JPH10177010A - Damage detection method - Google Patents

Damage detection method

Info

Publication number
JPH10177010A
JPH10177010A JP33818296A JP33818296A JPH10177010A JP H10177010 A JPH10177010 A JP H10177010A JP 33818296 A JP33818296 A JP 33818296A JP 33818296 A JP33818296 A JP 33818296A JP H10177010 A JPH10177010 A JP H10177010A
Authority
JP
Japan
Prior art keywords
magnetic
measured
defect
powder
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33818296A
Other languages
Japanese (ja)
Inventor
Shinobu Okido
忍 大城戸
Katsumasa Miyazaki
宮崎克雅
Satoshi Sugano
智 菅野
Masahiro Otaka
大高正廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33818296A priority Critical patent/JPH10177010A/en
Publication of JPH10177010A publication Critical patent/JPH10177010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a structural material until its life expires by accurately evaluating a damage generated in the structural material of a non-magnetic body and predicting the remaining life of the structural material from the damage evaluation result. SOLUTION: In the method for detecting the surface defect of a body to be measured by applying a magnetic powder onto the surface of the non- magnetic body to be measured, the magnetic powder is applied to the surface of the body to be measured, a magnetic field or a high-frequency current is applied to the body to be measured by wiping off the magnetic material or in that state, thus magnetizing the magnetic powder. Then, a plurality of layers of the magnetic recording medium of a magnetic recording tape or a magnetic recording film are adhered on the surface of the body to be measured and a leakage magnetic flux disturbed by the surface defect of the body to be measured is recorded, and the plane shape and the depth of the surface defect of the body to be measured are evaluated. As a result, by measuring the leakage magnetic flux for generating the defect in the structure material around the defect, the presence or absence of a defect and its phase can be evaluated three-dimensionally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電プラント等に
おけるステンレス鋼等の非磁性構造材料に発生した微小
なき裂の三次元的な形状を、非破壊的に検査する損傷検
出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for damage detection for non-destructively inspecting a three-dimensional shape of a small crack generated in a non-magnetic structural material such as stainless steel in a power plant or the like.

【0002】[0002]

【従来の技術】き裂又はピットを非破壊的に検出する技
術として従来までに主に次のような例がある。
2. Description of the Related Art There are mainly the following examples of techniques for non-destructively detecting cracks or pits.

【0003】特開昭55−2920号公報における公知
例は、非磁性材料の表面開口欠陥に磁性体粉末を含む液
を浸透させ、欠陥部に残留した磁性体の磁気量を検知す
るものである。特開昭61−139743号公報におけ
る公知例は、TVカメラを用いて対象構造物表面の画像
を入力し、その画像をビデオ信号としてデジタル入力化
し画像解析に基づいた数理統計処置を行い損傷を検出す
る方法及び装置である。特開昭62−245960号公
報における公知例は、対象となる表面部分を予め研磨な
どの処理を施し、一定期間使用後予備処理をした位置に
おいてレプリカ観察し、損傷を評価する方法である。
[0003] A known example of Japanese Patent Application Laid-Open No. 55-2920 is to detect a magnetic quantity of a magnetic substance remaining in a defect portion by infiltrating a liquid containing a magnetic substance powder into a surface opening defect of a non-magnetic material. . A known example in Japanese Patent Application Laid-Open No. 61-139743 is to input an image of the surface of a target structure using a TV camera, digitally input the image as a video signal, perform mathematical statistical processing based on image analysis, and detect damage. Method and apparatus. A known example in Japanese Patent Application Laid-Open No. 62-245960 is a method in which a target surface portion is subjected to a treatment such as polishing in advance, and after a certain period of use, a replica is observed at a position subjected to a preliminary treatment to evaluate damage.

【0004】特開昭63−292059号公報における
公知例は、対象物に超音波ビームを入射し、その反射又
は回折した超音波信号を解析することにより、欠陥の有
無を検出する方法及び装置である。特開平1−2480
49号公報及び特開平5−288706号公報における
公知例は、導体面に対向するように電磁コイルを設置
し、電磁コイルとコンデンサとで構成したIC回路の電
圧変化を検出することでき裂の有無及びサイズを解析す
る装置及び方法である。
A known example of Japanese Patent Application Laid-Open No. 63-292059 is a method and apparatus for detecting the presence or absence of a defect by applying an ultrasonic beam to an object and analyzing the reflected or diffracted ultrasonic signal. is there. JP-A 1-2480
Japanese Patent Application Laid-Open No. 49-288706 and Japanese Patent Application Laid-Open No. 5-288706 disclose that an electromagnetic coil is installed so as to face a conductor surface, and a voltage change of an IC circuit composed of the electromagnetic coil and a capacitor can be detected. And an apparatus and method for analyzing size.

【0005】特開平2−213764号公報における公
知例は、き裂やピット発生による磁気特性の変化を検出
することによって、損傷の解析を行う装置及び方法であ
る。特開平4−83153号公報における公知例は、水
環境中における材料の損傷検出方法として、参照電極と
材料との電位差から材料の損傷及び劣化の状況を検出す
る装置及び方法である。特開平5−504203号公報
における公知例は、構造物に衝撃信号を与えて、その衝
撃信号の検出する装置及びその技術である。
[0005] A known example in Japanese Patent Application Laid-Open No. 2-213765 is an apparatus and a method for analyzing damage by detecting a change in magnetic properties due to cracks or pits. A known example in Japanese Patent Application Laid-Open No. 4-83153 is an apparatus and a method for detecting a damage or deterioration of a material from a potential difference between a reference electrode and the material as a method for detecting damage to the material in a water environment. A known example in Japanese Patent Application Laid-Open No. 5-504203 is a device and a technique for applying a shock signal to a structure and detecting the shock signal.

【0006】[0006]

【発明が解決しようとする課題】構造材料を寿命間際ま
で最大限使用することは、資源の有効活用、経費節減と
いう観点から有効である。構造材料を寿命間際まで最大
限使用するためには、構造材料に発生した損傷を正確に
評価し、その損傷評価から構造材料の余寿命を予測する
技術が必要である。発電プラント等におけるこのような
損傷評価は、定期検査時に一括して実施されるため、プ
ラントの稼働率の向上を考慮すると、迅速な損傷評価が
必要である。特に、腐食の発生直後の微小な欠陥である
き裂を検出する事は、プラントの長期的な運転計画上有
効である。
It is effective to maximize the use of a structural material until the end of its life from the viewpoint of effective utilization of resources and cost reduction. In order to maximize the use of the structural material until the very end of its life, a technique is required that accurately evaluates the damage generated in the structural material and predicts the remaining life of the structural material from the damage evaluation. Since such damage evaluation in a power plant or the like is performed collectively at the time of a periodic inspection, quick damage evaluation is necessary in consideration of improvement in the operation rate of the plant. In particular, detecting cracks, which are minute defects immediately after the occurrence of corrosion, is effective in long-term operation planning of a plant.

【0007】特開昭55−2920号公報の発明では、
微小な表面開口欠陥に磁性体粉末を含む液を浸透させた
り、開口深さを評価することが困難であり、また、特開
平4−83153号公報の発明では、劣化又は損傷の有
無及び位置の情報は得られるが、損傷の大きさ及び深さ
についての情報は得られない。そのため損傷を定期的に
評価することが不可能であるため、構造材料の余寿命予
測への展開が困難である。
In the invention of Japanese Patent Application Laid-Open No. 55-2920,
It is difficult to infiltrate a liquid containing a magnetic substance powder into minute surface opening defects or to evaluate the opening depth. In the invention of JP-A-4-83153, the presence or absence of deterioration or damage and the position Information is available, but no information about the size and depth of the damage. For this reason, it is impossible to periodically evaluate the damage, and it is difficult to apply the method to the estimation of the remaining life of the structural material.

