JPH1017694A - Microporous polyethylene membrane - Google Patents

Microporous polyethylene membrane

Info

Publication number
JPH1017694A
JPH1017694A JP8194058A JP19405896A JPH1017694A JP H1017694 A JPH1017694 A JP H1017694A JP 8194058 A JP8194058 A JP 8194058A JP 19405896 A JP19405896 A JP 19405896A JP H1017694 A JPH1017694 A JP H1017694A
Authority
JP
Japan
Prior art keywords
membrane
polyethylene
microporous
density polyethylene
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8194058A
Other languages
Japanese (ja)
Other versions
JP3669777B2 (en
Inventor
Takahiko Kondo
孝彦 近藤
Takuya Hasegawa
卓也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19405896A priority Critical patent/JP3669777B2/en
Publication of JPH1017694A publication Critical patent/JPH1017694A/en
Application granted granted Critical
Publication of JP3669777B2 publication Critical patent/JP3669777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a microporous polyethylene membrane having excellent processability and productivity and also having such a high heat resistance that the safety of a battery can be assured even under sever conditions by making the membrane so that it may have a specified heat distortion behavior. SOLUTION: This membrane has a distortion-hardening elongation viscosity, a gel fraction of below 1% and a mean pore diameter of 0.001-0.1μm. The polyethylene used is desirably a high-density polyethylene comprising a crystalline polymer based on ethylene and may be a blend thereof with at most 30% polyolefin such as polypropylene, medium-density polyethylene, linear low-density polyethylene, low-density polyethylene, or EPR. The weight-average molecular weight of the polyethylene is desirably in the range of 200,000-1,000,000. This membrane can be desirably used as a battery separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池用セパレーター
に適したポリエチレン微多孔膜に関するものである。
TECHNICAL FIELD The present invention relates to a microporous polyethylene membrane suitable for a battery separator.

【0002】[0002]

【従来の技術】近年、リチウムイオン電池に代表される
ように、電池の高容量化が進んでいる。これに伴い、短
絡などの異常時に発生する安全上の問題が重要視される
ようになってきている。ポリエチレン微多孔膜はこれら
高容量電池、特にリチウムイオン電池のセパレーターと
して使用されている。ポリエチレン微多孔膜が使用され
るのは、機械強度や透過性の様な一般的特性に加えて、
電池内部が過熱した際にセパレーターが溶融して電極を
覆う皮膜となり、電流を遮断し、それによって電池の安
全性を確保するという「ヒューズ効果」を発現するから
である。
2. Description of the Related Art In recent years, as represented by lithium ion batteries, batteries have been increasing in capacity. Along with this, importance has been placed on safety issues that occur during abnormalities such as short circuits. Polyethylene microporous membranes are used as separators for these high capacity batteries, especially lithium ion batteries. Polyethylene microporous membranes are used in addition to general properties such as mechanical strength and permeability,
This is because, when the inside of the battery is overheated, the separator melts to form a film covering the electrodes, thereby interrupting the current and thereby exhibiting a "fuse effect" of ensuring the safety of the battery.

【0003】ポリエチレン微多孔膜の場合には、ヒュー
ズ効果が発現する温度すなわちヒューズ温度は概ね13
0〜150℃にあることが知られており、何らかの理由
で電池内部が過熱してもヒューズ温度に達した時点で電
流が遮断され、電池反応が停止する。しかし、温度上昇
が急激な場合などでは十分なヒューズ効果が発揮されな
いことがある。これはセパレーターが溶融する時に生じ
る収縮応力や、溶融後にも残る電極間の圧力によってセ
パレーターが伸長され破損し、正負両極が短絡(ショー
ト)してしまうためであり、近年このような条件下でも
電池の安全性を確保できるような高い耐熱性をセパレー
ターに持たせるため、架橋されたポリエチレン微多孔膜
が用いられるようになってきている。
In the case of a polyethylene microporous membrane, the temperature at which the fuse effect is exhibited, that is, the fuse temperature is generally about 13 ° C.
It is known that the temperature is 0 to 150 ° C., and even if the inside of the battery is overheated for some reason, the current is cut off when the fuse temperature is reached, and the battery reaction stops. However, a sufficient fuse effect may not be exhibited when the temperature rises rapidly. This is because the separator is stretched and damaged by the contraction stress generated when the separator melts and the pressure between the electrodes remaining after the melting, and the positive and negative electrodes are short-circuited (short-circuited). In order to impart high heat resistance to the separator so as to ensure the safety of the separator, a crosslinked polyethylene microporous membrane has been used.

【0004】しかし、従来のポリオレフィン微多孔膜の
架橋技術は、いずれもゲル分を含み、延伸などの加工が
困難であったり、生産の効率性に欠けるといった問題が
あった。例えば、特開平1−167344号公報では架
橋剤によるポリオレフィン微多孔膜架橋体の製造方法が
開示されているが、該公報によるポリオレフィン微多孔
膜はゲル分を多く含み延伸等の加工が困難であり、高強
度な膜は得られない。
[0004] However, the conventional techniques for cross-linking a microporous polyolefin membrane all have a problem that they involve a gel component and are difficult to process such as stretching, and lack in production efficiency. For example, JP-A-1-167344 discloses a method for producing a crosslinked polyolefin microporous membrane using a crosslinking agent. However, the polyolefin microporous membrane according to the publication contains a large amount of gel and is difficult to process such as stretching. A high-strength film cannot be obtained.

