JPH10175172A - Multi diamond grinding wheel for cutting rare earth magnet - Google Patents

Multi diamond grinding wheel for cutting rare earth magnet

Info

Publication number
JPH10175172A
JPH10175172A JP33604096A JP33604096A JPH10175172A JP H10175172 A JPH10175172 A JP H10175172A JP 33604096 A JP33604096 A JP 33604096A JP 33604096 A JP33604096 A JP 33604096A JP H10175172 A JPH10175172 A JP H10175172A
Authority
JP
Japan
Prior art keywords
cutting
diamond
rare earth
base plate
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33604096A
Other languages
Japanese (ja)
Inventor
Masao Yoshikawa
昌夫 吉川
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP33604096A priority Critical patent/JPH10175172A/en
Priority to TW87102651A priority patent/TW522079B/en
Publication of JPH10175172A publication Critical patent/JPH10175172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To cut rare earth magnet with good dimensional accuracy and stably over a long period even if the peripheral cutting edge is thin by forming a base plate of a diamond peripheral cutting edge from cemented carbide having a specified Vickers hardness (Hv). SOLUTION: A peripheral cutting edge 6 for cutting rare earth magnets of such a quite new structure where a cutting edge part 2 mainly composed of diamond abrasive grain is further fitted on a base plate 1 is used as a cutting edge of a multi diamond grinding wheel for cutting rare earth magnets. The material quality of the base plate 1 of the peripheral cutting edge 6 is cemented carbide having a Vickers hardness (Hv) ranging from 900 to 2,000. If the Vickers hardness (Hv) is less than 900, in the case of such a recess that cutting and grinding powder of rare earth magnets is caught in the recess part, the grinding wheel base plate is damaged to cause bending or waviness. If the Vickers hardness Hv exceeds 2,000, toughness is poor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類焼結磁石を
マルチ切断するのに用いられるマルチダイヤモンド砥石
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-diamond grinding wheel used for multi-cutting a rare earth sintered magnet.

【0002】[0002]

【従来の技術】希土類磁石の製品を作る場合、プレス成
形の段階で1個取りする場合と大きなブロック状に成形
し加工工程で切断する場合(多数個取り)がある。その
概念図を図3に示す。1個取り(a)の場合、正常な焼
結体を得ることができれば加工工程の負担が比較的少な
く、如何にプレス成形、焼結を生産性高く行うかが製造
上重要な点となる。但し、小さい製品や磁化方向の厚み
の薄い製品を製造する場合、プレス成形、焼結において
正常な形状の焼結体が得難くなり、いびつ、そりの大き
な焼結体となり、ひどい場合には製品にならなくなる。
それに対し、多数個取り(b)の場合、上述のような問
題もなく、またプレス成形、焼結・熱処理等の工程で生
産性が高く、汎用性もあるため希土類磁石製造の主流と
なってきている。但し、その後の工程である加工におい
て切断工程が必要であり、いかに能率良く無駄なく切断
加工できるかが重要なポイントとなってくる。
2. Description of the Related Art When manufacturing a rare earth magnet product, there are a case where one piece is formed at the stage of press forming, and a case where a large block is formed and cut in a processing step (many pieces). FIG. 3 shows a conceptual diagram thereof. In the case of one-piece (a), if a normal sintered body can be obtained, the burden on the processing step is relatively small, and how to perform press molding and sintering with high productivity is an important point in production. However, when manufacturing a small product or a product with a small thickness in the magnetization direction, it is difficult to obtain a sintered body of normal shape in press molding and sintering, and it becomes a sintered body with large distortion and warpage. Will not be.
On the other hand, in the case of multi-cavity (b), there is no problem as described above, and since the productivity is high in the steps of press molding, sintering, heat treatment and the like, and it is versatile, it has become the mainstream of rare earth magnet production. ing. However, a cutting step is necessary in the subsequent processing, and it is important how efficient and efficient cutting can be performed.

【0003】希土類磁石の切断刃としては、薄板ドーナ
ッツ状円板の内周部分にダイヤモンド砥粒を接着したダ
イヤモンド砥石内周刃や、図1に示したような薄板円板
を台板1としてその外周部分にダイヤモンド砥粒を固着
したダイヤモンド砥石外周刃の2種類があるが、最近で
は特に生産性の点から外周刃を用いた切断が主流となっ
てきている。すなわち、内周刃の場合、単刃切断であり
生産性が低いのに対し、外周刃の場合、図2(a)、
(b)に示したような複数の外周刃6をスペーサー3を
介して組み上げ、一度に多数個取りが出来るいわゆるマ
ルチ切断が可能であるためである。
As a cutting blade of a rare earth magnet, an inner peripheral blade of a diamond grindstone in which diamond abrasive grains are adhered to an inner peripheral portion of a thin donut-shaped disk, or a thin disk as shown in FIG. There are two types of diamond grindstone outer peripheral blades having diamond abrasive grains fixed to the outer peripheral portion, but cutting using the outer peripheral blades has recently become the mainstream particularly from the viewpoint of productivity. That is, in the case of the inner peripheral blade, it is a single blade cutting and the productivity is low, whereas in the case of the outer peripheral blade, FIG.
This is because a plurality of outer peripheral blades 6 as shown in (b) are assembled via the spacer 3 and so-called multi-cutting in which a large number of pieces can be taken at once is possible.

【0004】このような外周刃のダイヤモンド砥粒の結
合剤として、樹脂結合剤であるレジンボンド、金属結合
剤であるメタルボンド及びメッキによる電着の3種類が
代表的である。硬質材料である希土類磁石、特にR−F
e−B系焼結磁石の切断には主にレジンボンドが用いら
れている。これは、レジンボンドのダイヤモンド砥粒を
保持する強さ(保持力)がメタルボンドに比べて弱く、
低強度、低弾性率であるため当りが柔らかく、切れ味に
優れているためである。メタルボンドのような高強度、
高弾性率のボンドは、砥粒保持力、耐摩耗率に優れてい
るもののレジンボンドに比べ目詰まりし易く、切断抵抗
が大きくなる欠点があるが、レジンボンドよりも耐久性
に優れるため、少量ながらR−Fe−B系焼結磁石の切
断工程にも使われている。
[0004] As the binder for the diamond abrasive grains of the outer peripheral blade, there are typically three types: a resin bond as a resin binder, a metal bond as a metal binder, and electrodeposition by plating. Rare earth magnets as hard materials, especially RF
A resin bond is mainly used for cutting the eB-based sintered magnet. This is because the strength (holding force) of resin bond holding diamond abrasive grains is weaker than metal bond,
This is because it has a low strength and a low elastic modulus, so that the hit is soft and the sharpness is excellent. High strength like metal bond,
Bonds with high elastic modulus have excellent abrasive holding power and abrasion resistance, but are more likely to be clogged than resin bonds, and have the disadvantage of increased cutting resistance.However, they are more durable than resin bonds. However, it is also used in the cutting process of R-Fe-B based sintered magnets.