【0008】特開昭61−139743号公報、特開昭
62−245960号公報、特開昭63−292059
号公報、特開平1−248049号公報、特開昭63−
292059号公報、特開平5−288706号公報及
び特開平5−504203号公報による発明では、表面
の又は平面の損傷の形状は検出可能であるが、深さの情
報は測定困難である。従来技術では損傷の表面状態から
深さ方向の状態を予測していたが、対象物によっては損
傷が複雑な形状である場合がある。正確な余寿命評価を
するためには、損傷の三次元解析が必要である。特開平
2−213764号公報の発明では、磁性の変化を検出
するために磁性材料への適用は容易であるが、それ以外
の材料への適用は困難であり、また、磁性粉末が浸透し
ないき裂、腐食痕に関しては触れていない。
[0008] JP-A-61-139743, JP-A-62-245960, JP-A-63-292959
JP, JP-A-1-248049, JP-A-63-1988
In the inventions disclosed in JP-A-292059, JP-A-5-288706, and JP-A-5-504203, the shape of the surface or planar damage can be detected, but the depth information is difficult to measure. In the prior art, the state in the depth direction is predicted from the surface state of the damage, but the damage may have a complicated shape depending on the object. Three-dimensional analysis of damage is necessary for accurate remaining life evaluation. In the invention disclosed in Japanese Patent Application Laid-Open No. Hei 2-213764, application to a magnetic material is easy to detect a change in magnetism, but application to other materials is difficult. No mention is made of cracks and corrosion marks.

【0009】上記公知例では、浸透探傷試験等で検出不
可能な開口が微小な欠陥を検出したり、深さ方向の測定
が困難である。本発明は、上記のような問題点を解決
し、非磁性体の微小な損傷を検出し、さらにその損傷の
深さを検出する方法を提供することを目的とする。
In the above-mentioned known example, it is difficult to detect a minute defect in an opening which cannot be detected by a penetrant test or the like, or to measure in a depth direction. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method for detecting minute damage of a non-magnetic material and further detecting the depth of the damage.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本出願の第1の発明の損傷検出方法は、非磁性の被
測定体表面に磁性体粉末を塗布して被測定体の表面の欠
陥を検出する方法において、被測定体表面に磁性体粉末
を塗布し、塗布された磁性体粉末をふき取るかまたはそ
のままの状態で、磁場または高周波電流を被測定体に印
加して前記磁性体粉末を磁化し、磁気記録媒体を複数層
被測定体表面に接着して被測定体表面の欠陥によって乱
される漏洩磁束を記録し、被測定体表面の欠陥の平面形
状及び深さを評価することを特徴とする。
In order to achieve the above object, a damage detection method according to the first invention of the present application is to apply a magnetic powder to a surface of a non-magnetic object to be measured and to apply a magnetic powder to the surface of the object to be measured. In the method for detecting a defect, a magnetic powder is applied to the surface of a measured object, and the applied magnetic material powder is wiped or in a state of being applied, and a magnetic field or a high-frequency current is applied to the measured object to apply the magnetic powder. Magnetizing the magnetic recording medium, bonding the magnetic recording medium to the surface of the object to be measured in a plurality of layers, recording the leakage magnetic flux disturbed by the defect on the surface of the object to be measured, and evaluating the planar shape and depth of the defect on the surface of the object to be measured. It is characterized by.

【0011】本出願の第2の発明の損傷検出方法は、非
磁性の被測定体表面に磁性体粉末を塗布して被測定体の
表面の欠陥を検出する方法において、被測定体表面に磁
性体粉末を塗布し、塗布された磁性体粉末をふき取るか
またはそのままの状態で、磁場または高周波電流を被測
定体に印加して前記磁性体粉末を磁化し、1層の磁気記
録媒体を用いて被測定体表面の欠陥によって乱される漏
洩磁束の平面形状を検出し、該検出された欠陥部近傍を
磁電変換素子を走査することにより被測定体表面の欠陥
の深さを評価することを特徴とする。
[0011] A damage detection method according to a second aspect of the present invention is a method for detecting a defect on the surface of a measured object by applying a magnetic powder to the surface of a non-magnetic measured object. The body powder is applied, and the applied magnetic body powder is wiped off or in a state of being applied, a magnetic field or a high-frequency current is applied to the measured object to magnetize the magnetic body powder, and using a single-layer magnetic recording medium. It is characterized by detecting the planar shape of the leakage magnetic flux disturbed by the defect on the surface of the measured object, and evaluating the depth of the defect on the surface of the measured object by scanning the magnetoelectric conversion element in the vicinity of the detected defect. And

【0012】本出願の第3の発明の損傷検出方法は、第
1又は第2の発明における前記磁気記録媒体が、磁気記
録テープ又は磁気記録フィルムであることを特徴とす
る。
[0012] A damage detection method according to a third invention of the present application is characterized in that the magnetic recording medium according to the first or second invention is a magnetic recording tape or a magnetic recording film.

【0013】本出願の第4の発明の損傷検出方法は、第
3の発明における前記磁気記録媒体が、熱硬化性樹脂又
は紫外線硬樹脂に、磁性体粉末が混合されて構成されて
いることを特徴とする。
[0013] A damage detection method according to a fourth invention of the present application is characterized in that the magnetic recording medium according to the third invention is configured by mixing a magnetic material powder with a thermosetting resin or an ultraviolet hard resin. Features.

【0014】本出願の第5の発明の損傷検出方法は、第
2の発明における前記磁電変換素子が、ホール素子、磁
気ダイオード、磁気抵抗素子、超伝導量子干渉素子のい
ずれかであることを特徴とする。
In a fifth aspect of the present invention, the damage detection method according to the second aspect is characterized in that the magnetoelectric conversion element is one of a Hall element, a magnetic diode, a magnetoresistance element, and a superconducting quantum interference element. And

【0015】本出願の第6の発明の損傷検出方法は、第
1乃至第5の発明における被測定体表面に対する前記磁
性体粉末の塗布前、又は塗布後に、被測定体の表面に引
張り応力を発生させて弾性変形を生じさせ、欠陥部の微
小開口を拡大することを特徴とする。
According to a sixth aspect of the present invention, there is provided the damage detection method according to any one of the first to fifth aspects, wherein a tensile stress is applied to the surface of the measured object before or after the magnetic powder is applied to the surface of the measured object. It is characterized in that it causes elastic deformation and enlarges a minute opening of a defective portion.

【0016】[0016]

【発明の実施の形態】図1にき裂近傍における漏洩磁束
の模式図を示す。被測定体1の表面にき裂2が存在する
場合、漏洩磁束3はき裂周辺でき裂を取り囲むように増
加する傾向がある。この特性を利用して、き裂の検出及
びき裂の寸法測定を実施する。漏洩磁束3を発生させる
ための磁場を印加する方法において、直接コイル等で磁
場を発生させ被測定体1に磁場を印加する方法、又は、
高周波電流を被測定体1に流し、き裂2周辺における電
流の乱れから漏洩磁束3を発生させる方法がある。前者
は磁場が板厚方向に一定であるのに対して、後者は板厚
内部では伝搬が遅く表面では速い特徴がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of a leakage magnetic flux near a crack. When the crack 2 exists on the surface of the measured object 1, the leakage magnetic flux 3 tends to increase around the crack so as to surround the crack. Using this characteristic, crack detection and crack dimension measurement are performed. In a method of applying a magnetic field for generating the leakage magnetic flux 3, a method of directly generating a magnetic field with a coil or the like and applying a magnetic field to the DUT 1 or
There is a method in which a high-frequency current is caused to flow through the DUT 1 and a leakage magnetic flux 3 is generated from disturbance of the current around the crack 2. The former has a feature that the magnetic field is constant in the thickness direction, whereas the latter has a feature that propagation is slow inside the thickness and fast on the surface.

