.

【0008】しかしながら、前述したような学習方法で
は、圧延サイズが大きく変化すると、圧延荷重式が有し
ているサイズによる誤差の変動を修正できないだけでな
く、もともとの荷重予測精度の悪い鋼種については実際
の圧延での補正量の影響が大きいために初期圧延スケジ
ュールからのずれが大きくなり、厚み精度不良や形状不
良を生じる問題がある。
However, according to the learning method as described above, when the rolling size greatly changes, not only the variation in the error due to the size of the rolling load equation cannot be corrected, but also for the steel type with the originally poor load prediction accuracy. Since the influence of the correction amount in the actual rolling is large, the deviation from the initial rolling schedule becomes large, and there is a problem that a thickness accuracy defect and a shape defect occur.

【0009】本発明はかかる不都合を解消するためにな
されたものであり、厚板圧延の場合においても厚み精度
や形状精度の向上を図ることができる圧延機の学習制御
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a learning control method for a rolling mill capable of improving thickness accuracy and shape accuracy even in the case of thick plate rolling. And

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明に係る圧延機の学習制御方法は、圧延機の
セットアップモデルを用いて算出された計算値と実際の
圧延の結果得られる実績値との差により前記モデルを修
正する圧延機の学習制御方法において、鋼種、圧延寸法
及び使用ワークロール別に前記モデルの誤差を学習し、
その誤差を後続圧延材料の初期圧延スケジュールに反映
するようにしたことを特徴とする。
In order to achieve the above object, a learning control method for a rolling mill according to the present invention obtains a calculated value calculated by using a setup model of a rolling mill and an actual rolling result. In the learning control method of a rolling mill that corrects the model by a difference from an actual value, the error of the model is learned for each steel type, rolling dimension, and work roll used,
The error is reflected in the initial rolling schedule of the succeeding rolling material.

【0011】上述した(1)式における圧延荷重の数式
モデル計算値(P0 )は一般的に次式で表される。 P0 =K0 ・W・ld・Qp …(2) ここで、K0 は平均変形抵抗、Wは板幅、ldは接触投
影長、Qp は圧下力関数を示す。
The mathematical model calculation value (P 0 ) of the rolling load in the above equation (1) is generally expressed by the following equation. P 0 = K 0 · W · ld · Q p (2) where K 0 is the average deformation resistance, W is the plate width, ld is the contact projection length, and Q p is the rolling force function.

【0012】また、(2)式の荷重モデル要素(K0
ld,Qp )は次に示すパラメータで表現できる。 K0 =f(Tk , ε, 成分)…(3) ld=g(H,h,R′) …(4) Qp =k(H,h,R′) …(5) ここで、Tk は温度、εは歪み、Hは入側板厚、hは出
側板厚、R′は偏平ロール径を示す。
Further, the load model element (K 0 ,
ld, Q p ) can be represented by the following parameters. K 0 = f (T k , ε, component) (3) ld = g (H, h, R ′) (4) Q p = k (H, h, R ′) (5) Tk is temperature, ε is strain, H is the thickness of the inlet plate, h is the thickness of the outlet plate, and R 'is the flat roll diameter.

【0013】(3)式で表現される平均変形抵抗K
0 は、圧延材の鋼種により変化するものであり、同一鋼
種内でのばらつきは比較的少ない。しかし、厚板圧延の
ようにいろいろな板厚・板幅を有する圧延材を圧延する
場合には、同一鋼種においてはむしろ各圧延パスでのサ
イズによる荷重予測モデルの補正を実施しなければ、圧
延機のセットアップ精度は向上しない。
Average deformation resistance K expressed by equation (3)
0 changes depending on the steel type of the rolled material, and the variation within the same steel type is relatively small. However, when rolling rolled materials having various thicknesses and widths such as thick plate rolling, if the load prediction model is not corrected by the size in each rolling pass for the same steel type, the rolling must be performed. The setup accuracy of the machine does not improve.

【0014】また、圧延時のワークロールの研磨状況が
変わると摩擦係数が変わって荷重発生量が変化するた
め、使用ワークロールの種類に応じて荷重予測モデルを
補正する必要も生じてくる。
Further, when the grinding condition of the work roll during rolling changes, the friction coefficient changes and the amount of load changes, so that it becomes necessary to correct the load prediction model according to the type of work roll used.