【0005】切断砥石を使用して希土類磁石を切断加工
する時、前述のようにある大きさのブロックを切断して
多数の製品を切り出す場合には、切断砥石の刃厚と被切
断物(希土類磁石)の材料歩留まりとの関係が非常に重
要となり、出来るだけ薄い刃を用いてしかも精度良く切
断し切断加工代を少なくし、得られる製品の数を多くし
て材料歩留まりを上げ、生産性を高めることが肝要であ
る。
[0005] When cutting a rare-earth magnet using a cutting grindstone and cutting out a large number of products by cutting a block of a certain size as described above, the blade thickness of the cutting grindstone and the object to be cut (rare earth) are required. The relationship between the material yield of magnets and the material yield is very important. Cutting with a thinner blade as possible and with high precision reduces the cutting allowance, increases the number of products obtained, increases the material yield, and improves productivity. It is important to raise it.

【0006】[0006]

【発明が解決しようとする課題】材料歩留まりの観点か
ら、薄い切断刃にするためには、当然砥石台板を薄くす
る必要がある。図1及び図2の外周刃の場合、その砥石
台板1の材質として従来は主に材料コスト及び機械強度
の点から鉄鋼材料が用いられており、特に実用化されて
いるものとして、JIS 規格でSK、SKS 、SKD 、SKT 、SK
H 等と規定される合金工具鋼が専ら使用されてきた。し
かし、希土類磁石のような硬質材料を薄い外周刃2によ
って切断しようとすると、前述した従来の合金工具鋼の
合板では機械強度が不足し、切断に際し曲がりなどの変
形を生じ寸法精度が失われてしまう。
From the viewpoint of material yield, in order to make the cutting blade thinner, it is naturally necessary to make the wheel base plate thinner. In the case of the outer peripheral blades shown in FIGS. 1 and 2, a steel material is conventionally used as a material of the grindstone base plate 1 mainly from the viewpoint of material cost and mechanical strength. With SK, SKS, SKD, SKT, SK
Alloy tool steel specified as H etc. has been exclusively used. However, when cutting a hard material such as a rare earth magnet with the thin outer peripheral blade 2, the mechanical strength of the conventional plywood of alloy tool steel described above is insufficient, and deformation such as bending occurs at the time of cutting, resulting in loss of dimensional accuracy. I will.

【0007】更に、砥石台板1の薄板化に伴い、以下に
説明するような問題点が発生する。一般に、図1に示し
たように、ダイヤモンド砥粒層(切り刃部)2を砥石台
板1の表面から0.01〜0.2 mm突き出させて、被切断物と
の間に隙間4(以下、逃げと表記する)が設けられてい
る。この逃げ4は、被切断物に切断砥石が深く切り込ん
だ際に被切断物から発生する切断研削粉を排除する役目
をしている。切断加工代すなわち刃厚5を小さくするに
は、砥石台板1はもちろん逃げ4を出来るだけ小さくす
る必要がある。薄板砥石台板による切断加工の問題点の
一つは、逃げが小さすぎるため切断研削粉を排除しきれ
なくなり、これが被切断物と砥石台板の間に挟まって砥
石台板に傷をつけてしまうことである。特に、被切断物
が希土類磁石の場合、従来の砥石台板に用いられる合金
工具鋼と同程度又はそれ以上の硬さを持ち、かつ脆いた
め、これらの切断破片が逃げから排除されず高速回転す
る砥石台板と被切断物の間に挟まると砥石台板に傷をつ
けることになる。砥石台板にこのような傷がつくと、傷
部の塑性変形が原因となって砥石台板表裏の応力バラン
スが狂い、曲がりやうねり等の変形が砥石台板に発生す
る。薄い砥石台板であるほど小さな傷によってこのよう
な曲がりやうねりが大きく発生する。一度このような傷
によって砥石台板が変形してしまうと、切断時の応力が
この変形した砥石台板を更に変形させるように加わり、
曲がりやうねりは助長されるので、得られた切断物の寸
法精度は大きく失われることになる。
Further, as the grinding wheel base plate 1 is made thinner, the following problems occur. In general, as shown in FIG. 1, a diamond abrasive layer (cutting edge) 2 is protruded from the surface of a grindstone base plate 1 by 0.01 to 0.2 mm, and a gap 4 (hereinafter referred to as an escape) Notation) is provided. The relief 4 serves to eliminate cutting ground powder generated from the object when the cutting wheel is deeply cut into the object. In order to reduce the cutting allowance, that is, the blade thickness 5, it is necessary to make the relief 4 of the grinding wheel base plate 1 as small as possible. One of the problems with the cutting process using a thin grindstone base plate is that the clearance is too small to remove the cutting ground powder, which is caught between the workpiece and the grindstone base plate and damages the grindstone base plate. It is. In particular, when the object to be cut is a rare-earth magnet, it has hardness equal to or higher than that of the alloy tool steel used for the conventional grindstone base plate, and is brittle. If it is caught between the grinding wheel base plate and the object to be cut, the grinding wheel base plate will be damaged. When such a scratch is made on the grindstone base plate, the plastic deformation of the flaw portion causes the stress balance between the front and back of the grindstone base plate to be out of order, and deformation such as bending or undulation occurs in the grindstone base plate. The thinner the grinding wheel base plate, the greater the degree of such bending and undulation due to small scratches. Once the grindstone base plate is deformed by such a scratch, the stress at the time of cutting is applied to further deform the deformed grindstone base plate,
Since the bends and undulations are promoted, the dimensional accuracy of the obtained cut product is largely lost.

【0008】特に、マルチ切断の際には、切断刃間の間
隔によって切断寸法が決定されるため、台板に曲がりや
うねり等の変形が生じたり、変形量が経時変化するよう
なことがあると、寸法精度確保のために切断刃間の間隔
の調整(スペーサー厚の調整)を頻繁に行うことになり
生産性を落としたり、目標とする取り数が取れなかった
りする場合があり非常に問題であった。本発明は、この
ような問題点を解決した、希土類磁石切断用マルチダイ
ヤモンド砥石を提供しようとするものである。
In particular, in the case of multi-cutting, since the cutting dimension is determined by the interval between the cutting blades, deformation such as bending or undulation may occur on the base plate, or the amount of deformation may change with time. In addition, the spacing between the cutting blades must be adjusted frequently (adjustment of the spacer thickness) to ensure dimensional accuracy, which may cause a drop in productivity or a failure to obtain the target number. Met. An object of the present invention is to provide a multi-diamond grindstone for cutting rare earth magnets, which solves such problems.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる問
題を解決すべく鋭意検討した結果、希土類磁石をマルチ
切断加工するマルチダイヤモンド砥石を構成するダイヤ
モンド外周刃の台板が、ビッカース硬度(Hv)で900
〜2000の超硬合金からなる希土類磁石切断用マルチダイ
ヤモンド砥石を用いることによって、薄い外周刃であっ
ても寸法精度が良く長期に亘り安定して希土類磁石の切
断が可能であり、マルチ切断を生産性高く行えることを
見いだし本発明を完成させた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve such a problem, and as a result, the base plate of a diamond outer peripheral blade constituting a multi-diamond grindstone for multi-cutting rare earth magnets has a Vickers hardness (Vickers hardness). 900 in Hv)
By using a multi-diamond grinding wheel for cutting rare earth magnets made of up to 2000 cemented carbides, it is possible to cut rare earth magnets stably over a long period of time with good dimensional accuracy even with a thin outer cutting edge, producing multiple cutting. The inventors have found that the present invention can be performed with high efficiency, and have completed the present invention.