【0017】その状態を図2に示す。従って、磁場を直
接印加する方法は、内部まで到達している欠陥を評価す
るのに適しており、高周波電流を用いて磁場を印加する
方法は、表面近傍の微小き裂を測定する際に適してい
る。
FIG. 2 shows this state. Therefore, the method of applying a magnetic field directly is suitable for evaluating defects that have reached the inside, and the method of applying a magnetic field using high-frequency current is suitable for measuring small cracks near the surface. ing.

【0018】漏洩磁束3を磁電変換素子4を用いて測定
した例を図3に示す。被測定体1の表面方向をx方向、
垂直方向をz方向とすると、漏洩磁束3は法線成分5と
接線成分6の合成で表される。実際に、構造物の損傷検
出に用いる場合には、法線成分5を用いて評価する。
FIG. 3 shows an example in which the leakage magnetic flux 3 is measured using the magnetoelectric conversion element 4. The surface direction of the DUT 1 is defined as an x direction,
Assuming that the vertical direction is the z direction, the leakage magnetic flux 3 is represented by a combination of a normal component 5 and a tangential component 6. In actuality, when used for damage detection of a structure, evaluation is performed using the normal component 5.

【0019】次に、欠陥の形状が漏洩磁束に及ぼす影響
について図4〜図6に示す。図4は磁束密度と表面から
の検出器の距離との関係、図5は磁束密度と欠陥深さの
関係、図6は磁束密度と欠陥長さの関係である。図4か
ら電磁変換素子4と被測定体1の距離を一定に保つと、
欠陥深さに応じて磁束密度は変化する。図5から欠陥深
さが一定の場合で、欠陥長さが異なる場合、欠陥長さに
応じて、磁束密度は変化することがわかる。これらの結
果から、磁電変換素子4によって測定された磁束密度
は、欠陥の長さに依存するものなのか、深さに依存する
ものなのか判断不可能である。そこで、図6に磁束密度
とアスペクト比の関係を示す。アスペクト比とは、欠陥
長さを2a、欠陥深さをcとしたときのa/cの比率で
ある。磁束密度はアスペクト比に対して一対一の対応で
あることがわかる。従って、測定された磁束密度から欠
陥のアスペクト比を求め、そのアスペクト比から欠陥深
さ、欠陥長さを評価することが可能になる。
Next, the influence of the shape of the defect on the leakage magnetic flux is shown in FIGS. 4 shows the relationship between the magnetic flux density and the distance of the detector from the surface, FIG. 5 shows the relationship between the magnetic flux density and the defect depth, and FIG. 6 shows the relationship between the magnetic flux density and the defect length. From FIG. 4, if the distance between the electromagnetic transducer 4 and the DUT 1 is kept constant,
The magnetic flux density changes according to the defect depth. FIG. 5 shows that when the defect depth is constant and the defect length is different, the magnetic flux density changes according to the defect length. From these results, it is impossible to determine whether the magnetic flux density measured by the magnetoelectric conversion element 4 depends on the length of the defect or the depth. FIG. 6 shows the relationship between the magnetic flux density and the aspect ratio. The aspect ratio is the ratio of a / c when the defect length is 2a and the defect depth is c. It can be seen that the magnetic flux density has a one-to-one correspondence with the aspect ratio. Therefore, the defect aspect ratio can be obtained from the measured magnetic flux density, and the defect depth and defect length can be evaluated from the aspect ratio.

【0020】被測定体1が強磁性体の場合、上記の現象
は被測定体1に磁場を印加することによって容易に見ら
れる現象であり、これらを用いた技術は磁粉探傷試験と
して確立された技術である。これに対し、本発明は、被
測定体として強磁性体以外の材料の損傷を検出するもの
である。
When the DUT 1 is a ferromagnetic material, the above-mentioned phenomena are easily observed by applying a magnetic field to the DUT 1, and a technique using these is established as a magnetic particle flaw detection test. Technology. On the other hand, the present invention detects damage to a material other than a ferromagnetic material as a measured object.

【0021】図7に本発明による検出手順の一例のフロ
ー図を示す。閉口型もしくは開口が微小なき裂の欠陥に
おいて、測定体の表面に磁性体粉末を塗布しても欠陥内
部に磁性体粉末が浸透しないため、後の漏洩磁束の検出
が困難になる。この問題に対する解決方法の模式図を図
8、9に示す。
FIG. 7 is a flowchart showing an example of the detection procedure according to the present invention. In the case of a defect of a closed type or a crack having a small opening, even if the magnetic powder is applied to the surface of the measurement object, the magnetic powder does not penetrate into the inside of the defect. FIGS. 8 and 9 are schematic diagrams of a solution to this problem.

【0022】図8は、被測定体1の端部が応力的に解放
されている状態において、被測定体1のき裂が開口する
方向に弾性変形させるために、被測定体1の測定対象の
表面に加熱した磁性粉末7を流し、測定対象の反対側に
は、冷却水8を流す。被測定体1には、表面と内面の温
度差に起因する熱応力が発生し、表面には引張り応力
が、内面には圧縮応力が発生する。被測定体1の表面の
引張り応力により、き裂2は一時開口させられる。この
開口部に磁性体粉末は流れ込む。磁性体粉末を流し込ん
だ後、表面の加熱した磁性体流体7及び冷却液8を取り
除き、応力を除去する。被測定体1の表面に付着した余
分な磁性体粉末7はアルコール等で除去する。
FIG. 8 shows an object to be measured of the object 1 to be elastically deformed in a direction in which a crack of the object 1 is opened when the end of the object 1 is released in terms of stress. The heated magnetic powder 7 flows on the surface of the sample, and the cooling water 8 flows on the opposite side of the object to be measured. A thermal stress is generated in the DUT 1 due to a temperature difference between the surface and the inner surface, and a tensile stress is generated on the surface and a compressive stress is generated on the inner surface. The crack 2 is temporarily opened by the tensile stress on the surface of the measured object 1. The magnetic powder flows into the opening. After pouring the magnetic powder, the magnetic fluid 7 and the cooling liquid 8 whose surfaces are heated are removed to remove stress. Excess magnetic powder 7 adhering to the surface of the DUT 1 is removed with alcohol or the like.

【0023】図9は、図8の熱応力の変わりに、被測定
体の両端を挟持して曲げる曲げ弾性変形等の機械的変形
を加えることによって、被測定体1の表面に引張り応力
を発生させ、き裂を一時開口させ、磁性体粉末9を流し
込む。磁性体粉末9を流し込んだ後は、応力を除去し、
基の形状に戻す。その後、余分な磁性体粉末9はアルコ
ール等で取り除く。
FIG. 9 shows that, in place of the thermal stress shown in FIG. 8, a tensile stress is generated on the surface of the DUT 1 by applying a mechanical deformation such as a bending elastic deformation in which both ends of the DUT are clamped and bent. The crack is temporarily opened, and the magnetic powder 9 is poured. After pouring the magnetic powder 9, the stress is removed,
Return to the original shape. Thereafter, excess magnetic substance powder 9 is removed with alcohol or the like.