【0005】また、特開昭56−73856号公報や特
開平3−59947号公報では電離放射線によるポリオ
レフィン微多孔膜の架橋法が開示されているが、これら
の公報によるポリオレフィン微多孔膜もゲルを含み、ま
た、高エネルギーによる加工が必要で照射時にポリオレ
フィンが発熱し、微多孔膜が溶融したり収縮してしまう
という問題があり、低エネルギーでの処理を何回かに分
けて行うといった対策が必要になる。
Japanese Patent Application Laid-Open Nos. 56-73856 and 3-59947 disclose cross-linking methods for microporous polyolefin membranes by ionizing radiation. In addition, processing with high energy is necessary, and there is a problem that the polyolefin generates heat during irradiation and the microporous film is melted or shrunk. Will be needed.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、加工
性、生産性に優れ、かつ過酷な状況下でも電池の安全性
を確保できるような高い耐熱性を併せ持つポリエチレン
微多孔膜を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microporous polyethylene membrane which is excellent in workability and productivity and has high heat resistance so that the safety of a battery can be ensured even under severe conditions. It is in.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
鋭意研究を重ねた結果、特定の熱変形挙動を有するポリ
エチレン微多孔膜は、それを示さない微多孔膜と比較し
てゲル分率1%未満でも高い耐熱性を持ち、さらに加工
性や生産性にも優れていることを見い出し本発明をなす
に至った。すなわち、本発明の第1は、伸長粘度測定に
おいて歪み硬化性を有し、ゲル分率1%未満であること
を特徴とするポリエチレン微多孔膜であって、好ましく
は透過法による平均孔径が0.001〜0.1μmの範
囲のポリエチレン微多孔膜に関する。また、本発明の第
2は、上記ポリエチレン微多孔膜を用いた電池用セパレ
ーターである。更に、本発明の第3は、第2の電池用セ
パレーターを用いた電池である。
As a result of intensive studies to solve the above-mentioned problems, a microporous polyethylene film having a specific thermal deformation behavior has a gel fraction of 1 compared with a microporous film which does not show the same. %, It has been found that it has high heat resistance and is also excellent in workability and productivity, and has accomplished the present invention. That is, the first aspect of the present invention is a microporous polyethylene membrane having strain hardening property in elongational viscosity measurement and having a gel fraction of less than 1%, and preferably has an average pore size of 0 by a permeation method. A microporous polyethylene membrane in the range of 0.001 to 0.1 μm. A second aspect of the present invention is a battery separator using the above microporous polyethylene membrane. Further, a third aspect of the present invention is a battery using the second battery separator.

【0008】以下、本発明を詳細に説明する。まず、本
発明のポリエチレン微多孔膜について説明する。歪み硬
化性を有するゲル分率1%未満のポリエチレン微多孔膜
が高い耐熱性を示す理由は明らかでないが、歪み硬化性
を有さない通常のポリエチレン微多孔膜に比べ過充電試
験や高温時の破膜試験に代表される耐熱性を大きく改善
することが可能となった。また、歪み硬化性の付与の方
法も従来膜の加工性や生産性を損なうことがなく、簡便
である。
Hereinafter, the present invention will be described in detail. First, the microporous polyethylene membrane of the present invention will be described. It is not clear why a microporous polyethylene membrane having a gel fraction of less than 1% having a strain hardening property shows high heat resistance, but it is more difficult to conduct an overcharge test and a higher temperature than a normal microporous polyethylene membrane having no strain hardening property. It has become possible to greatly improve the heat resistance represented by the film rupture test. Further, the method of imparting strain hardening properties is simple without impairing the processability and productivity of the conventional film.

【0009】伸長粘度は伸長変形時の溶融張力に大きく
影響する物質定数であり、市販の伸長粘度計(例えば、
東洋精機社製のメルテンレオメーター)を用いて簡単に
測定することができ、通常歪み速度と時間の関数で表さ
れる。溶融された通常のゲルを含まないポリエチレン微
多孔膜の伸長粘度は、図2に示すように相対的に固定さ
れた点から一定歪み速度で伸長されるとき、歪み速度に
依存するある時間まで増加し、ついで破断が近づくにつ
れて急速に減少する傾向を示す。この破断の形態は延性
破断という。
The elongational viscosity is a material constant that greatly affects the melt tension during elongational deformation.
It can be easily measured using a Toyo Seiki Merten Rheometer, and is usually expressed as a function of strain rate and time. The elongational viscosity of a melted ordinary gel-free polyethylene microporous membrane increases when stretched at a constant strain rate from a relatively fixed point, as shown in Figure 2, up to a certain time that depends on the strain rate And then tend to decrease rapidly as breakage approaches. This form of fracture is referred to as ductile fracture.

【0010】一方、溶融された本発明のポリエチレン微
多孔膜の伸長粘度は図1に示すように実質的に同条件で
伸長されるとき、通常のものより長い時間にわたって増
加し続けて、破断点が近づいても直線的、或いはそれ以
上に増加し一気に破断する傾向を示す。この破断の形態
は弾性破断という。この特性は歪み硬化性を示してい
る。伸長粘度については、例えば小山清人;日本レオロ
ジー学会誌,19,174(1991)に詳しい。ゲル
分率とは、ASTM D2765に準拠した測定法によ
って評価される値である。本発明によるゲル分率は1%
未満である。ゲル分を1%以上有すると、延伸などの加
工が困難となったり、生産性が劣るので好ましくない。
On the other hand, the elongational viscosity of the melted polyethylene microporous membrane of the present invention, when elongated under substantially the same conditions as shown in FIG. Shows a tendency to increase linearly or more even when it approaches, and to break at a stretch. This form of fracture is called elastic fracture. This property is indicative of strain hardening. The elongational viscosity is described in detail, for example, in Kiyoto Koyama; Journal of Rheological Society of Japan, 19, 174 (1991). The gel fraction is a value evaluated by a measuring method based on ASTM D2765. The gel fraction according to the invention is 1%
Is less than. Having a gel content of 1% or more is not preferred because processing such as stretching becomes difficult or productivity is poor.

【0011】本発明の微多孔膜のセパレーターとしての
耐熱性は、最終的にはこれを用いて電池を組上げたとき
の過充電試験や外部短絡試験、加熱試験といった加速試
験によって評価されるが、本発明者らは溶融後の破膜挙
動について詳細に検討した結果、これらの加速試験の評
価結果が160℃のシリコンオイル中における破膜時間
と強く相関することを見いだした。
The heat resistance of the microporous membrane of the present invention as a separator is finally evaluated by an accelerated test such as an overcharge test, an external short-circuit test, and a heating test when a battery is assembled using the same. The present inventors have studied in detail the film rupture behavior after melting, and have found that the evaluation results of these accelerated tests strongly correlate with the film rupture time in silicon oil at 160 ° C.