【0010】[0010]

【発明の実施の形態】すなわち、本発明は下記(1)〜
(5)からなる構成と実施の形態によって、前記問題点
を解決するものである。 (1)希土類磁石をマルチ切断加工するマルチダイヤモ
ンド砥石において、該砥石を構成するダイヤモンド外周
刃の台板が、ビッカース硬度(Hv)で900 〜2000の超
硬合金からなることを特徴とする希土類磁石切断用マル
チダイヤモンド砥石。 (2)外周刃の台板が、外径200mm 以下、厚み0.1 〜1
mmの超硬薄板であり、切り刃である砥粒層の厚みが、超
硬台板の厚みよりも片側で0.01〜0.2mm 、両側で0.02〜
0.4mm 厚く、砥石の逃げが0.01〜0.2mm である上記に記
載の希土類磁石切断用マルチダイヤモンド砥石。 (3)マルチダイヤモンド砥石が、3〜200 枚のダイヤ
モンド外周刃と2〜199 枚のスペーサー及びシャフト部
で構成される上記に記載の希土類磁石切断用マルチダイ
ヤモンド砥石。 (4)外周刃の切り刃部に含有される砥粒は、ダイヤモ
ンドあるいはcBN あるいはこれらの混合物(以下、これ
らをダイヤモンド砥粒と総称する)からなり、その平均
粒径が50〜250 μmの範囲内で、切り刃部における体積
含有率が10〜50%の範囲内である上記に記載の希土類磁
石切断用マルチダイヤモンド砥石。 (5)希土類磁石がR−Fe−B系(RはYを含む希土
類元素のうち少なくとも1種)からなる希土類焼結磁石
である上記に記載の希土類磁石切断用マルチダイヤモン
ド砥石。
DESCRIPTION OF THE PREFERRED EMBODIMENTS That is, the present invention provides the following (1) to
The problem is solved by the configuration (5) and the embodiment. (1) A multi-diamond grinding wheel for multi-cutting a rare earth magnet, wherein a base plate of a diamond outer peripheral blade constituting the grinding stone is made of a cemented carbide having a Vickers hardness (Hv) of 900 to 2,000. Multi diamond wheel for cutting. (2) The base plate of the outer peripheral blade has an outer diameter of 200 mm or less and a thickness of 0.1 to 1
The thickness of the abrasive layer as a cutting blade is 0.01 to 0.2 mm on one side and 0.02 on both sides of the thickness of the carbide base plate.
The multi-diamond grinding wheel for cutting rare earth magnets as described above, wherein the grinding wheel is 0.4 mm thick and the relief of the grinding wheel is 0.01 to 0.2 mm. (3) The multi-diamond grinding wheel for cutting rare earth magnets as described above, wherein the multi-diamond grinding wheel is composed of 3 to 200 diamond peripheral blades, 2 to 199 spacers and a shaft portion. (4) The abrasive grains contained in the cutting edge portion of the outer peripheral edge are made of diamond, cBN, or a mixture thereof (hereinafter, these are collectively referred to as diamond abrasive grains), and have an average particle diameter in the range of 50 to 250 μm. In the above, the multi-diamond grinding wheel for cutting a rare earth magnet according to the above, wherein the volume content of the cutting blade portion is in the range of 10 to 50%. (5) The multi-diamond grinding wheel for cutting a rare-earth magnet as described above, wherein the rare-earth magnet is a rare-earth sintered magnet made of an R-Fe-B system (R is at least one of rare-earth elements including Y).

【0011】以下、本発明を詳細に説明する。図1は本
発明のダイヤモンド砥石の構造の一例を示したもので、
(a)は上面図、(b)はA−A線縦断面図、(c)は
外周端部拡大図であり、また図2は本発明のダイヤモン
ド砥石によるマルチ組みの構造の一例を示したもので、
(a)は概念図、(b)は断面図である。図中、1は台
板、2は砥粒層(切り刃部)、3はスペーサー、4は逃
げ、5は刃厚(切断加工代)、6は外周刃をそれぞれ示
している。本発明の最大の特徴は、硬くて脆い硬質材料
である希土類磁石をマルチ切断する際の薄い切断刃とし
て、外周刃6の台板1の材質を、ビッカース硬度(H
v)で900 〜2000の超硬合金とすることにある。超硬合
金は、元来それ自体が切断刃として使用できるほど、硬
くて強度のある材料である。実際に、超硬合金のみで作
られた切断刃が、木材、石材、繊維、プラスチック、タ
バコのフィルター等の切断用に広く実用的に使用されて
いる。本発明では、この本来刃物となるべき超硬合金の
台板1の上に、更にダイヤモンド砥粒を主材料とした切
り刃部2を取付けた全く新しい構造の希土類磁石切断用
の外周刃6を、希土類磁石切断用マルチダイヤモンド砥
石の切断刃として用いるものである。
Hereinafter, the present invention will be described in detail. FIG. 1 shows an example of the structure of the diamond wheel of the present invention.
(A) is a top view, (b) is a vertical sectional view taken along line AA, (c) is an enlarged view of an outer peripheral end portion, and FIG. 2 shows an example of a multi-assembly structure using the diamond whetstone of the present invention. Things
(A) is a conceptual diagram, (b) is a sectional view. In the drawing, 1 is a base plate, 2 is an abrasive layer (cutting edge portion), 3 is a spacer, 4 is a relief, 5 is a blade thickness (cutting allowance), and 6 is an outer peripheral blade. The greatest feature of the present invention is that the material of the base plate 1 of the outer peripheral blade 6 is Vickers hardness (H) as a thin cutting blade for multi-cutting a rare earth magnet which is a hard and brittle hard material.
In v), a cemented carbide of 900 to 2000 is to be obtained. Cemented carbide is a material that is so hard and strong that it can be used as a cutting blade by itself. In fact, cutting blades made only of cemented carbide are widely and practically used for cutting wood, stone, fiber, plastic, tobacco filters and the like. In the present invention, an outer blade 6 for cutting a rare-earth magnet having a completely new structure in which a cutting blade portion 2 mainly made of diamond abrasive grains is further mounted on a base plate 1 made of a cemented carbide which should be a cutting tool. It is used as a cutting blade of a multi-diamond grindstone for cutting rare earth magnets.