【0024】被測定体1を機械的に弾性変形させる方法
としては上記の工具の他に、磁歪による弾性変形等があ
る。また、被測定体の端部が応力的に拘束されている場
合は、図8の手法とは逆に被測定体表面を冷却し、反対
側の裏面を加熱し、被測定体表面に引張応力を発生さ
せ、欠陥を一時開口させる。
As a method of mechanically elastically deforming the object 1 to be measured, there is an elastic deformation due to magnetostriction and the like in addition to the above-mentioned tool. When the end of the measured object is constrained by stress, the surface of the measured object is cooled and the back surface on the opposite side is heated in a manner opposite to the method of FIG. And a defect is temporarily opened.

【0025】次に、上記のようにして磁性体粉末が塗布
された被測定体1に磁場を印加すると、き裂2に浸透し
た磁性体粉末が磁化され、き裂2近傍においては、図1
に示した漏洩磁束3が発生する。
Next, when a magnetic field is applied to the DUT 1 on which the magnetic powder is applied as described above, the magnetic powder penetrating the crack 2 is magnetized.
The leakage magnetic flux 3 shown in FIG.

【0026】上記のようにして発生する漏洩磁束3を検
出する方法は主に、磁電変換素子10を用いる方法、磁
気記録媒体11を用いる方法、電流検出器12を用いる
方法の3種類に分けられる。
The method of detecting the leakage magnetic flux 3 generated as described above is mainly classified into three methods: a method using the magnetoelectric conversion element 10, a method using the magnetic recording medium 11, and a method using the current detector 12. .

【0027】磁電変換素子10の代表的な例として、ホ
ール素子、磁気ダイオード、電気抵抗素子、超伝導量子
干渉素子等が挙げられる。磁電変換素子を用いて測定し
た結果の例を図10に示す。表面に腐食ピット13、き
裂2、全面腐食痕14が存在するような被測定体1を想
定する。被測定体1の表面形状に沿って磁電変換素子1
0を走査させると、図3に示すような漏洩磁束3が測定
される。測定された漏洩磁束を基に、アスペクト比を図
6より求め、欠陥長さ及び欠陥深さを図4及び図5より
求められる。図10の腐食ピット13、き裂2、全面腐
食痕14の測定結果例を図11〜図13に示す。図1
1、図13に示されるように、腐食ピット13、全面腐
食痕14等の開口した欠陥は、磁性体粉末9の付着が弱
く、余分な磁性体粉末9の洗浄の際に一部落ちてしまう
ため、欠陥底部の詳細な形状までは評価困難であるが、
破壊力学的評価の際に必要となるアスペクト比、電気化
学的評価の際に必要となる最大腐食深さの測定は可能で
ある。一方、図12に示される閉口した欠陥のき裂2
は、毛管現象によって磁性体粉末9が内部まで浸透し、
なおかつ洗浄によって除去されることが無いため、開口
した欠陥に比べ詳細に欠陥形状を評価することが可能で
ある。
Representative examples of the magnetoelectric conversion element 10 include a Hall element, a magnetic diode, an electric resistance element, and a superconducting quantum interference element. FIG. 10 shows an example of the result of measurement using the magnetoelectric conversion element. Assume that the measured object 1 has a corrosion pit 13, a crack 2, and a general corrosion mark 14 on the surface. Magnetoelectric conversion element 1 along the surface shape of DUT 1
By scanning 0, a leakage magnetic flux 3 as shown in FIG. 3 is measured. Based on the measured leakage magnetic flux, the aspect ratio is obtained from FIG. 6, and the defect length and the defect depth are obtained from FIGS. FIGS. 11 to 13 show examples of the measurement results of the corrosion pit 13, the crack 2, and the overall corrosion trace 14 in FIG. FIG.
1. As shown in FIG. 13, the open defects such as the corrosion pit 13 and the entire surface corrosion mark 14 have weak adhesion of the magnetic powder 9 and partly fall off when the extra magnetic powder 9 is washed. Therefore, it is difficult to evaluate the detailed shape of the bottom of the defect,
It is possible to measure the aspect ratio required for fracture mechanics evaluation and the maximum corrosion depth required for electrochemical evaluation. On the other hand, crack 2 of the closed defect shown in FIG.
Means that the magnetic substance powder 9 penetrates into the inside by capillary action,
In addition, since it is not removed by cleaning, it is possible to evaluate a defect shape in more detail than an opened defect.

【0028】磁電変換素子10を用いた自動計測器20
の例を図14に示す。自動測定器は被測定体1に測定器
自体を固定するための固定治具21と、固定治具21に
ユニバーサルジョイント28を介して連結され被測定体
1に対して垂直に移動することが可能なZ軸ガイド22
を有し、該ガイド軸は、モータ29で回転されるナット
により互いに接離するガイド部22a、22bからな
る。また計測器20は、Z軸ガイド22と垂直に接続し
ており被測定体1に対して平行に固定され、被測定体1
に対して一方向に平行に移動することが可能なY軸ガイ
ド23と、Y軸ガイド23に垂直に、また被測定体1に
対して平行になるようにY軸ガイド23に固定されてお
り、被測定体1に対して一方向に平行に移動することが
可能なX軸ガイド24と、X軸ガイド24上を被測定面
1に対して平行に移動することが可能な水平移動装置2
5と、水平移動装置25に固定されており、被測定面1
の漏洩磁束を測定することが可能な磁電変換素子10、
自動計測器20を制御命令又は測定結果を転送するため
のケーブル26、ケーブル26を介して自動測定器20
の制御又は測定結果を保存・処理する制御装置27を有
する。
Automatic measuring device 20 using magnetoelectric transducer 10
14 is shown in FIG. The automatic measuring instrument is connected to the fixture 1 via a universal joint 28 for fixing the measuring instrument itself to the DUT 1 and can move vertically with respect to the DUT 1. Z-axis guide 22
And the guide shaft is composed of guide portions 22a and 22b which are brought into contact with and separated from each other by a nut rotated by a motor 29. The measuring device 20 is vertically connected to the Z-axis guide 22 and is fixed in parallel with the measured object 1.
And a Y-axis guide 23 that can move in parallel in one direction, and is fixed to the Y-axis guide 23 so as to be perpendicular to the Y-axis guide 23 and parallel to the measured object 1. An X-axis guide 24 that can move in one direction parallel to the object 1 to be measured, and a horizontal moving device 2 that can move on the X-axis guide 24 in parallel to the surface 1 to be measured.
5 and the horizontal moving device 25,
Element 10 capable of measuring the leakage magnetic flux of
A cable 26 for controlling the automatic measuring device 20 or transferring a measurement result or the automatic measuring device 20 via the cable 26
And a control device 27 for storing and processing the control or measurement results.

【0029】X軸ガイド24、Y軸ガイド23、Z軸ガ
イド22の各方向へ移動することが可能な軸ガイドを有
し、その先端に磁電変換素子10を取り付けることによ
り、三次元的な測定が可能になる。また、固定治具21
とZ軸ガイド22との間に自由に角度を変えることが可
能なボール型スライド28を取り付け、また、Z軸ガイ
ド22に変位計29を取り付けることにより、T字型の
継手部や三次元的に複雑な形状をした翼等の欠陥検出が
可能になる。また、Z軸移動用モータ29、Y軸移動用
モータ30、X軸移動用モータ31を取り付け、制御装
置27から制御する事により自動測定が可能になる。磁
電変換素子10を用いて被測定体1の漏洩磁束3を測定
した結果は、被測定体1の位置及びその位置での漏洩磁
束3の強度を保存する。磁電変換素子による検出は上記
のように行われるが、該検出方法では欠陥の有無等を確
実に検出するために、磁電変換素子を被測定体表面に沿
って走査経路間隔を密にして走査する必要がある。
An X-axis guide 24, a Y-axis guide 23, and a Z-axis guide 22 are provided. Becomes possible. Also, the fixing jig 21
By attaching a ball type slide 28 whose angle can be changed freely between the Z-axis guide 22 and the Z-axis guide 22, a displacement gauge 29 is attached to the Z-axis guide 22, so that a T-shaped joint or a three-dimensional It becomes possible to detect a defect such as a wing having a complicated shape. In addition, the Z-axis movement motor 29, the Y-axis movement motor 30, and the X-axis movement motor 31 are attached and controlled by the control device 27 to enable automatic measurement. The result of measuring the leakage magnetic flux 3 of the DUT 1 using the magnetoelectric conversion element 10 stores the position of the DUT 1 and the intensity of the leakage magnetic flux 3 at that position. The detection by the magneto-electric conversion element is performed as described above, but in this detection method, in order to reliably detect the presence or absence of a defect, the magneto-electric conversion element is scanned along the surface of the measured object with a narrow scanning path interval. There is a need.