【0015】そこで、本発明においては、再現性の高い
要素、即ち、鋼種、圧延サイズ及びワークロール別に荷
重予測モデルの誤差を学習してその補正を次材以降の初
期圧延スケジュールに反映する。
Therefore, in the present invention, the error of the load prediction model is learned for each of the elements with high reproducibility, ie, steel type, rolling size, and work roll, and the correction is reflected in the initial rolling schedule for the next and subsequent materials.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図を参照して説明する。図1は本発明の実施の形態の
一例である圧延機の学習制御方法を説明するための説明
図、図2は学習制御のオンライン前後での鋼種と荷重予
測係数との関係を示すグラフ図、図3は学習制御のオン
ライン前後での鋼種とFCF平均値との関係を示すグラ
フ図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram for explaining a learning control method for a rolling mill, which is an example of an embodiment of the present invention. FIG. 2 is a graph showing the relationship between steel types and load prediction coefficients before and after online learning control. FIG. 3 is a graph showing the relationship between the steel type and the FCF average value before and after the online learning control.

【0017】図1に示すように、厚板圧延の実圧延での
圧延実績から鋼種(成分)、圧延寸法(厚さ、幅区分)
及びワークロール別テーブルで荷重モデル誤差(FCF
=実績荷重/荷重モデルでの予測荷重)を次のようにし
てそれぞれメッシュ毎に学習・更新していく。
As shown in FIG. 1, the steel type (composition) and the rolling dimensions (thickness and width categories) are obtained from actual rolling results in actual rolling of thick plate rolling.
And load model error (FCF)
= Actual load / predicted load in load model) is learned and updated for each mesh as follows.

【0018】 FCFTb(新)=FCFTb(旧)+α(FCFmo(瞬)−FCFTb(旧)) …(6) ここで、FCFTbはFCF学習テーブル値、FCF
mo(瞬)は荷重モデルの誤差瞬時値、αは影響係数を示
す。
FCF Tb (new) = FCF Tb (old) + α (FCF mo (instantaneous) −FCT Tb (old)) (6) where FCF Tb is an FCF learning table value and FCF
mo (instantaneous) indicates the instantaneous error value of the load model, and α indicates the influence coefficient.

【0019】また、次スラブへの圧延の反映としては、
鋼種、圧延サイズ及びワークロールが同一条件であるス
ラブの場合に、そのスラブに対応した鋼種のテーブルを
使用して各パスの圧延材の厚み・幅に対応したメッシュ
の学習値を使用して初期圧延スケジュールを作成する。
The reflection of rolling on the next slab is as follows:
In the case of a slab where the steel type, rolling size, and work roll are the same, use the steel type table corresponding to the slab and use the learning value of the mesh corresponding to the thickness and width of the rolled material in each pass to initialize. Create a rolling schedule.

【0020】このようにこの実施の形態では、各パス間
でのモデル誤差の学習だけでなく圧延荷重モデルを再現
性の高い要素、即ち鋼種、圧延サイズ及びワークロール
別に実操業データからの荷重モデル誤差を逐次学習して
いき、その誤差を後続圧延材へ反映するようにしている
ので、圧延機のセットアップ精度の向上が図られ、この
結果、厚板圧延の場合においても厚み精度や形状精度の
向上を図ることができる。また、同一条件の圧延では履
歴温度は変わらないことから、温度モデルの誤差も取り
込んだ補正も同時に行うことができる。
As described above, in this embodiment, not only learning of the model error between each pass, but also the rolling load model is obtained by using a highly reproducible element such as a steel type, a rolling size and a work roll. Since the error is sequentially learned and the error is reflected on the succeeding rolled material, the setup accuracy of the rolling mill is improved, and as a result, even in the case of thick plate rolling, the thickness accuracy and the shape accuracy are reduced. Improvement can be achieved. Further, since the hysteresis temperature does not change in the rolling under the same conditions, it is possible to simultaneously perform the correction incorporating the error of the temperature model.

【0021】図2及び図3にこの実施の形態に係る学習
制御のオンライン前後での鋼種と荷重予測係数との関係
及び鋼種とFCF平均値との関係を示す。図2及び図3
から明らかなように、この実施の形態に係る学習制御の
オンライン後においては、荷重予測精度が向上し、しか
も、FCF平均値も安定していることが判る。
FIGS. 2 and 3 show the relationship between the steel type and the load prediction coefficient and the relationship between the steel type and the FCF average value before and after the learning control according to this embodiment. 2 and 3
As is clear from FIG. 7, after the learning control according to the present embodiment is performed online, the load prediction accuracy is improved, and the FCF average value is also stable.