【0012】希土類磁石を薄い外周刃で切断する場合、
その構造上台板の材質が非常に重要である。従来の合金
工具鋼に比べ、切断時に力を受けても曲がりやうねりの
出ない薄い砥石台板になり得る材質を種々検討した結
果、超硬合金が最も適していることを見出した。硬さの
点で言えばアルミナ等のセラミックスの方が優れている
が靭性に乏しく、特に被加工物が希土類磁石の場合、切
断中に衝撃で割れてしまうことがしばしばあり非常に危
険で、薄い砥石台板に適さない。超硬合金は、WC、TiC、M
oC、NbC、TaC、Cr3C2などのIVa 、Va 、VIa 族に属する金
属の炭化物粉末をFeCoNiMoCuPbSnまたはそれらの
合金を用いて焼結結合した合金であり、これらの中でも
特にWC-Co 系、WC-TiC-Co 系、WC-TiC-TaC-Co 系の合金
が代表的である。本発明における希土類磁石マルチ切断
用超硬合金台板として、該超硬合金のビッカース硬度
(Hv)は900 〜2000の範囲内である必要がある。希土
類磁石のビッカース硬度(Hv)は組成にもよるが400
〜800 であり、超硬合金と言えどビッカース硬度(H
v)が900 未満では、前述のように希土類磁石の切断研
削粉が逃げ部に挟まるような逃げの場合、砥石台板に傷
をつけ、結果的に曲がりやうねりを発生し、助長するの
で適さない。また、ビッカース硬度(Hv)が2000を超
えると、切断研削粉が逃げ部に挟まっても砥石台板自体
に傷をつけることはないが、靭性に乏しく、特に被加工
物が希土類磁石の場合、切断中に衝撃で割れてしまうこ
ともしばしばあり、非常に危険で、薄い砥石台板には適
さない。
When cutting a rare earth magnet with a thin outer blade,
Due to its structure, the material of the base plate is very important. As a result of studying various materials that can be a thin grinding wheel base plate that does not bend or undulate even when subjected to a force when cutting compared to conventional alloy tool steel, it was found that a cemented carbide is most suitable. In terms of hardness, ceramics such as alumina are superior, but have poor toughness, especially when the workpiece is a rare-earth magnet, which often breaks due to impact during cutting, and is very dangerous and thin. Not suitable for whetstone base plate. Cemented carbide is WC, TiC, M
Alloy powder obtained by sintering carbide powders of metals belonging to the group IVa, Va, VIa such as oC, NbC, TaC, Cr 3 C 2 using Fe , Co , Ni , Mo , Cu , Pb , Sn or their alloys Among them, WC-Co, WC-TiC-Co, and WC-TiC-TaC-Co alloys are typical. As the cemented carbide base plate for rare earth magnet multi-cutting in the present invention, the cemented carbide must have a Vickers hardness (Hv) in the range of 900 to 2,000. Vickers hardness (Hv) of rare earth magnet depends on composition but 400
Vickers hardness (H
If v) is less than 900, as described above, in the case of escape in which the cut and ground powder of the rare earth magnet is caught in the escape portion, the grinding wheel base plate will be damaged, and as a result, bending and undulation will be generated and promoted. Absent. If the Vickers hardness (Hv) exceeds 2,000, the grinding wheel base plate itself will not be damaged even if the cutting ground powder is caught in the escape portion, but the toughness is poor, especially when the workpiece is a rare earth magnet, They are often broken by impact during cutting, which is very dangerous and is not suitable for thin grinding wheel base plates.

【0013】マルチダイヤモンド砥石に使用するダイヤ
モンド外周刃の枚数は、3枚未満ではマルチ切断の効果
が小さく、また200 枚を超えると砥石の重さが大きすぎ
実用上困難となるため、3〜200 枚とする。砥石の両端
は切断刃となるので、スペーサーの枚数は2〜199 枚と
なる。ダイヤモンド外周刃及びスペーサーはシャフト部
に組み込んで使用される。
When the number of diamond outer peripheral blades used in the multi-diamond grindstone is less than three, the effect of multi-cutting is small, and when the number exceeds 200, the weight of the grindstone is too large to be practically difficult. Number of sheets. Since both ends of the whetstone serve as cutting blades, the number of spacers is 2 to 199. The diamond outer blade and the spacer are used by being incorporated into the shaft portion.

【0014】超硬合金台板の外周部にダイヤモンド粉末
の砥粒を結合剤を用いて固着させて本発明の外周切断刃
とするわけだが、結合剤についてはレジンボンドに限ら
ず、メタルボンド、ビトリファイドボンド、電着ボンド
等のいずれの方法でもかまわない。つまり、超硬合金を
用いることで台板自体に剛性があり、この中で最も切断
抵抗の大きなメタルボンドを用いても十分切断精度を維
持した状態で切断加工が可能なためである。前述のよう
に、メタルボンドを用いることができるとレジンボンド
に比べ耐摩耗性が向上でき、結果として外周刃の長寿命
化が果たせ、一度組み上げたマルチ刃をばらすことなく
長期に渡って使用可能となり、希土類磁石のマルチ切断
には非常に効果的である。
The outer peripheral cutting edge of the present invention is obtained by fixing abrasive grains of diamond powder to the outer peripheral portion of the cemented carbide base plate using a binder. The binder is not limited to resin bond, but may be metal bond, Any method such as a vitrified bond or an electrodeposition bond may be used. In other words, the use of a cemented carbide has a rigidity in the base plate itself, and cutting can be performed with sufficient cutting accuracy maintained even if a metal bond having the largest cutting resistance is used. As described above, the use of a metal bond improves the wear resistance compared to a resin bond, resulting in a longer life of the outer peripheral blade, and can be used for a long time without disassembling the assembled multi-blade This is very effective for multi-cutting of rare earth magnets.

【0015】切り刃であるダイヤモンド砥粒層の厚み
は、台板の厚みよりも片側で0.01〜0.2mm 、両側で0.02
〜0.4mm 厚く、すなわち砥石の逃げが0.01〜0.2mm とす
る。砥石の逃げは、0.2mm を超えると切断粉は挟まらな
いが材料歩留まりが下がってしまう。また、0.01mm未満
では台板が傷付きにくいものの、逃げが小さすぎるた
め、切断粉が詰まって切断ができない。
The thickness of the diamond abrasive layer as a cutting blade is 0.01 to 0.2 mm on one side and 0.02 on both sides of the thickness of the base plate.
0.4 mm thick, that is, the relief of the grindstone is 0.01 to 0.2 mm. If the grinding wheel escapes beyond 0.2 mm, the cutting powder will not be caught, but the material yield will decrease. If the thickness is less than 0.01 mm, the base plate is hardly damaged, but the escape is too small, so that cutting powder is clogged and cutting cannot be performed.