【0030】そこで本発明では、基本的に磁気記録媒体
を用いて漏洩磁束を測定する。磁気記録テープ又は磁気
フィルムの磁気記録媒体を用いての検出方法のフローを
図15に示す。該磁気記録媒体は、図16では符号41
で、図17では符号42で、また図18では符号11で
示される。磁気記録媒体である前記テープ又はフィルム
は、漏洩磁束3の平面的即ち二次元的な記録しかできな
いため、表面上の欠陥有無及び寸法の評価は可能である
が深さ方向即ち三次元的な評価はできない。
Therefore, in the present invention, the leakage magnetic flux is basically measured using a magnetic recording medium. FIG. 15 shows a flow of a detection method using a magnetic recording medium such as a magnetic recording tape or a magnetic film. The magnetic recording medium is denoted by reference numeral 41 in FIG.
In FIG. 17, this is indicated by reference numeral 42, and in FIG. Since the tape or film, which is a magnetic recording medium, can only record the leakage magnetic flux 3 in a two-dimensional manner, that is, in a two-dimensional manner, it is possible to evaluate the presence or absence and size of a defect on the surface, but in the depth direction, that is, three-dimensionally Can not.

【0031】この深さ方向の評価のために、本発明で
は、磁気記録媒体を何層かに積重ね、各層の情報を重ね
合わせることによって深さ方向の測定する方式か、又
は、磁気記録媒体を重ね合わせる変わりに、図18に示
されるように磁電変換素子10と磁気記録媒体11を併
用する方式が採用され、この併用方式では、磁気記録媒
体11からは被測定体1の表面の欠陥寸法を直接測定
し、磁電変換素子10からは漏洩磁束3の強度を測定
し、欠陥の深さの測定が行われる。
For the evaluation in the depth direction, in the present invention, the magnetic recording medium is stacked in several layers and the information in each layer is superimposed to measure in the depth direction. Instead of overlapping, as shown in FIG. 18, a method is used in which the magneto-electric conversion element 10 and the magnetic recording medium 11 are used together. In this combined method, the defect size of the surface of the measured object 1 is reduced from the magnetic recording medium 11. Direct measurement is performed, the intensity of the leakage magnetic flux 3 is measured from the magnetoelectric conversion element 10, and the depth of the defect is measured.

【0032】磁気記録媒体を単独で測定する場合、磁気
記録媒体の種類としては磁気録音テープ等の磁気記録テ
ープと硬化型フィルムがある。磁気記録テープは強い漏
洩磁束が発生した際に簡便に磁場を測定できる手法であ
るが、弱い漏洩磁束場では記録が困難である。一方、硬
化型フィルムは、例えば、熱硬化型の溶媒に磁性体粉末
を混入させることにより磁性体粉末の移動を容易にさせ
ることにより感度を上昇させ、被測定体1の表面上で磁
場を測定後、そのまま熱又は紫外線を印加することによ
って溶媒を硬化させフィルム状にし、溶媒中の磁性体粉
末を固着させることによって高感度な検出が可能になる
が、磁気記録テープに比べ測定に手間を要する。磁気記
録媒体の大きな特徴は、そのまま被測定体1の漏洩磁束
3の分布を保存することができるところである。
When measuring the magnetic recording medium alone, the types of the magnetic recording medium include a magnetic recording tape such as a magnetic recording tape and a curable film. The magnetic recording tape is a technique that can easily measure a magnetic field when a strong leakage magnetic flux is generated, but recording is difficult in a weak leakage magnetic field. On the other hand, the curable film increases the sensitivity by facilitating the movement of the magnetic powder by mixing the magnetic powder into a thermosetting solvent, for example, and measures the magnetic field on the surface of the DUT 1. Thereafter, by applying heat or ultraviolet light as it is, the solvent is cured to form a film, and the magnetic powder in the solvent is fixed to enable high-sensitivity detection, but the measurement requires more labor than magnetic recording tape. . A major feature of the magnetic recording medium is that the distribution of the leakage magnetic flux 3 of the DUT 1 can be preserved as it is.

【0033】磁気記録媒体として磁気記録テープ41を
使用する場合の測定例を図16に示す。被測定体1に磁
性体粉末9を塗布した後、余分な磁性体粉末9を必要に
応じアルコール等で除去する。被測定体1の表面に、き
裂2、及びき裂を有する腐食ピット40が存在している
と想定すると、これらの欠陥の周りでは磁場が乱され
る。その上に磁性録音テープ41を接着し、深さ方向の
測定をするために、先に接着した磁気記録テープ41の
上にさらに同じ磁気記録テープ41を適宜枚数積層す
る。一定時間放置後、磁気記録テープ41を除去し、磁
気記録テープ41上に記録された漏洩磁束3をパソコン
等の処理装置に読み込む。
FIG. 16 shows a measurement example when the magnetic recording tape 41 is used as the magnetic recording medium. After applying the magnetic powder 9 to the DUT 1, excess magnetic powder 9 is removed with alcohol or the like as necessary. Assuming that a crack 2 and a corrosion pit 40 having a crack exist on the surface of the DUT 1, the magnetic field is disturbed around these defects. A magnetic recording tape 41 is adhered thereon, and the same magnetic recording tape 41 is further laminated on the previously adhered magnetic recording tape 41 in order to measure in the depth direction. After leaving for a certain period of time, the magnetic recording tape 41 is removed, and the leakage magnetic flux 3 recorded on the magnetic recording tape 41 is read into a processing device such as a personal computer.

【0034】硬化型フィルム43を使用する場合の測定
例を図17に示す。被測定体1の表面に硬化型溶媒42
と磁性体粉末9を混ぜ合わせ塗布するが、深さ方向の漏
洩磁束3の分布を測定するために、硬化型フィルム43
を十分な厚さで塗布する。硬化型フィルム43を塗布し
た後、硬化剤、例えば熱、紫外線等を加え硬化型フィル
ム43を硬化させる。硬化後、硬化型フィルム43を除
去し、硬化型フィルム43に記録された漏洩磁束3を読
み込む。以上のように被測定体上に磁気テープ又はフィ
ルムを積層して検出した漏洩磁束の記録結果をみて、漏
洩磁束の平面形状と深さを知ることができる。
FIG. 17 shows a measurement example when the curable film 43 is used. A curable solvent 42 is provided on the surface of the DUT 1
And the magnetic powder 9 are mixed and applied. In order to measure the distribution of the leakage magnetic flux 3 in the depth direction, the curable film 43 is used.
Is applied in a sufficient thickness. After applying the curable film 43, a curing agent, for example, heat, ultraviolet light or the like is applied to cure the curable film 43. After curing, the curable film 43 is removed, and the magnetic flux leakage 3 recorded on the curable film 43 is read. As described above, the planar shape and the depth of the leakage magnetic flux can be known from the recording result of the leakage magnetic flux detected by laminating the magnetic tape or the film on the measured object.