【0012】すなわち、本発明のポリエチレン微多孔膜
は160℃のシリコンオイル中で20秒以上の破膜時間
を有しており、該膜は前記の全ての加速試験において合
格であった。一方、従来のポリエチレン微多孔膜はいず
れも一つ以上の加速試験で不合格となったが、これらの
破膜時間は20秒以下であり加速試験の結果とよく対応
した。すなわち本発明のポリエチレン微多孔膜は160
℃のシリコンオイル中の破膜時間において特徴づけられ
るものである。
That is, the microporous polyethylene membrane of the present invention had a membrane rupture time of at least 20 seconds in silicone oil at 160 ° C., and the membrane passed all the above acceleration tests. On the other hand, all the conventional microporous polyethylene membranes failed in one or more accelerated tests, but the breakage time was 20 seconds or less, which corresponded well to the results of the accelerated test. That is, the polyethylene microporous membrane of the present invention
It is characterized by the rupture time in silicone oil at ℃.

【0013】このように本発明のポリエチレン微多孔膜
は高い耐熱性を有するが、耐熱性以外の一般物性に関し
ても25μ換算の透気度2000秒以下、破断強度50
0kg/cm2 以上であり、耐熱性のみならず機械強度
や透過性においても従来のポリエチレン微多孔膜を凌駕
する性能を備えている。本発明で使用するポリエチレン
はエチレンを主体とした結晶性の重合体である高密度ポ
リエチレンが好ましく、さらにポリプロピレン、中密度
ポリエチレン、線状低密度ポリエチレン、低密度ポリエ
チレン、EPR等のポリオレフィンを30%以下の割合
でブレンドしてもかまわない。
As described above, the microporous polyethylene membrane of the present invention has high heat resistance. However, with respect to general physical properties other than heat resistance, an air permeability of not more than 2000 seconds in terms of 25 μm and a breaking strength of 50 μm or less are obtained.
It is 0 kg / cm 2 or more, and has a performance exceeding that of a conventional microporous polyethylene membrane not only in heat resistance but also in mechanical strength and permeability. The polyethylene used in the present invention is preferably a high-density polyethylene which is a crystalline polymer mainly composed of ethylene, and further contains 30% or less of a polyolefin such as polypropylene, medium-density polyethylene, linear low-density polyethylene, low-density polyethylene, and EPR. May be blended.

【0014】ポリエチレンの重量平均分子量は10万か
ら400万、好ましくは20万から100万、さらに好
ましくは20万から70万の範囲である。分子量が10
万より小さいと延伸時に破断しやすく、400万より大
きいと熱溶液の製造が困難になるため好ましくない。ま
た、分子量の異なるポリエチレンのブレンドや多段重合
等の手段によって重量平均分子量を好ましい範囲に調節
してもかまわない。膜厚は1〜200μm、好ましくは
10〜50μmの範囲であり、膜厚が1μm未満である
と機械強度が十分ではなく、200μmを超えると電池
の小型軽量化に支障が生じる。
The weight average molecular weight of polyethylene ranges from 100,000 to 4,000,000, preferably from 200,000 to 1,000,000, and more preferably from 200,000 to 700,000. Molecular weight 10
If it is smaller than 10,000, it tends to break during stretching, and if it is larger than 4,000,000, it becomes difficult to produce a hot solution, which is not preferable. Further, the weight average molecular weight may be adjusted to a preferable range by means such as blending of polyethylene having different molecular weights or multi-stage polymerization. The film thickness is in the range of 1 to 200 μm, preferably 10 to 50 μm. If the film thickness is less than 1 μm, the mechanical strength is not sufficient, and if it exceeds 200 μm, there is a problem in reducing the size and weight of the battery.

【0015】気孔率は20〜80%、好ましくは30〜
60%の範囲であり、気孔率が20%未満であると透過
性が十分ではなく、80%を超えると十分な機械強度が
得られない。平均孔径は0.001〜0.1μm、好ま
しくは0.005〜0.5μm、さらに好ましくは0.
01〜0.03μmの範囲であり、平均孔径が0.00
1μm未満であると透過性が十分でなく、0.1μmを
超えるとヒューズ効果による電流遮断が遅れることに加
えて、析出したデンドライトや崩落した電極活物質によ
る短絡が懸念されるため好ましくない。
The porosity is 20 to 80%, preferably 30 to 80%.
When the porosity is less than 20%, the permeability is not sufficient, and when the porosity exceeds 80%, sufficient mechanical strength cannot be obtained. The average pore size is 0.001 to 0.1 μm, preferably 0.005 to 0.5 μm, and more preferably 0.
0.01 to 0.03 μm, and the average pore size is 0.00
If it is less than 1 μm, the transparency is not sufficient, and if it exceeds 0.1 μm, current interruption due to the fuse effect is delayed, and in addition, a short circuit due to precipitated dendrites or collapsed electrode active material is not preferable.

【0016】次に本発明のポリエチレン微多孔膜の製造
方法について説明する。通常のポリエチレン微多孔膜の
製造方法は、次のような成膜工程、延伸工程、抽出工程
の3工程からなる。 《成膜工程》本発明の中間製品である高分子ゲルは、ポ
リエチレンを融点以上で可塑剤に溶解して熱溶液とし、
これを結晶化温度以下まで冷却することによって生成さ
れる。ここでいう可塑剤とは、沸点以下の温度でポリエ
チレンと均一な溶液を形成しうる有機化合物のことであ
り、具体的には、デカリン、キシレン、ジオクチルフタ
レート、ジブチルフタレート、ステアリルアルコール、
オレイルアルコール、デシルアルコール、ノニルアルコ
ール、ジフェニルエーテル、n−デカン、n−ドデカ
ン、パラフィン油等が挙げられる。このうちパラフィン
油、ジオクチルフタレートが好ましい。可塑剤の割合は
特に限定されないが、20%から90%、好ましくは5
0%から70%の範囲である。20%未満では適当な気
孔率を得る事が難しく、90%を超えると粘度が低下し
て連続成形が困難になる。
Next, the method for producing the microporous polyethylene membrane of the present invention will be described. An ordinary method for producing a microporous polyethylene membrane comprises the following three steps: a film formation step, a stretching step, and an extraction step. << film formation step >> The polymer gel, which is an intermediate product of the present invention, dissolves polyethylene in a plasticizer at a melting point or higher to form a hot solution,
It is produced by cooling it below the crystallization temperature. The plasticizer as referred to herein is an organic compound capable of forming a uniform solution with polyethylene at a temperature equal to or lower than the boiling point, and specifically, decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol,
Oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like are mentioned. Of these, paraffin oil and dioctyl phthalate are preferred. Although the ratio of the plasticizer is not particularly limited, it is 20% to 90%, preferably 5%.
It is in the range of 0% to 70%. If it is less than 20%, it is difficult to obtain an appropriate porosity, and if it exceeds 90%, the viscosity is reduced and continuous molding becomes difficult.