【0016】台板外周の砥粒層部(切り刃部)に含有さ
れる砥粒はダイヤモンドのみとは限らず、cBN 砥粒(立
方晶窒化ほう素)、あるいはダイヤモンドの砥粒とcBN
砥粒との混合でもよい。ただし、砥粒層部中のダイヤモ
ンド砥粒の体積含有率が重要であり、ダイヤモンド砥粒
の体積含有率が10%未満では切断に寄与するダイヤモン
ド砥粒が少なすぎて切れ味が悪くなり、切断速度を極端
に遅くせざるをえなくなり切断能率が低くなってしま
う。また、50%を超えると逆に結合剤が少なすぎてダイ
ヤモンド砥粒を保持する力が減少し、希土類磁石のよう
な硬い被切断物では砥粒が切断に十分寄与せずに脱粒し
てしまう。従って、本発明における希土類磁石切断用外
周刃のダイヤモンド砥粒の砥粒層部に対する体積含有率
を10〜50%と限定する。
The abrasive grains contained in the abrasive layer portion (cutting edge portion) on the outer periphery of the base plate are not limited to diamond, but are cBN abrasive grains (cubic boron nitride), or diamond abrasive grains and cBN abrasive grains.
It may be mixed with abrasive grains. However, the volume content of diamond abrasive grains in the abrasive layer layer is important, and if the volume content of diamond abrasive grains is less than 10%, the diamond abrasive grains contributing to cutting are too small, resulting in poor sharpness. Must be extremely slow, and the cutting efficiency will be reduced. On the other hand, if the content exceeds 50%, the amount of the binder is too small, and the holding force of the diamond abrasive grains is reduced. In the case of a hard workpiece such as a rare-earth magnet, the abrasive grains do not sufficiently contribute to the cutting and fall off. . Accordingly, the volume content of the outer peripheral blade for cutting rare earth magnets in the present invention to the abrasive layer portion of the diamond abrasive grains is limited to 10 to 50%.

【0017】さらに、砥粒の粒度についても検討した結
果、ダイヤモンド砥粒の平均粒度が50〜250 μmの範囲
内であることを見いだした。希土類磁石を切断するに際
し、平均粒径が50μm未満の砥粒を用いると、砥粒の突
き出しが悪いため目詰まりし易く切断能率が低くなって
しまう。また、平均粒度が250 μmを超えると切断能率
は高いものの、希土類磁石の切断面粗さが悪くなった
り、いくら台板を薄くしても砥粒層部の厚みが厚くな
り、結果として薄い外周刃が得られない等の不都合を生
じるためである。
Further, as a result of studying the grain size of the abrasive grains, it was found that the average grain size of the diamond abrasive grains was in the range of 50 to 250 μm. When cutting the rare earth magnet, if abrasive grains having an average particle diameter of less than 50 μm are used, the projection of the abrasive grains is poor, so that the grains are easily clogged and the cutting efficiency is reduced. If the average particle size exceeds 250 μm, the cutting efficiency is high, but the cut surface roughness of the rare-earth magnet deteriorates and the thickness of the abrasive grain layer increases even if the base plate is thinned. This is because problems such as the inability to obtain a blade occur.

【0018】台板自体にそりやうねりが生じ寸法精度が
良くない場合、それを反映して切断後の希土類磁石の寸
法精度が悪くなり、結果的に切断加工代が多くなり問題
である。台板のそりやうねりは台板が薄くなるほど、ま
た直径が大きくなるほど発生し易くなり、精度のよい台
板自体の製作が困難になる。本発明の超硬合金台板につ
いては精度良い台板自体が製作可能であり、希土類磁石
を寸法精度良くしかも長期に渡り安定して切断可能な台
板寸法について検討した結果、外径200mm φ以下であ
り、かつ厚みが0.1 〜1mmの範囲内であることを見いだ
した。すなわち、外径が200mm φを超えると、また外径
が200mm φ以下であっても厚みが0.1mm 未満の場合、大
きなそりが発生し、寸法精度の良い超硬合金自体の製作
が不可能となる。更に、厚みが1mmを超えると従来の合
金工具鋼製の台板でも精度良く希土磁石を切断可能とな
るが、切断加工代が大きくなりすぎ、本発明の主旨の材
料歩留まりの向上から外れる等の理由のため範囲外とな
る。さらに、台板の外径が200mm φを超えると薄板を得
るためにコストがかかりすぎる。また、厚みが0.1mm 未
満では薄すぎて割れてしまう。
If the base plate itself is warped or undulated and the dimensional accuracy is not good, the dimensional accuracy of the rare earth magnet after cutting is deteriorated by reflecting the warp and undulation, resulting in a problem that the cutting allowance increases. The warpage and undulation of the base plate are more likely to occur as the base plate becomes thinner and as the diameter increases, and it becomes difficult to manufacture the base plate itself with high accuracy. As for the cemented carbide base plate of the present invention, a precise base plate itself can be manufactured, and as a result of examining the base plate size that can cut rare earth magnets with high dimensional accuracy and stable for a long time, the outer diameter is 200 mm φ or less. And a thickness in the range of 0.1 to 1 mm. In other words, if the outer diameter exceeds 200 mm φ, or if the outer diameter is less than 200 mm φ but the thickness is less than 0.1 mm, large warpage will occur, making it impossible to manufacture cemented carbide with good dimensional accuracy. Become. Further, when the thickness exceeds 1 mm, it is possible to cut the rare earth magnet with high precision even with the conventional base plate made of alloy tool steel, but the cutting allowance becomes too large, which deviates from the improvement of the material yield, which is the gist of the present invention. Out of the range for the reason. Further, when the outer diameter of the base plate exceeds 200 mm, the cost is too high to obtain a thin plate. On the other hand, if the thickness is less than 0.1 mm, it is too thin and breaks.