【0035】磁気記録媒体11と磁電変換素子10とを
組み合わせて複合的に漏洩磁束3を測定する場合の測定
例を図18に示す。磁気記録テープ41又は磁気硬化型
フィルム43を接着し、これらの磁気記録媒体に漏洩磁
束を記録することにより、漏洩磁束の平面分布を知るこ
とができる。その後、欠陥深さを知るために、被測定体
の前記漏洩磁束の分布近傍を磁電変換素子10を走査す
ることにより、漏洩磁束3の強度を測定する。磁電変換
素子10による漏洩磁束3の測定後、磁気記録テープ4
1又は硬化型フィルム43を除去し、磁気記録テープ4
1又は硬化型フィルム43に記録された漏洩磁束3を読
み込み保存する。
FIG. 18 shows a measurement example in the case where the leakage magnetic flux 3 is measured in a combined manner by combining the magnetic recording medium 11 and the magnetoelectric conversion element 10. By adhering the magnetic recording tape 41 or the magnetic hardening type film 43 and recording the leakage magnetic flux on these magnetic recording media, the planar distribution of the leakage magnetic flux can be known. Then, in order to know the depth of the defect, the intensity of the leakage magnetic flux 3 is measured by scanning the magnetoelectric conversion element 10 near the distribution of the leakage magnetic flux of the measured object. After the measurement of the leakage magnetic flux 3 by the magnetoelectric conversion element 10, the magnetic recording tape 4
1 or the curable film 43 is removed and the magnetic recording tape 4
1 or the magnetic flux leakage 3 recorded on the curable film 43 is read and stored.

【0036】磁場分布の測定例を図19に示す。磁気記
録テープ41又は硬化型フィルム43に記録されるのは
漏洩磁束であり、漏洩磁束3は磁場44に対して垂直方
向に現れる。磁気記録テープ41の場合は、積層した磁
気記録テープ41の情報を積み重ねて、硬化型フィルム
43の場合は漏洩磁束3の分布と強度から欠陥を同定す
る。欠陥形状に対応する漏洩磁束パターンを、電磁場解
析によるシミュレーション、又は測定結果をデータベー
ス化することにより、磁気記録テープ41又は硬化型フ
ィルム43の表面でのパターンを識別するだけで欠陥の
深さ方向の情報を入手することが可能になる。
FIG. 19 shows a measurement example of the magnetic field distribution. What is recorded on the magnetic recording tape 41 or the curable film 43 is a leakage magnetic flux, and the leakage magnetic flux 3 appears in a direction perpendicular to the magnetic field 44. In the case of the magnetic recording tape 41, information on the laminated magnetic recording tapes 41 is stacked, and in the case of the curable film 43, defects are identified from the distribution and strength of the leakage magnetic flux 3. The leakage magnetic flux pattern corresponding to the defect shape is simulated by electromagnetic field analysis, or a database of the measurement results is used to identify the pattern on the surface of the magnetic recording tape 41 or the curable film 43, and the depth direction of the defect is determined. It will be possible to obtain information.

【0037】磁気記録媒体を被測定体に上記のように接
着せずに、磁気記録媒体11を用いて自動計測をする自
動測定器50の例を図20、図21に示す。図20は自
動測定器50の側面図、図21は漏洩磁束自動測定器5
0の正面図である。自動測定器50は、自動測定器50
が被測定体1を移動するためのローラー51と、ローラ
ー51を駆動させるための駆動用モータ52、被測定体
1に磁場を印加するための磁場印加装置53、磁場印加
装置53に電流を供給するためのバッテリ54、磁性体
粉末9を塗布するためのスプレー式ノズル55と磁性体
粉末9を貯めておくためのタンク56、漏洩磁束を測定
するための磁気記録媒体11、磁気記録媒体11を供給
する供給ロール57と供給された磁気記録媒体11を巻
取る巻取りロール57、磁気記録媒体11を被測定試料
1に押しつけるための圧着ロール59、磁場印加装置5
3からの磁場の影響をなくすために、磁場印加装置53
の磁気記録媒体11側に取り付けた磁気遮蔽板60から
なる。移動ローラー51を有することにより、平板状の
被測定材1の表面を移動することが可能になる。また、
被測定体にレールを取り付け、そのレール上を移動ロー
ラー51が移動することにより、曲面上の移動等が可能
になる。また駆動用モータ52に駆動装置制御用アンテ
ナ61を取り付けることにより、遠隔からの制御が可能
になる。また磁気記録媒体11を供給ロール57に取り
付けておき、巻取りロール58で巻取ることにより、移
動ローラー51に追随した連続測定が可能になる。ま
た、圧着ロール59の巻取り側のローラーを加熱するこ
とによって熱硬化型磁気記録フィルムを用いることが可
能になる。
FIGS. 20 and 21 show examples of an automatic measuring device 50 for performing automatic measurement using the magnetic recording medium 11 without adhering the magnetic recording medium to the object to be measured as described above. FIG. 20 is a side view of the automatic measuring device 50, and FIG.
0 is a front view. The automatic measuring device 50 is an automatic measuring device 50.
Supplies a roller 51 for moving the device under test 1, a driving motor 52 for driving the roller 51, a magnetic field applying device 53 for applying a magnetic field to the device 1 to be measured, and a current to the magnetic field applying device 53 , A spray nozzle 55 for applying the magnetic powder 9, a tank 56 for storing the magnetic powder 9, a magnetic recording medium 11 for measuring leakage magnetic flux, and a magnetic recording medium 11. A supply roll 57 to be supplied, a take-up roll 57 for winding the supplied magnetic recording medium 11, a pressure roll 59 for pressing the magnetic recording medium 11 against the sample 1 to be measured, and a magnetic field applying device 5
3 to eliminate the influence of the magnetic field from
And a magnetic shielding plate 60 attached to the magnetic recording medium 11 side. By having the moving roller 51, it is possible to move the surface of the plate-shaped material 1 to be measured. Also,
A rail is attached to the object to be measured, and the moving roller 51 moves on the rail, thereby enabling movement on a curved surface or the like. Further, by attaching the drive device control antenna 61 to the drive motor 52, remote control becomes possible. In addition, the magnetic recording medium 11 is attached to the supply roll 57 and wound up by the take-up roll 58, whereby continuous measurement following the moving roller 51 becomes possible. Further, by heating the roller on the winding side of the pressure roll 59, it becomes possible to use a thermosetting magnetic recording film.

【0038】次に、電流検出器12を用いて欠陥による
漏洩磁束によって誘導される電流を測定する例を図22
に示す。電流検出器12の代表例として、コイル70と
電流計71からなる電流検出器12を考える。き裂2の
近傍で発生した漏洩磁束3にコイル70を近づけると、
漏洩磁束3によって誘導される電流がコイル70に流れ
る。その電流量を電流計71で検出し、被測定体1上の
欠陥を評価する。電流検出器12を用いて欠陥を測定し
た結果例を図23に示す。
Next, an example of measuring the current induced by the leakage magnetic flux due to the defect using the current detector 12 is shown in FIG.
Shown in As a typical example of the current detector 12, the current detector 12 including a coil 70 and an ammeter 71 is considered. When the coil 70 is brought closer to the leakage magnetic flux 3 generated near the crack 2,
The current induced by the leakage magnetic flux 3 flows through the coil 70. The amount of current is detected by the ammeter 71, and the defect on the DUT 1 is evaluated. FIG. 23 shows an example of a result of measuring a defect using the current detector 12.