【0017】このような高分子ゲルは数10μmから数
mm厚のシート状に成形されるが、この状態の高分子ゲ
ルを原反と呼び、また原反を製造する工程を成膜工程と
呼んでいる。成膜方法については特に限定しないが、例
えば押出機に高密度ポリエチレンのパウダーと可塑剤を
供給し、200℃程度の温度で溶融混練したあと、通常
のハンガーコートダイから冷却ロールの上へキャストす
る事によって連続的に成膜することができる。
Such a polymer gel is formed into a sheet having a thickness of several tens μm to several mm. The polymer gel in this state is called a raw material, and a process of manufacturing the raw material is called a film forming process. In. Although there is no particular limitation on a film forming method, for example, a high-density polyethylene powder and a plasticizer are supplied to an extruder, melt-kneaded at a temperature of about 200 ° C., and then cast from a usual hanger coat die onto a cooling roll. In this way, a film can be continuously formed.

【0018】《延伸工程》次に原反を少なくとも1軸方
向に延伸することによって延伸膜とする。延伸方法とし
ては特に限定されないが、テンター法、ロール法、圧延
法等が使用できる。このうち、テンター法による同時2
軸延伸が好ましい。延伸温度は常温から高分子ゲルの融
点、好ましくは80〜130℃、さらに好ましくは10
0〜125℃の範囲である。延伸倍率は面積倍率で4〜
400倍であり、好ましくは8〜200倍、さらに好ま
しくは16〜100倍の範囲である。延伸倍率4倍未満
ではセパレーターとして強度が不十分であり、400倍
を超えると延伸が困難であるのみならず気孔率の低下等
の弊害が生じやすい。
<Stretching Step> Next, the raw film is stretched in at least one axial direction to form a stretched film. The stretching method is not particularly limited, but a tenter method, a roll method, a rolling method, or the like can be used. Of these, simultaneous 2 by the tenter method
Axial stretching is preferred. The stretching temperature is from room temperature to the melting point of the polymer gel, preferably 80 to 130 ° C, more preferably 10 to 130 ° C.
The range is from 0 to 125 ° C. Stretching ratio is 4 ~
It is 400 times, preferably 8 to 200 times, more preferably 16 to 100 times. If the stretching ratio is less than 4 times, the strength as a separator is insufficient, and if it exceeds 400 times, not only stretching is difficult but also adverse effects such as a decrease in porosity are likely to occur.

【0019】《抽出工程》次に、延伸膜から可塑剤を抽
出除去することによって微多孔膜とする。抽出方法とし
ては特に限定されないが、パラフィン油やジオクチルフ
タレートを使用する場合には塩化メチレンやメチルエチ
ルケトン(MEK)等の有機溶媒で抽出したあと、ヒュ
ーズ温度以下で加熱乾燥を行う事に除去することができ
る。また、可塑剤にデカリン等の低沸点化合物を使用す
る場合にはヒューズ温度以下で加熱乾燥することにより
除去することができる。いずれの場合も膜の収縮による
物性低下を防ぐため、膜を拘束することが好ましい。歪
み硬化性の付与には成膜工程における有機過酸化物処理
か、何れかの工程の後に電離放射線による処理を行うこ
とが好ましい。
<< Extraction Step >> Next, a plasticizer is extracted and removed from the stretched film to obtain a microporous film. Although there is no particular limitation on the extraction method, when paraffin oil or dioctyl phthalate is used, it can be removed by extracting with an organic solvent such as methylene chloride or methyl ethyl ketone (MEK) and then heating and drying at a fuse temperature or lower. it can. When a low boiling point compound such as decalin is used as the plasticizer, it can be removed by heating and drying at a fuse temperature or lower. In either case, it is preferable to restrain the film in order to prevent a decrease in physical properties due to contraction of the film. In order to impart the strain hardening property, it is preferable to perform an organic peroxide treatment in the film forming step or a treatment with ionizing radiation after any of the steps.

【0020】《有機過酸化物処理》ポリエチレンもしく
は可塑剤に所定量の有機過酸化物を添加し、これらを該
過酸化物が実質的に分解しないような条件のもとに溶融
混練を行って熱溶液を調整し、次に該熱溶液を有機過酸
化物の分解温度以上に昇温した後、ポリエチレンの結晶
化温度以下に冷却することによって過酸化物処理を施し
た原反を作成し、さらに延伸工程、抽出工程を経ること
によって歪み硬化性を有するポリエチレン微多孔膜を製
造することができる。
<< Organic peroxide treatment >> A predetermined amount of an organic peroxide is added to polyethylene or a plasticizer, and the mixture is melt-kneaded under conditions such that the peroxide is not substantially decomposed. After adjusting the hot solution, the temperature of the hot solution was raised to a temperature equal to or higher than the decomposition temperature of the organic peroxide, and then a raw material subjected to a peroxide treatment was prepared by cooling the hot solution to a temperature lower than the crystallization temperature of polyethylene. Further, through a stretching step and an extraction step, a polyethylene microporous membrane having strain hardening properties can be produced.

【0021】ここで、過酸化物が実質的に分解しないと
は、ポリエチレンと可塑剤と有機過酸化物が均一な熱溶
液を調整するまでの間に過酸化物の活性酸素量が1/2
以下に減少しない状態を指し、例えば溶融混練に10分
を要する場合は過酸化物の半減期が10分になるような
温度以下で溶融混練することにより過酸化物を実質的に
分解させることなく均一な熱溶液を調整することができ
る。また、半減期とは、0.1mol/lの有機化酸化
物のベンゼン溶液を所定温度で分解させたとき、その活
性酸素量が1/2になるまでの時間である。
Here, the term "peroxide does not substantially decompose" means that the active oxygen content of the peroxide is reduced to 1/2 by the time the polyethylene, the plasticizer and the organic peroxide form a uniform heat solution.
Refers to a state that does not decrease below, for example, when melt kneading takes 10 minutes, the peroxide is substantially not decomposed by melt kneading at a temperature not more than the half life of the peroxide becomes 10 minutes. A uniform hot solution can be prepared. The half-life is a time required for decomposing a 0.1 mol / l benzene solution of an organic oxide at a predetermined temperature until the amount of active oxygen becomes 1/2.