【0019】本発明の希土類磁石切断用マルチダイヤモ
ンド砥石を特にR−Fe−B系(RはYを含む希土類元
素の内少なくとも1種、以下同じ)の希土類焼結磁石に
適用すれば、本発明の効果が顕著に現れ非常に有用であ
る。これらの磁石は以下のように製造される。R−Fe
−B系希土類焼結磁石は、通常、重量百分率で5〜40%
のR、50〜90%のFe、0.2 〜8%のBからなる。磁気
特性や耐食性を改善するために、C、Al、Si、Ti、V、Cr、Mn、C
o、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Sn、Hf、Ta、Wなどの添加元素
を加えることが多い。これらの添加物の添加量は、Coの
場合30重量%以下、その他の元素の場合には8重量%以
下とするのが普通である。これ以上の添加物を加えると
逆に磁気特性を劣化させてしまう。R−Fe−B系希土
類焼結磁石の製造方法は以下の通りである。原料金属を
秤量して、溶解、鋳造し、得られた合金を平均粒径1〜
20μmまで微粉砕しR−Fe−B系希土類永久磁石粉末
を得る。その後磁場中で成形し、次いで1000〜1200℃で
0.5 〜5時間焼結し、更に400 〜1000℃で熱処理を行い
R−Fe−B系希土類焼結磁石を得る。本発明の作用
は、ビッカース硬度(Hv)で900 〜2000の超硬合金を
用いたダイヤモンド砥粒外周刃を使って、複数枚組み上
げた外周マルチ切断を行うことにより、薄い外周刃でも
希土類磁石を精度良く長期に亘って安定して切断加工で
き、切断コストの削減、生産性の向上、材料歩留まりの
向上に寄与することである。
If the multi-diamond grinding wheel for cutting a rare-earth magnet of the present invention is applied to a rare-earth sintered magnet of the R-Fe-B type (R is at least one of rare-earth elements including Y, the same applies hereinafter), the present invention The effect is remarkable and very useful. These magnets are manufactured as follows. R-Fe
-B-based rare earth sintered magnets are usually 5 to 40% by weight.
R, 50 to 90% Fe, and 0.2 to 8% B. C, Al, Si, Ti, V, Cr, Mn, C to improve magnetic properties and corrosion resistance
In many cases, additional elements such as o, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Sn, Hf, Ta, and W are added. The amount of these additives is usually 30% by weight or less for Co, and 8% by weight or less for other elements. Addition of more additives causes the magnetic properties to deteriorate. The manufacturing method of the R-Fe-B based rare earth sintered magnet is as follows. The raw metal was weighed, melted and cast, and the resulting alloy was cast with an average particle size of 1 to 1.
Finely pulverized to 20 μm to obtain an R—Fe—B rare earth permanent magnet powder. Then molded in a magnetic field, then at 1000-1200 ° C
After sintering for 0.5 to 5 hours, heat treatment is further performed at 400 to 1000 ° C. to obtain an R—Fe—B rare earth sintered magnet. The effect of the present invention is to perform the multiple cutting of the outer circumference by assembling a plurality of outer circumferences using a diamond abrasive grain outer circumference blade using a cemented carbide having a Vickers hardness (Hv) of 900 to 2000, so that the rare earth magnet can be cut even with a thin outer circumference blade. The object is to stably perform cutting processing with high accuracy for a long period of time, thereby contributing to reduction of cutting cost, improvement of productivity, and improvement of material yield.

【0020】[0020]

【実施例】以下、本発明を実施例と比較例を挙げて具体
的に説明するが、本発明はこれらに限定されるものでは
ない。 実施例1、比較例1 ビッカース硬度(Hv)1500を有する超硬合金(WC-90w
t%/Co-10wt% の組成)を115mm φ×40mmφ×0.3mm のド
ーナツ状孔あき薄板円板に加工し、砥石台板とした。次
いで、砥石台板の外周部に結合剤にレジンを使用するレ
ジンボンド法によりダイヤモンド砥粒を固着し、外周切
断刃を作製した。すなわち、円板砥石形状の金型に該超
硬合金の台板をセットし、この外周部分に熱硬化性フェ
ノール樹脂をバインダーとし、平均粒径150 μmの人工
ダイヤモンドを体積含有率で25%(砥粒25%、レジン75
%)に混合した粉末を充填し、次いでプレスにより砥石
形状に成形した後、金型にセットしたまま180 ℃で2時
間加熱硬化させ、冷却後ラップ盤にて刃厚0.4mm (逃げ
0.05mm)に仕上げ加工し、希土類磁石用ダイヤモンド砥
石外周刃とした。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Example 1 and Comparative Example 1 A cemented carbide (WC-90w) having a Vickers hardness (Hv) of 1500
t% / Co-10wt%) was processed into a 115mm φ × 40mm φ × 0.3mm donut-shaped perforated thin disk to obtain a whetstone base plate. Next, diamond abrasive grains were fixed to the outer peripheral portion of the grindstone base plate by a resin bond method using a resin as a binder to produce an outer peripheral cutting blade. That is, the base plate of the cemented carbide is set in a disk-shaped grinding wheel-shaped mold, and a thermosetting phenol resin is used as a binder on the outer periphery thereof, and artificial diamond having an average particle size of 150 μm is 25% by volume content ( 25% abrasive, 75 resin
%), And then molded into a grindstone shape by pressing, and then heat-cured at 180 ° C for 2 hours while being set in a mold, and cooled.
(0.05mm) to obtain a diamond grindstone peripheral edge for rare earth magnets.

【0021】また、比較例1として実施例1と同形状の
SKD (工具用合金JIS )製砥石台板を用いて、前記同様
にダイヤモンド砥粒の固着を行い、刃厚0.4mm のSKD 製
ダイヤモンド砥石外周刃を製作した。
As Comparative Example 1, the same shape as in Example 1 was used.
Using an SKD (alloy for tool JIS) grindstone base plate, the diamond abrasive grains were fixed in the same manner as described above to produce a 0.4 mm-thick SKD diamond grindstone outer peripheral blade.