【0039】電流検出器12を、先に説明した磁電変換
素子を用いた自動測定器20の磁電変換素子10の変わ
りに取り付けることによって自動計測が可能になる。
By mounting the current detector 12 instead of the magneto-electric transducer 10 of the automatic measuring device 20 using the magneto-electric transducer described above, automatic measurement becomes possible.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
構造材料の欠陥を欠陥周辺で発生する漏洩磁束を測定す
る事により、欠陥の有無及びその形状を三次元的に評価
することが可能になる。
As described above, according to the present invention,
By measuring the leakage magnetic flux generated around the defect as a defect of the structural material, it is possible to three-dimensionally evaluate the presence or absence of the defect and its shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被測定体のき裂近傍における漏洩磁束の模式
図。
FIG. 1 is a schematic view of a leakage magnetic flux in the vicinity of a crack of a measured object.

【図2】被測定体の板厚方向の磁場分布の模式図。FIG. 2 is a schematic diagram of a magnetic field distribution in a thickness direction of an object to be measured.

【図3】被測定体のき裂近傍における漏洩磁束測定例を
示す図。
FIG. 3 is a diagram showing an example of measurement of leakage magnetic flux in the vicinity of a crack of an object to be measured.

【図4】磁束密度と表面一検出器間の距離の関係を示す
グラフ。
FIG. 4 is a graph showing a relationship between a magnetic flux density and a distance between a surface and a detector.

【図5】磁束密度と欠陥深さの関係を示すグラフ。FIG. 5 is a graph showing a relationship between a magnetic flux density and a defect depth.

【図6】磁束密度とアスペクト比の関係を示すグラフ。FIG. 6 is a graph showing a relationship between a magnetic flux density and an aspect ratio.

【図7】本発明に係る損傷検出方法の1実施形態を示す
フロー図。
FIG. 7 is a flowchart showing one embodiment of a damage detection method according to the present invention.

【図8】本発明に係る上記1実施形態における磁性体粉
塗布方法の一例を示す図。
FIG. 8 is a view showing an example of a method for applying a magnetic substance powder in the first embodiment according to the present invention.

【図9】本発明に係る上記1実施形態における磁性体粉
末塗布方法の他の例を示す図。
FIG. 9 is a view showing another example of the method of applying a magnetic substance powder in the first embodiment according to the present invention.

【図10】磁電変換素子による被測定体の欠陥の測定例
を示す図。
FIG. 10 is a diagram showing a measurement example of a defect of a measured object by a magnetoelectric conversion element.

【図11】磁電変換素子による被測定体の腐食ピット測
定例を示す図。
FIG. 11 is a diagram showing an example of measuring corrosion pits of a measurement object by using a magnetoelectric conversion element.

【図12】磁電変換素子による被測定体のき裂測定例を
示す図。
FIG. 12 is a diagram showing an example of measuring a crack of a measured object by a magnetoelectric conversion element.

【図13】磁電変換素子による被測定体の全面腐食痕測
定例を示す図。
FIG. 13 is a diagram showing an example of measuring the entire surface corrosion mark of a measured object by using a magnetoelectric conversion element.

【図14】磁電変換素子を用いた損傷検出装置の1実施
形態を示す図。
FIG. 14 is a diagram showing an embodiment of a damage detection device using a magnetoelectric conversion element.

【図15】本発明により磁気記録媒体を用いた漏洩磁束
測定フローを示す図。
FIG. 15 is a diagram showing a leakage magnetic flux measurement flow using a magnetic recording medium according to the present invention.

【図16】上記磁気記録媒体として磁気記録テープを用
いた漏洩磁束測定例を示す図。
FIG. 16 is a diagram showing an example of a leakage magnetic flux measurement using a magnetic recording tape as the magnetic recording medium.

【図17】上記磁気記録媒体として硬化型フィルムを用
いた漏洩磁束測定例を示す図。
FIG. 17 is a diagram showing an example of leakage magnetic flux measurement using a curable film as the magnetic recording medium.

【図18】本発明により磁気記録媒体と磁電変換素子を
組み合わせた漏洩磁束測定例を示す図。
FIG. 18 is a diagram showing an example of leakage magnetic flux measurement in which a magnetic recording medium and a magnetoelectric conversion element are combined according to the present invention.

【図19】磁気記録媒体を用いた測定結果の例を示す
図。
FIG. 19 is a diagram showing an example of a measurement result using a magnetic recording medium.

【図20】本発明により磁気記録媒体を用いた損傷検出
装置の1実施形態の側面図。
FIG. 20 is a side view of an embodiment of a damage detection device using a magnetic recording medium according to the present invention.

【図21】本発明により磁気記録媒体を用いた損傷検出
装置の1実施形態の正面図。
FIG. 21 is a front view of one embodiment of a damage detection device using a magnetic recording medium according to the present invention.

【図22】本発明の損傷検出装置の他の実施形態を示す
図。
FIG. 22 is a diagram showing another embodiment of the damage detection device of the present invention.

【図23】電流検出器による測定結果の例を示す図。FIG. 23 is a diagram showing an example of a measurement result obtained by a current detector.

【符号の説明】[Explanation of symbols]