【0022】また、ここでいう有機過酸化物とは150
℃における半減期が1分以上のパーオキシケタール、ジ
アルキルパーオキサイト、パーオキシエステル等であっ
て、例えばα、α’−ビス(t−ブチルパーオキシ)ジ
イソプロピルベンゼン、ジクミルパーオキサイト、2、
5−ジメチル−2、5−ビス(t−ブチルパーオキシ)
ヘキサン、t−ブチルクミルパーオキサイト、ジ−t−
ブチルパーオキサイト、2、5−ジメチル−2、5−ビ
ス(t−ブチルパーオキシ)ヘキシン−3などが挙げら
れる。有機過酸化物の割合は特に限定されないが、0.
001%から1%、好ましくは0.01%から0.5%
の範囲である。0.001%未満では十分な耐熱性が得
られず、1%を超えると可塑剤に不溶のゲル分が生成し
均一な膜への加工が困難になる。
The term "organic peroxide" used herein means 150
Peroxyketal, dialkylperoxide, peroxyester, etc. having a half-life at 1 ° C. of 1 minute or more, such as α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumylperoxide, ,
5-dimethyl-2,5-bis (t-butylperoxy)
Hexane, t-butylcumylperoxide, di-t-
Butylperoxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 and the like. The ratio of the organic peroxide is not particularly limited.
001% to 1%, preferably 0.01% to 0.5%
Range. If it is less than 0.001%, sufficient heat resistance cannot be obtained, and if it exceeds 1%, a gel component insoluble in the plasticizer is generated, and it becomes difficult to process into a uniform film.

【0023】さらに、多官能性モノマーを1%以下の割
合で添加してもかまわない。多官能モノマーとしては、
例えばジビニルベンゼン、ジアリルフタレート、トリア
リルシアヌレート、トリアリルイソシアヌレートなどを
使用することができる。例えば、押出機に高密度ポリエ
チレンのパウダーと有機過酸化物を溶かした可塑剤を供
給し、ポリエチレンの融点以上有機化酸化物の半減期が
10分である温度以下で溶融混練したあと、この熱溶液
を有機化酸化物の半減期が10秒である温度以上に過熱
した通常のハンガーコートダイから冷却ロールの上へキ
ャストする事によって連続的に成膜することができる。
Further, a polyfunctional monomer may be added at a ratio of 1% or less. As polyfunctional monomers,
For example, divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate and the like can be used. For example, a high-density polyethylene powder and a plasticizer in which an organic peroxide is dissolved are supplied to an extruder, and the mixture is melt-kneaded at a temperature equal to or higher than the melting point of polyethylene and equal to or lower than a half-life of the organic oxide of 10 minutes. The solution can be continuously formed by casting the solution from a normal hanger coat die heated to a temperature at which the half life of the organic oxide is 10 seconds or more onto a cooling roll.

【0024】《電子線処理》上記の従来ポリエチレン微
多孔膜製造方法のいずれかの工程の後で電離放射線によ
る処理を行うことによっても歪み硬化性は付与される。
特に電子線による抽出後の処理が好ましい。電子線処理
を行うときの線量は0.1〜10Mrad、好ましくは
1〜5Mradである。線量が小さすぎると耐熱性の改
善が不十分であり、線量が大きすぎると、電子線のエネ
ルギーでポリエチレン微多孔膜が加熱され、膜が溶融し
たり収縮してしまう。このように、歪み硬化性は通常の
製造方法、生産性を大きく変えることなく簡便に付与す
ることができる。
<< Electron Beam Treatment >> A strain hardening property can also be imparted by performing a treatment with ionizing radiation after any of the above-mentioned conventional methods for producing a polyethylene microporous membrane.
In particular, treatment after extraction with an electron beam is preferred. The dose for performing the electron beam treatment is 0.1 to 10 Mrad, preferably 1 to 5 Mrad. If the dose is too small, the improvement in heat resistance is insufficient, and if the dose is too large, the polyethylene microporous film is heated by the energy of the electron beam, and the film is melted or shrunk. As described above, the strain hardening property can be easily provided without greatly changing the ordinary production method and productivity.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を用い
て詳細に説明する。実施例において示される試験方法は
次の通りである。 (1)膜厚 ダイヤルゲージ(尾崎製作所製:PEACOCK No
25)を用いて測定した。 (2)気孔率 20cm角のサンプルをとり、その体積と重量から次式
を用いて計算した。 気孔率(%)=〔体積(cm3 )−重量(g)/0.9
5)/体積(cm3 )〕×100
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail using embodiments. The test method shown in the examples is as follows. (1) Film thickness dial gauge (Ozaki Seisakusho: PEACK No.
25). (2) Porosity A 20 cm square sample was taken, and the porosity was calculated from the volume and weight using the following equation. Porosity (%) = [volume (cm 3 ) -weight (g) /0.9]
5) / volume (cm 3 )] × 100

【0026】(3)平均孔径 0.5kg/cm2 の差圧下で0.05重量%のプルラ
ン(昭和電工製)の水溶液を循環させたときに、濾液中
に含まれるプルラン濃度を示差屈折率測定から求めた。
阻止率50%になるプルランの分子量Mと同水溶液の固
有粘度[η]から次式を用いて平均孔径d(μm)を算
出した。 [η]M=2.1×1021((d/2)2 3/2 (4)ゲル分率 ASTM D2765に基づき沸騰パラキシレン中で1
2時間可溶分を抽出したときの重量変化より、抽出前の
試料の質量に対する抽出後の残存質量の比として次式よ
り求めた。 ゲル分率(%)=残存質量(g)/試料質量(g)×1
00
(3) When a 0.05 wt% aqueous solution of pullulan (manufactured by Showa Denko) is circulated under a differential pressure of 0.5 kg / cm 2 , the concentration of pullulan contained in the filtrate is determined by the differential refractive index. It was determined from the measurement.
The average pore diameter d (μm) was calculated from the molecular weight M of pullulan at which the rejection became 50% and the intrinsic viscosity [η] of the aqueous solution using the following equation. [Η] M = 2.1 × 10 21 ((d / 2) 2 ) 3/2 (4) Gel fraction 1 in boiling para-xylene based on ASTM D2765
The ratio of the residual mass after the extraction to the mass of the sample before the extraction was determined from the following equation based on the weight change when the soluble matter was extracted for 2 hours. Gel fraction (%) = residual mass (g) / sample mass (g) × 1
00