【0022】実施例1及び比較例1で作製した外周刃を
用いて、Nd−Fe−B系希土類焼結磁石を被切断物と
して切断試験を行った。表1にその結果を示した。尚、
切断試験は次のような条件で行った。実施例1及び比較
例1で作製した外周刃を各々1.6mm 間隔でマルチに組ん
で(切断後の希土類磁石の狙い寸法は1.5mm )、回転数
6000rpm 、切断速度22mm/minで被切断物を切断した。マ
ルチ組みした外周刃間のスペーサー形状として80mmφ×
40mmφ×1.6mm を用いた。また、被切断物であるNd−
Fe−B系希土類焼結磁石は長さ50mm×幅30mm×高さ15
mmを用い、長さ方向に外周刃をマルチ組みし、一度に1.
5mm 厚の製品を多数個取りした。その時、実施例1及び
比較例1共に磁石1ブロックから26枚取りであった。実
施例1及び比較例1で作製した外周刃を用いて切断され
た希土類磁石はすべて中央部の厚みをマイクロメーター
で測定し、切断寸法管理幅内1.5 ±0.05mmであれば合格
とし、寸法が外れた場合には、スペーサー厚みを調整し
管理幅内に入るようにマルチ修正を行った。更に、同じ
外周刃の位置でスペーサー調整を3回以上実施の場合に
は、外周刃の安定がないものと判断し、新しい外周刃と
交換した。このような条件下、1000ブロック切断し評価
結果とした。表1から明らかなように、本発明のNd−
Fe−B系希土類焼結磁石のマルチ切断に本発明のマル
チダイヤモンド砥石を使うことによって、刃厚が薄くて
も長期に亘り寸法精度が安定し、スペーサー厚調整、外
周刃の交換等が全くいらなくなり、生産性の向上が図れ
ることが確認された。
A cutting test was performed using the Nd-Fe-B-based rare earth sintered magnet as an object to be cut using the outer peripheral blades manufactured in Example 1 and Comparative Example 1. Table 1 shows the results. still,
The cutting test was performed under the following conditions. The outer peripheral blades produced in Example 1 and Comparative Example 1 were assembled into a multi at 1.6 mm intervals (the target size of the rare earth magnet after cutting was 1.5 mm), and the number of rotations was increased.
The workpiece was cut at 6000 rpm at a cutting speed of 22 mm / min. 80mmφ × as spacer shape between multiple assembled outer blades
40 mmφ × 1.6 mm was used. In addition, Nd-
Fe-B based rare earth sintered magnets are 50 mm long x 30 mm wide x 15 high
mm, multi-assembly the outer peripheral blade in the length direction, 1.
Many 5mm thick products were taken. At that time, 26 pieces were taken from one block of the magnet in both Example 1 and Comparative Example 1. The thickness of the central portion of each of the rare-earth magnets cut using the outer peripheral blades manufactured in Example 1 and Comparative Example 1 was measured with a micrometer. If it did, the thickness of the spacer was adjusted and multi-correction was performed so as to be within the management width. Furthermore, when the spacer adjustment was performed three or more times at the same position of the outer peripheral blade, it was determined that the outer peripheral blade was not stable, and the outer peripheral blade was replaced with a new one. Under these conditions, 1000 blocks were cut to obtain evaluation results. As is clear from Table 1, the Nd-
By using the multi-diamond grinding wheel of the present invention for multi-cutting of Fe-B based rare earth sintered magnets, dimensional accuracy is stable for a long time even if the blade thickness is thin, and spacer thickness adjustment, replacement of the outer peripheral blade, etc. are completely unnecessary. It was confirmed that productivity was improved.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例2、比較例2、比較例3 ビッカース硬度(Hv)1250を有する超硬合金(WC-85w
t%/Co-15wt% の組成)を125mm φ×40mmφ×0.4mm のド
ーナツ状孔あき薄板円板に加工し、砥石台板とした。次
いで、実施例1と同様にレジンボンドを結合剤として刃
厚0.5mm (逃げ0.05mm)の外周切断刃を製作した。用い
たダイヤモンドの平均粒径は120 μm、ダイヤモンドの
体積含有率は20%(砥粒20%、レジン80%)とした。
Example 2, Comparative Example 2, Comparative Example 3 A cemented carbide having a Vickers hardness (Hv) of 1250 (WC-85w
t% / Co-15wt%) was processed into a 125mm φ × 40mm φ × 0.4mm donut-shaped perforated thin disk to obtain a grindstone base plate. Next, an outer peripheral cutting blade having a blade thickness of 0.5 mm (runaway 0.05 mm) was manufactured using a resin bond as a binder in the same manner as in Example 1. The average diameter of the diamond used was 120 μm, and the volume content of the diamond was 20% (abrasive grains 20%, resin 80%).

【0025】また、比較例2として、ビッカース硬度
(Hv)800 を有する超硬合金性砥石台板(125mm φ×
40mmφ×0.4mm )を用い、実施例2と同様にダイヤモン
ド砥粒の固着を行い、刃厚0.5mm の外周切断刃を製作し
た。また、比較例3として、実施例2より厚みの厚い
(125mm φ×40mmφ×0.9mm )SKD 製砥石台板を用い
て、実施例2と同様にダイヤモンド砥粒の固着を行い、
刃厚1.0mm のSKD 製ダイヤモンド砥石外周刃を製作し
た。
Further, as Comparative Example 2, a cemented carbide grindstone base plate having a Vickers hardness (Hv) of 800 (125 mm φ ×
40 mmφ × 0.4 mm), diamond abrasive grains were fixed in the same manner as in Example 2, and an outer peripheral cutting blade having a blade thickness of 0.5 mm was manufactured. In addition, as Comparative Example 3, diamond abrasive grains were fixed in the same manner as in Example 2 using an SKD grinding wheel base plate thicker than that of Example 2 (125 mm φ × 40 mm φ × 0.9 mm).
A 1.0mm-thick SKD diamond grinding wheel was manufactured.