1…被測定体 2…き裂 3…漏洩磁束 4…磁電変換
素子 5…漏洩磁束の法線成分 6…漏洩磁束
の接線成分 7…加熱した磁性粉末 8…冷却水 9…磁性体粉末 10…磁電変
換素子 11…磁気記録媒体 12…電流検
出器 13…腐食ピット 14…全面腐
食痕 20…磁電変換素子を用いた自動測定器 21…固定治
具 22…Z軸ガイド 23…Y軸ガ
イド 24…X軸ガイド 25水平移動
装置 26…ケーブル 27…制御装
置 28…ボール型スライド 29…変位計 30…Z軸移動用モータ 31…Y軸移
動用モータ 30…X軸移動用モータ 40…き裂を
有する腐食ピット 41…磁気記録テープ 42…硬化型
媒体 43…硬化型フィルム 44…磁場 50…磁気記録媒体を用いた自動測定器 51…移動ロ
ーラー 52…駆動用モータ 53…磁場印
加装置 54…バッテリ 55…スプレ
ー式ノズル 56…磁性体貯蓄タンク 57…供給ロ
ール 58…巻取りロール 59…圧着ロ
ール 60…磁気遮蔽板 61…駆動装
置制御用アンテナ 70…コイル 71…電流計
DESCRIPTION OF SYMBOLS 1 ... Measurement object 2 ... Crack 3 ... Leakage magnetic flux 4 ... Magnetoelectric conversion element 5 ... Normal component of leak magnetic flux 6 ... Tangential component of leak magnetic flux 7 ... Heat magnetic powder 8 ... Cooling water 9 ... Magnetic powder 10 ... Magnetoelectric conversion element 11 ... Magnetic recording medium 12 ... Current detector 13 ... Corrosion pit 14 ... Corrosion mark 20 ... Automatic measuring device using magnetoelectric conversion element 21 ... Fixing jig 22 ... Z axis guide 23 ... Y axis guide 24 ... X-axis guide 25 Horizontal movement device 26 Cable 27 Control device 28 Ball type slide 29 Displacement meter 30 Z-axis movement motor 31 Y-axis movement motor 30 X-axis movement motor 40 Crack Corrosion pit 41: Magnetic recording tape 42: Curable medium 43: Curable film 44: Magnetic field 50: Automatic measuring device using magnetic recording medium 51: Moving roller 52: Driving motor 53: Magnetic field application Location 54 ... Battery 55 ... spray nozzles 56 ... magnetic savings tank 57 ... supply roll 58 ... take-up roll 59 ... crimping rolls 60 ... magnetic shielding plate 61 ... drive control antenna 70 ... coil 71 ... ammeter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大高正廣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masahiro Otaka 502 Kandachicho, Tsuchiura-shi, Ibaraki Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非磁性の被測定体表面に磁性体粉末を塗
布して被測定体の表面の欠陥を検出する方法において、
被測定体表面に磁性体粉末を塗布し、塗布された磁性体
粉末をふき取るかまたはそのままの状態で、磁場または
高周波電流を被測定体に印加して前記磁性体粉末を磁化
し、磁気記録媒体を複数層被測定体表面に接着して被測
定体表面の欠陥によって乱される漏洩磁束を記録し、被
測定体表面の欠陥の平面形状及び深さを評価することを
特徴とする損傷検出方法。
1. A method for detecting a defect on a surface of a measured object by applying a magnetic powder to a surface of a non-magnetic measured object,
A magnetic powder is applied to the surface of the measured object, and a magnetic field or a high-frequency current is applied to the measured object to wipe the applied magnetic material powder or leave the applied magnetic powder, and the magnetic material is magnetized, A plurality of layers on the surface of the object to be measured, recording the leakage magnetic flux disturbed by the defect on the surface of the object to be measured, and evaluating the planar shape and depth of the defect on the surface of the object to be measured. .
【請求項2】 非磁性の被測定体表面に磁性体粉末を塗
布して被測定体の表面の欠陥を検出する方法において、
被測定体表面に磁性体粉末を塗布し、塗布された磁性体
粉末をふき取るかまたはそのままの状態で、磁場または
高周波電流を被測定体に印加して前記磁性体粉末を磁化
し、1層の磁気記録媒体を用いて被測定体表面の欠陥に
よって乱される漏洩磁束の平面形状を検出し、該検出さ
れた欠陥部近傍を磁電変換素子を走査することにより被
測定体表面の欠陥の深さを評価することを特徴とする損
傷検出方法。
2. A method for detecting a defect on a surface of a measured object by applying a magnetic substance powder to a surface of a non-magnetic measured object,
A magnetic substance powder is applied to the surface of the object to be measured, and the applied magnetic substance powder is wiped off or in a state of being applied, a magnetic field or a high-frequency current is applied to the object to be magnetized to magnetize the magnetic substance powder, thereby forming one layer. The depth of the defect on the surface of the object to be measured is detected by detecting the planar shape of the leakage magnetic flux disturbed by the defect on the surface of the object to be measured using a magnetic recording medium, and scanning the vicinity of the detected defect with a magnetoelectric transducer. A damage detection method characterized by evaluating the following.
【請求項3】 前記磁気記録媒体は、磁気記録テープ又
は磁気記録フィルムであることを特徴とする請求項1又
は2に記載の損傷検出方法。
3. The damage detection method according to claim 1, wherein the magnetic recording medium is a magnetic recording tape or a magnetic recording film.
【請求項4】 前記磁気記録媒体は、熱硬化性樹脂又は
紫外線硬樹脂に、磁性体粉末が混合されて構成されてい
ることを特徴とする請求項3に記載の損傷検出方法。
4. The damage detection method according to claim 3, wherein the magnetic recording medium is formed by mixing a magnetic material powder with a thermosetting resin or an ultraviolet hard resin.
【請求項5】 前記磁電変換素子は、ホール素子、磁気
ダイオード、磁気抵抗素子、超伝導量子干渉素子のいず
れかであることを特徴とする請求項2記載の損傷検出方
法。
5. The damage detection method according to claim 2, wherein said magnetoelectric conversion element is any one of a Hall element, a magnetic diode, a magnetoresistance element, and a superconducting quantum interference element.
【請求項6】 被測定体表面に対する前記磁性体粉末の
塗布前、又は塗布後に、被測定体の表面に引張り応力を
発生させて弾性変形を生じさせ、欠陥部の微小開口を拡
大することを特徴とする請求項1乃至5のいずれかに記
載の損傷検出方法。
6. Before or after the application of the magnetic substance powder to the surface of the measured object, a tensile stress is generated on the surface of the measured object to cause elastic deformation, thereby enlarging a minute opening of a defective portion. The damage detection method according to any one of claims 1 to 5, wherein:
JP33818296A 1996-12-18 1996-12-18 Damage detection method Pending JPH10177010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33818296A JPH10177010A (en) 1996-12-18 1996-12-18 Damage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33818296A JPH10177010A (en) 1996-12-18 1996-12-18 Damage detection method

Publications (1)

Publication Number Publication Date
JPH10177010A true JPH10177010A (en) 1998-06-30

Family

ID=18315704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33818296A Pending JPH10177010A (en) 1996-12-18 1996-12-18 Damage detection method

Country Status (1)

Country Link
JP (1) JPH10177010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2008292213A (en) * 2007-05-23 2008-12-04 Hitachi Ltd Flaw detection device of wire rope
CN112147214A (en) * 2019-06-26 2020-12-29 码科泰克株式会社 Test body for magnetic powder inspection and method for manufacturing same
CN114927262A (en) * 2022-06-02 2022-08-19 广东鑫源恒业电力线路器材有限公司 Magnetic composite material core for composite material core overhead conductor and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2008292213A (en) * 2007-05-23 2008-12-04 Hitachi Ltd Flaw detection device of wire rope
CN112147214A (en) * 2019-06-26 2020-12-29 码科泰克株式会社 Test body for magnetic powder inspection and method for manufacturing same
CN114927262A (en) * 2022-06-02 2022-08-19 广东鑫源恒业电力线路器材有限公司 Magnetic composite material core for composite material core overhead conductor and preparation method thereof
CN114927262B (en) * 2022-06-02 2023-10-31 广东鑫源恒业电力线路器材有限公司 Magnetic composite material core for composite material core overhead conductor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5394918B2 (en) Nondestructive inspection system for parts by analyzing the distribution of leakage magnetic field
JPS63279185A (en) Method of detecting inherent stress of part
Li et al. A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks
JPH08329431A (en) Method and device for inspecting composite magnetic head
JP2008008806A (en) Method and apparatus for evaluating surface flaw length by eddy current flaw detection method
AU2016314771B2 (en) A method and system for detecting a material discontinuity in a magnetisable article
Wu et al. A high-sensitivity MFL method for tiny cracks in bearing rings
Thomas Overview of nondestructive evaluation technologies
JP2008014959A (en) Method for inspecting coating member for interface defects
JPH10177010A (en) Damage detection method
Zhang et al. Detection of gas pipe wall thickness based on electromagnetic flux leakage
US7365533B2 (en) Magneto-optic remote sensor for angular rotation, linear displacements, and evaluation of surface deformations
Rucki et al. Evaluation of the residual magnetic field measurement system for early identification of railway defects
RU2424509C1 (en) Method of monitoring mechanical properties of steel structures and elastic stress therein and device for realising said method
KR102084194B1 (en) Apparatus for flaw detection for nondestructive inspection
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JP3889016B2 (en) Nondestructive detection method of high temperature fatigue damage area
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
Watson Non-destructive testing and evaluation applications of quantum well Hall effect sensors
Wang et al. A new system for defects inspection of boiler water wall tubes using a combination of EMAT and MFL
Reig et al. High-Spatial Resolution Giant Magnetoresistive Sensors-Part I: Application in Non-Destructive Evaluation
Lee et al. Application of magneto-optical method for inspection of the internal surface of a tube
JPH02236446A (en) Method and device for detecting flaw by leaked magnetic flux
JPH043826B2 (en)
KR20100127260A (en) Nondestructive test equipment employing squid magnetic sensor