【0027】(5)突き刺し強度 カトーテック製KES−G5ハンディー圧縮試験器を用
いて、針先端の曲率半径0.5mm、突き刺し速度2m
m/secの条件で突き刺し試験を行い、最大突き刺し
荷重を突き刺し強度(g)とした。また、突き刺し強度
に膜厚(μm)/25(μm)を乗じる事によって25
μ換算突き刺し強度とした。 (6)透気度 JIS P−8117準拠のガーレー式透気度計にて測
定した。また、透気度に膜厚(μm)/25(μm)を
乗じる事によって25μ換算透気度とした。
(5) Puncture strength Using a KES-G5 handy compression tester manufactured by Kato Tech, the radius of curvature of the needle tip is 0.5 mm, and the piercing speed is 2 m.
A piercing test was performed under the conditions of m / sec, and the maximum piercing load was defined as the piercing strength (g). Also, by multiplying the piercing strength by the film thickness (μm) / 25 (μm),
The stab strength was calculated as μ conversion. (6) Air permeability Measured with a Gurley air permeability meter according to JIS P-8117. Further, the air permeability was multiplied by the film thickness (μm) / 25 (μm) to obtain a 25 μ conversion air permeability.

【0028】(7)伸張粘度 150℃のシリコンオイル中に微多孔膜を浸漬して配向
を緩和させた後、溶融伸長流動測定装置(東洋精機社
製:メルテンレオメーター)を使用して、歪み速度0.
1/secでの伸長粘度を測定した。歪み硬化性の有無
は、破断の形態により判別した。例えば、従来のポリエ
チレン微多孔膜は伸長するとサンプルの途中でネックイ
ンを起こし、伸長粘度がある時間から急速に低下して破
断(延性破断)するのに対し、歪み硬化性を付与された
ポリエチレン微多孔膜の伸長粘度は上昇し続けて破断
(弾性破断)する。 (8)破膜試験 ポリエチレン微多孔膜を内径13mm、外径25mmの
ステンレス製ワッシャ2枚で挟み込み、周囲4点をクリ
ップで止めた後160℃のシリコンオイル(信越化学工
業社製:KF−96−10CS)に浸漬し、目視観察に
よって20秒以内に膜が破れたものを×、破れなかった
ものを○とした。
(7) Extensional Viscosity After immersing the microporous membrane in silicon oil at 150 ° C. to relax the orientation, the melt extensional flow measurement device (Toyo Seiki Co., Ltd .: Melten Rheometer) was used. Strain rate 0.
The elongational viscosity at 1 / sec was measured. The presence or absence of strain hardening was determined by the form of fracture. For example, when a conventional microporous polyethylene membrane is stretched, neck-in occurs in the middle of the sample, and the elongational viscosity rapidly decreases from a certain time and breaks (ductile breakage), whereas the strain-hardened polyethylene microporous membrane breaks down. The elongational viscosity of the porous membrane continues to rise and breaks (elastic break). (8) Membrane rupture test A polyethylene microporous membrane was sandwiched between two stainless steel washers having an inner diameter of 13 mm and an outer diameter of 25 mm, and four peripheral points were clipped, and then silicone oil at 160 ° C (KF-96 manufactured by Shin-Etsu Chemical Co., Ltd.) -10CS), and the film was broken by visual observation within 20 seconds, and x was not broken.

【0029】(9)過充電試験 LiCoO2 を正極活物質とし、グラファイトおよびア
セチレンブラックを導電剤とし、フッ素ゴムを結着剤と
し各々LiCoO2 :グラファイト:アセチレンブラッ
ク:フッ素ゴム=88:7.5:2.5:2の重量比で
混合したものをジメチルホルムアミドペーストとしてA
l箔に塗布乾燥したシートを正電極とし、ニードルコー
クス:フッ素ゴム=95:5の重量比で混合したものを
ジメチルホルムアミドペーストとしてCu箔に塗布乾燥
したシートを負電極とし、電解液としてプロピレンカー
ボネートとブチロラクトンの混合溶媒(体積比=1:
1)にホウフッ化リチウムを1.0Mの濃度で調整した
液を用い、リチウムイオン電池を製造した。この電池を
4.2Vで5時間充電したあと、さらに定電流で過充電
を行った。過充電によって電池の内部温度は上昇し、ヒ
ューズ温度に達すると電流が遮断されるが、その後1時
間以上電流復帰の無かったサンプルを○とした。なお、
本試験は加速試験であるため実際の電池に装備されてい
るPTC素子等の安全装置は取り外した状態で行った。
(9) Overcharge test LiCoO 2 was used as a positive electrode active material, graphite and acetylene black were used as conductive agents, and fluororubber was used as a binder. LiCoO 2 : graphite: acetylene black: fluororubber = 88: 7.5 : 2.5: 2 mixture at a weight ratio of dimethylformamide paste A
(1) A sheet coated and dried on a foil is used as a positive electrode, a mixture obtained by mixing needle coke: fluororubber at a weight ratio of 95: 5 as a dimethylformamide paste is applied on a Cu foil and dried as a negative electrode, and propylene carbonate is used as an electrolyte. And butyrolactone mixed solvent (volume ratio = 1:
Using a liquid prepared by adjusting lithium borofluoride at a concentration of 1.0 M in 1), a lithium ion battery was manufactured. This battery was charged at 4.2 V for 5 hours, and then overcharged at a constant current. The internal temperature of the battery rises due to overcharging, and the current is cut off when the temperature reaches the fuse temperature. In addition,
Since this test is an acceleration test, the safety device such as a PTC element mounted on an actual battery was removed.