【0022】[0022]

【発明の効果】上記の説明から明らかなように、本発明
によれば、圧延荷重モデルを再現性の高い因子である鋼
種、圧延サイズ及びワークロール別に実操業データから
の荷重モデル誤差を逐次学習していき、その誤差を後続
圧延材へ反映するようにしているので、初期圧延スケジ
ュールのセットアップ精度が向上して厚板圧延の場合に
おいても厚み精度及び形状精度の向上を図ることができ
るという効果が得られる。
As is apparent from the above description, according to the present invention, the load model error is sequentially learned from the actual operation data for each of the steel type, roll size and work roll, which are factors with high reproducibility. And the error is reflected in the succeeding rolled material, so that the setup accuracy of the initial rolling schedule is improved, and the thickness accuracy and shape accuracy can be improved even in the case of thick plate rolling. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例である圧延機の学習
制御方法を説明するための説明図である。
FIG. 1 is an explanatory diagram for describing a learning control method for a rolling mill as an example of an embodiment of the present invention.

【図2】学習制御のオンライン前後での鋼種と荷重予測
係数との関係を示すグラフ図である。
FIG. 2 is a graph showing a relationship between a steel type and a load prediction coefficient before and after online learning control.

【図3】学習制御のオンライン前後での鋼種とFCF平
均値との関係を示すグラフ図である。
FIG. 3 is a graph showing a relationship between a steel type and an FCF average value before and after online learning control.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧延機のセットアップモデルを用いて算
出された計算値と実際の圧延の結果得られる実績値との
差により前記モデルを修正する圧延機の学習制御方法に
おいて、鋼種、圧延寸法及び使用ワークロール別に前記
モデルの誤差を学習し、その誤差を後続圧延材料の初期
圧延スケジュールに反映するようにしたことを特徴とす
る圧延機の学習制御方法。
1. A learning control method for a rolling mill, which corrects a model based on a difference between a calculated value calculated using a setup model of a rolling mill and an actual value obtained as a result of actual rolling. A learning control method for a rolling mill, wherein an error of the model is learned for each work roll used, and the error is reflected in an initial rolling schedule of a subsequent rolling material.
JP8348013A 1996-12-26 1996-12-26 Learning control method in rolling mill Pending JPH10180321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8348013A JPH10180321A (en) 1996-12-26 1996-12-26 Learning control method in rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8348013A JPH10180321A (en) 1996-12-26 1996-12-26 Learning control method in rolling mill

Publications (1)

Publication Number Publication Date
JPH10180321A true JPH10180321A (en) 1998-07-07

Family

ID=18394154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8348013A Pending JPH10180321A (en) 1996-12-26 1996-12-26 Learning control method in rolling mill

Country Status (1)

Country Link
JP (1) JPH10180321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084607A (en) * 1998-09-08 2000-03-28 Toshiba Corp Rolling model learning device
JP2004517736A (en) * 2001-02-13 2004-06-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for presetting a process amount of a rolling path for rolling a metal strip
KR101426013B1 (en) * 2012-12-27 2014-08-05 주식회사 포스코 Parameter tuning method of cold rolling mill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084607A (en) * 1998-09-08 2000-03-28 Toshiba Corp Rolling model learning device
JP2004517736A (en) * 2001-02-13 2004-06-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for presetting a process amount of a rolling path for rolling a metal strip
KR101426013B1 (en) * 2012-12-27 2014-08-05 주식회사 포스코 Parameter tuning method of cold rolling mill

Similar Documents

Publication Publication Date Title
JPH10180321A (en) Learning control method in rolling mill
JP3467677B2 (en) Learning control method of rolling load in rolling mill
JPS59101212A (en) Controlling method of rolling mill
JPH0760320A (en) Method for rolling thick plate
JPH09174128A (en) Method for controlling shape of rolled stock
JP2000126809A (en) Set up device of rolling mill
JPH06259107A (en) Learning control method for process line
JP3681283B2 (en) Rolling mill setup equipment
JPH071561A (en) Lip gap adjusting method
JP3280866B2 (en) Rolling load prediction method
JP2628916B2 (en) Flatness control method during reverse rolling
JPH067819A (en) Camber and meandering control method in rolling mill
JP2696058B2 (en) Control method for constant length section of variable thickness part
JP2005111546A (en) Method for controlling plate thickness and crown
JP2505990B2 (en) Edge-drop control method for strip rolling
JP2505989B2 (en) Edge-drop control method for strip rolling
JPH08117824A (en) Method for predicting rolling operation condition and set controlled rolling method using teh same
JPH09192715A (en) Automatic load balance regulation in multistand hot rolling
JP2003245706A (en) Method for re-pass scheduling under rolling in a plurality of pass rollings
JPS61189810A (en) Shape-controlling method in finish rolling
JP2878060B2 (en) Automatic hot thickness control method and apparatus
JPS6228014A (en) Plane shape control method for thick plate rolling
JP3939893B2 (en) Pass schedule setting method and apparatus for rolling mill
JPH08238509A (en) Method for controlling edge drop at time of cold rolling
JPH05269516A (en) Method for controlling shape in rolling of thick plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725