【0030】(実施例1)重量平均分子量25万の高密
度ポリエチレン40部とパラフィン油(松村石油研究所
製:P350P)60部、ジクミルパーオキサイト(1
50℃での半減期が約10分、200℃での半減期が約
7秒)0.2部をバッチ式溶融混練機(東洋精機社製:
ラボプラストミル)を用いて150℃・50rpmで5
分間混練した。得られた混練物を200℃の過熱プレス
で成形し10分間そのまま熱処理をした後水冷プレスで
冷却し、厚さ1000μmの原反とした。これを同時2
軸延伸機(東洋精機社製)を用いて6×6倍に120℃
で延伸し、その後塩化メチレンでパラフィン油を抽出除
去した。得られたポリエチレン微多孔膜の物性を表1に
示す。
Example 1 40 parts of high-density polyethylene having a weight-average molecular weight of 250,000, 60 parts of paraffin oil (P350P, manufactured by Matsumura Petroleum Institute, Ltd.), and dicumyl peroxide (1)
0.2 part of a batch-type melt kneader (manufactured by Toyo Seiki Co., Ltd .: about 10 minutes at 50 ° C. and about 7 seconds at 200 ° C.)
5 at 150 ° C and 50 rpm using Labo Plastmill
Kneaded for minutes. The obtained kneaded material was molded by a 200 ° C. superheated press, heat-treated for 10 minutes, and then cooled by a water-cooled press to obtain a 1000 μm thick raw material. Simultaneously 2
Using an axial stretching machine (manufactured by Toyo Seiki Co., Ltd.) at 6 × 6 times 120 °
Then, paraffin oil was extracted and removed with methylene chloride. Table 1 shows the physical properties of the obtained microporous polyethylene membrane.

【0031】(実施例2)ジクミルパーオキサイトを
0.8部とした以外は実施例1と同様の方法でポリエチ
レン微多孔膜を作成した。得られたポリエチレン微多孔
膜の物性を表1に示す。 (比較例1)有機過酸化物を添加せずに実施例1と同様
の方法でポリエチレン微多孔膜を作成した。得られたポ
リエチレン微多孔膜の物性を表1に示す。 (比較例2)有機過酸化物の添加を6部とした以外は実
施例1と同様の方法でポリエチレン微多孔膜の作成を試
みたが、延伸応力が大きく、膜が破断してしまい所定倍
率への加工ができなかった。
Example 2 A microporous polyethylene membrane was prepared in the same manner as in Example 1 except that 0.8 parts of dicumyl peroxide was used. Table 1 shows the physical properties of the obtained microporous polyethylene membrane. Comparative Example 1 A microporous polyethylene membrane was prepared in the same manner as in Example 1 without adding an organic peroxide. Table 1 shows the physical properties of the obtained microporous polyethylene membrane. (Comparative Example 2) An attempt was made to produce a microporous polyethylene membrane in the same manner as in Example 1 except that the addition of the organic peroxide was changed to 6 parts. However, the stretching stress was large, the membrane was broken, and a predetermined magnification was obtained. Could not be processed.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例3)重量平均分子量25万の高密
度ポリエチレン40部とパラフィン油(松村石油研究
所:P350P)60部、ジクミルパーオキサイト0.
4部を35mmの2軸押出機を用いて150℃で混練
し、リップ間1400μmの200℃に温調したハンガ
ーコートダイから30℃に温調した冷却ロール上にキャ
ストして厚さ1400μmの原反とした。この原反を同
時2軸延伸機を用いて7×7倍に120℃で延伸し、そ
の後塩化メチレンでパラフィン油を抽出除去した。得ら
れたポリエチレン微多孔膜の物性を表2に示す。
Example 3 40 parts of high-density polyethylene having a weight average molecular weight of 250,000, 60 parts of paraffin oil (Matsumura Petroleum Institute: P350P), and dicumyl peroxide 0.1 part.
Four parts were kneaded at 150 ° C. using a 35 mm twin-screw extruder, cast from a hanger coat die adjusted to 200 ° C. with a lip interval of 1400 μm on a cooling roll adjusted to 30 ° C., and a 1400 μm thick raw material was cast. It was anti. The raw fabric was stretched 7 × 7 times at 120 ° C. using a simultaneous biaxial stretching machine, and then paraffin oil was extracted and removed with methylene chloride. Table 2 shows the physical properties of the obtained polyethylene microporous membrane.

【0034】(実施例4)重量平均分子量25万の高密
度ポリエチレン40部とパラフィン油(松村石油研究
所:P350P)60部を35mmの2軸押出機を用い
て200℃で混練し、リップ間1400μmのハンガー
コートダイから30℃に温調した冷却ロール上にキャス
トして厚さ1400μmの原反とした。この原反を同時
2軸延伸機を用いて7×7倍に延伸し、次に塩化メチレ
ンでパラフィン油を抽出除去した。その後抽出膜に酸素
濃度50ppm以下の窒素雰囲気下で3Mradの電子
線照射を行った。加速電圧は150kVであった。得ら
れたポリエチレン微多孔膜の物性を表2に示す。 (比較例3)有機過酸化物を添加せずに実施例2と同様
の方法でポリエチレン微多孔膜を作成した。得られたポ
リエチレン微多孔膜の物性を表2に示す。
Example 4 40 parts of high-density polyethylene having a weight-average molecular weight of 250,000 and 60 parts of paraffin oil (Matsumura Petroleum Research Institute: P350P) were kneaded at 200 ° C. using a 35 mm twin-screw extruder. It was cast from a 1400 μm hanger coat die on a cooling roll adjusted to 30 ° C. to obtain a 1400 μm thick raw material. This web was stretched 7 × 7 times using a simultaneous biaxial stretching machine, and then paraffin oil was extracted and removed with methylene chloride. Thereafter, the extraction membrane was irradiated with 3 Mrad of electron beam under a nitrogen atmosphere having an oxygen concentration of 50 ppm or less. The acceleration voltage was 150 kV. Table 2 shows the physical properties of the obtained polyethylene microporous membrane. (Comparative Example 3) A microporous polyethylene membrane was prepared in the same manner as in Example 2 without adding an organic peroxide. Table 2 shows the physical properties of the obtained polyethylene microporous membrane.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明のポリエチレン微多孔膜は高い耐
熱性を有するため、特に電池用セパレーターとして使用
するとヒューズ状態の安定性が向上し、破膜による電流
復帰を未然に防止することによって電池の安全性をさら
に高めることが可能となる。
Since the microporous polyethylene membrane of the present invention has high heat resistance, the stability of the fuse state is improved especially when used as a battery separator, and the recovery of the current due to the rupture of the membrane is prevented beforehand, thereby improving the battery performance. It is possible to further enhance safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1、2に記載の歪み硬化性を有するポリ
エチレン微多孔膜の時間(秒)と伸長粘度(ポイズ)の
関係を示す図である。
FIG. 1 is a graph showing the relationship between the time (second) and the elongational viscosity (poise) of the microporous polyethylene film having strain hardening properties described in Examples 1 and 2.

【図2】比較例1に記載の歪み硬化性を有さないポリエ
チレン微多孔膜の時間と伸長粘度の関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between time and elongational viscosity of a polyethylene microporous membrane having no strain hardening property described in Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 歪み硬化性伸長粘度を有し、ゲル分率1
%未満であり、平均孔径0.001〜0.1μmである
ことを特徴とする耐熱性に優れたポリエチレン微多孔
膜。
1. It has a strain hardening elongational viscosity and a gel fraction of 1.
% And an average pore diameter of 0.001 to 0.1 μm.
【請求項2】 請求項1記載のポリエチレン微多孔膜を
用いた電池用セパレーター。
2. A battery separator using the microporous polyethylene membrane according to claim 1.
【請求項3】 請求項2に記載の電池用セパレーターを
用いた電池。
3. A battery using the battery separator according to claim 2.
JP19405896A 1996-07-05 1996-07-05 Polyethylene microporous membrane Expired - Lifetime JP3669777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19405896A JP3669777B2 (en) 1996-07-05 1996-07-05 Polyethylene microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19405896A JP3669777B2 (en) 1996-07-05 1996-07-05 Polyethylene microporous membrane

Publications (2)

Publication Number Publication Date
JPH1017694A true JPH1017694A (en) 1998-01-20
JP3669777B2 JP3669777B2 (en) 2005-07-13

Family

ID=16318255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19405896A Expired - Lifetime JP3669777B2 (en) 1996-07-05 1996-07-05 Polyethylene microporous membrane

Country Status (1)

Country Link
JP (1) JP3669777B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071338A (en) * 1998-08-31 2000-03-07 Nitto Denko Corp Manufacture of porous film
JP2002347050A (en) * 2001-05-28 2002-12-04 Matsushita Electric Ind Co Ltd Method for manufacturing porous resin thin film and method for manufacturing battery structure
JP2008506003A (en) * 2004-07-06 2008-02-28 エスケーコーポレイション Polyethylene microporous membrane and method for producing the same
JP2010209135A (en) * 2009-03-06 2010-09-24 Asahi Kasei E-Materials Corp Microporous film and production method of the same, and separator for cell
JP2010265414A (en) * 2009-05-15 2010-11-25 Asahi Kasei E-Materials Corp Microporous film, method for producing the same and battery separator
JP2011255654A (en) * 2010-06-11 2011-12-22 Asahi Kasei E-Materials Corp Laminated microporous film, method for producing the same and separator for battery
JP2017155096A (en) * 2016-02-29 2017-09-07 東ソー株式会社 Ultrahigh-molecular-weight polyethylene composition and stretched microporous film formed from the same
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071338A (en) * 1998-08-31 2000-03-07 Nitto Denko Corp Manufacture of porous film
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
JP2002347050A (en) * 2001-05-28 2002-12-04 Matsushita Electric Ind Co Ltd Method for manufacturing porous resin thin film and method for manufacturing battery structure
JP2008506003A (en) * 2004-07-06 2008-02-28 エスケーコーポレイション Polyethylene microporous membrane and method for producing the same
JP4932709B2 (en) * 2004-07-06 2012-05-16 エスケー イノベーション カンパニー リミテッド Polyethylene microporous membrane and method for producing the same
JP2010209135A (en) * 2009-03-06 2010-09-24 Asahi Kasei E-Materials Corp Microporous film and production method of the same, and separator for cell
JP2010265414A (en) * 2009-05-15 2010-11-25 Asahi Kasei E-Materials Corp Microporous film, method for producing the same and battery separator
JP2011255654A (en) * 2010-06-11 2011-12-22 Asahi Kasei E-Materials Corp Laminated microporous film, method for producing the same and separator for battery
JP2017155096A (en) * 2016-02-29 2017-09-07 東ソー株式会社 Ultrahigh-molecular-weight polyethylene composition and stretched microporous film formed from the same

Also Published As

Publication number Publication date
JP3669777B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3525390B2 (en) Polyethylene microporous membrane and manufacturing method
KR100257360B1 (en) Short circuit-resistant polyethylene microporous film
JP5216327B2 (en) Polyolefin microporous membrane
KR101843806B1 (en) Polyolefin microporous membrane, separator for battery, and battery
JP2010538097A (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP3113287B2 (en) Polyethylene microporous membrane with low fuse temperature
KR100696144B1 (en) Microporous film
EP3587481A1 (en) Polyolefin microporous membrane and production method thereof
WO2019065073A1 (en) Microporous membrane made of polyolefin, battery separator and secondary battery
WO2020203901A1 (en) Microporous polyolefin film, separator for battery, secondary battery, and method for producing microporous polyolefin film
JPH10298325A (en) Microporous polyolefin film and its production
JP3669777B2 (en) Polyethylene microporous membrane
JP3747963B2 (en) High heat-resistant polyethylene microporous membrane
WO2000068305A1 (en) Porous films and processes for the production thereof
JPH1067870A (en) Microporous polyethylene film and its production
JP2018154834A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2008088392A (en) Method for producing polyolefin microporous film
JP5411550B2 (en) Polyolefin microporous membrane
JP2020164861A (en) Polyolefin microporous membrane, battery separator, secondary battery and method for producing polyolefin microporous membrane
JP2004263012A (en) Porous film and separator for electric battery
JPH06163023A (en) Battery separator
JPH1067871A (en) Production of microporous polyethylene film
JP2021105166A (en) Polyolefin microporous film, and secondary battery
TW200830616A (en) Electrode assembly and non-aqueous electrolyte battery
JP2021036514A (en) Separator arranged by use of silane crosslinked polyolefin mixed resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

EXPY Cancellation because of completion of term