【0026】実施例2、比較例2及び比較例3で作製し
た外周刃を用いて、Nd−Fe−B系希土類焼結磁石を
被切断物として切断試験を行った。表2にその結果を記
載した。尚、切断試験は次のような条件で行った。実施
例2、比較例2及び比較例3で作製した外周刃を各々1.
1mm 間隔でマルチに組んで(切断後の希土類磁石の狙い
寸法は1.0mm )、回転数5500rpm 、切断速度18mm/minで
被切断物を切断した。マルチ組みした外周刃間のスペー
サー形状として80mmφ×40mmφ×1.1mm を用いた。ま
た、被切断物であるNd−Fe−B系希土類焼結磁石は
長さ50mm×幅30mm×高さ20mmを用い、長さ方向に外周刃
をマルチ組みし、一度に1.0mm 厚の製品を多数個取りし
た。その時、比較例3では磁石1ブロックから24枚取り
であったのに対し、実施例2及び比較例2では外周刃が
薄いため33枚取りが可能であった。実施例2、比較例2
及び比較例3で作製した外周刃を用いて切断された希土
類磁石はすべて中央部の厚みをマイクロメーターで測定
し、切断寸法管理幅内1.0 ±0.05mmであれば合格とし、
寸法が外れた場合には、実施例1同様スペーサー厚の調
整を行った。更に、同じ外周刃の位置でスペーサー調整
を3回以上実施の場合には、外周刃の安定性がないもの
と判断し、新しい外周刃と交換した。結果を表2に示
す。表2から明らかなように、Nd−Fe−B系希土類
焼結磁石のマルチ切断に本発明のマルチダイヤモンド砥
石を使うことによって、材料歩留まりが向上し、しかも
寸法精度が安定し希土類磁石のマルチ切断を効率よく行
えることが確認された。
Using the outer peripheral blades prepared in Example 2, Comparative Examples 2 and 3, cutting tests were performed using Nd-Fe-B-based rare earth sintered magnets as objects to be cut. Table 2 shows the results. The cutting test was performed under the following conditions. Each of the outer peripheral blades manufactured in Example 2, Comparative Example 2 and Comparative Example 3 was 1.
The workpiece was cut into multiple pieces at 1 mm intervals (the target size of the rare earth magnet after cutting was 1.0 mm) at a rotation speed of 5500 rpm and a cutting speed of 18 mm / min. 80 mmφ × 40 mmφ × 1.1 mm was used as the spacer shape between the multi-assembled outer peripheral blades. The Nd-Fe-B based rare earth sintered magnet, which is the object to be cut, has a length of 50 mm x a width of 30 mm x a height of 20 mm. I took many pieces. At that time, in Comparative Example 3, 24 pieces were taken from one block of the magnet, whereas in Example 2 and Comparative Example 2, 33 pieces were possible because the outer peripheral edge was thin. Example 2, Comparative Example 2
And all the rare earth magnets cut using the outer peripheral blade prepared in Comparative Example 3 were measured with a micrometer for the thickness of the central part, and if the cutting dimension control width was within 1.0 ± 0.05 mm, it was judged as acceptable,
When the dimensions were off, the thickness of the spacer was adjusted as in Example 1. Further, when the spacer adjustment was performed three times or more at the same outer peripheral edge position, it was determined that the outer peripheral edge was not stable, and the outer peripheral edge was replaced with a new one. Table 2 shows the results. As is clear from Table 2, the use of the multi-diamond grindstone of the present invention for the multi-cutting of the Nd-Fe-B based rare earth sintered magnet improves the material yield, and furthermore, the dimensional accuracy is stabilized, and the multi-cutting of the rare earth magnet is performed. It was confirmed that can be performed efficiently.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例3、比較例4 ビッカース硬度(Hv)1100を有する超硬合金(WC-80w
t%/Co-20wt% の組成)を100mm φ×40mmφ×0.3mm のド
ーナツ状孔あき薄板円板に加工し、砥石台板とした。次
いで、砥石台板の外周部に結合剤にメタルを使用するメ
タルボンド法によりダイヤモンド砥粒を固着し、外周切
断刃を作製した。製作工程は実施例1と同様であるが、
バインダーとしてCu-70wt%/Sn-30wt% の組成からなる粉
末を用い、砥粒として平均粒径100 μmの人工ダイヤモ
ンド及びcBN を重量比で1:1に混合した粉末を体積含
有率で15%(砥粒15%、メタルバインダー85%)になる
ように配合した。なお、プレス後の加熱焼成は700 ℃×
2時間行い、次いで仕上げ加工を施し、刃厚0.4mm (逃
げ0.05mm)の希土類磁石用ダイヤモンド砥石外周刃とし
た。
Example 3, Comparative Example 4 A cemented carbide having a Vickers hardness (Hv) of 1100 (WC-80w
t% / Co-20wt%) was processed into a 100mm φ × 40mm φ × 0.3mm donut-shaped perforated thin disk to obtain a grindstone base plate. Next, diamond abrasive grains were fixed to the outer peripheral portion of the grindstone base plate by a metal bond method using metal as a binder, thereby producing an outer peripheral cutting blade. The manufacturing process is the same as in Example 1, but
A powder having a composition of Cu-70wt% / Sn-30wt% is used as a binder, and a powder obtained by mixing artificial diamond having an average particle diameter of 100 μm and cBN at a weight ratio of 1: 1 as abrasive grains at a volume content of 15%. (Abrasive grains 15%, metal binder 85%). The heating and firing after pressing is 700 ° C ×
Performed for 2 hours and then finished to obtain a diamond grinding wheel outer peripheral blade for rare earth magnets with a blade thickness of 0.4 mm (runaway 0.05 mm).

【0029】また、比較例4として実施例3と同形状の
SKH (高速度鋼)製砥石台板を用いて、実施例3と同様
にダイヤモンド砥粒の固着を行い、刃厚0.4mm のSKH 製
ダイヤモンド砥石外周刃を作製した。
As Comparative Example 4, the same shape as in Example 3 was used.
Using an SKH (high-speed steel) grindstone base plate, diamond abrasive grains were fixed in the same manner as in Example 3 to produce a 0.4 mm-thick SKH diamond grindstone outer peripheral blade.

【0030】実施例3及び比較例4で作製した外周刃を
用いて、Nd−Fe−B系希土類焼結磁石を被切断物と
して実施例1と同様な切断試験を行った。表3にその結
果を示した。尚、切断試験は次のような条件で行った。
実施例3及び比較例4で作製した外周刃を各々1.3mm 間
隔でマルチに組んで(切断後の希土類磁石の狙い寸法は
1.2mm )、回転数8000rpm 、切断速度25mm/minで被切断
物を切断した。マルチ組みした外周刃間のスペーサー形
状として75mmφ×40mmφ×1.3mm を用いた。また、被切
断物であるNd−Fe−B系希土類焼結磁石は長さ50mm
×幅30mm×高さ10mmを用い、長さ方向に外周刃をマルチ
組みし、一度に1.2mm 厚の製品を多数個取りした。その
時、実施例3及び比較例4共に磁石1ブロックから31枚
取りであった。実施例3及び比較例4で作製した外周刃
を用いて切断された希土類磁石はすべて中央部の厚みを
マイクロメーターで測定し、切断寸法管理幅内1.2 ±0.
05mmであれば合格とし、寸法が外れた場合には、実施例
1同様スペーサー厚みを調整し管理幅内に入るようにマ
ルチ修正を行った。更に、同じ外周刃の位置でスペーサ
ー調整を3回以上実施の場合には、外周刃の安定性がな
いものと判断し、新しい外周刃と交換した。表3から明
らかなように、Nd−Fe−B系希土類焼結磁石のマル
チ切断に本発明のマルチダイヤモンド砥石を使うことに
よって、メタルボンドの薄刃であっても精度良く、また
長期に亘って安定して切断可能であることが確認され
た。
Using the outer peripheral blades prepared in Example 3 and Comparative Example 4, a cutting test similar to that in Example 1 was performed using a Nd-Fe-B-based rare earth sintered magnet as a cut object. Table 3 shows the results. The cutting test was performed under the following conditions.
The outer peripheral blades manufactured in Example 3 and Comparative Example 4 were assembled into a multi at 1.3 mm intervals (the target dimensions of the rare earth magnet after cutting were:
The workpiece was cut at a speed of 8000 rpm and a cutting speed of 25 mm / min. A 75 mmφ × 40 mmφ × 1.3 mm spacer was used as the spacer between the multi-assembled outer peripheral blades. The Nd-Fe-B based rare earth sintered magnet to be cut has a length of 50 mm.
Using a width of 30 mm and a height of 10 mm, the outer peripheral blade was multi-assembled in the length direction, and a large number of products with a thickness of 1.2 mm were taken at a time. At that time, in Example 3 and Comparative Example 4, 31 magnets were taken from one block of magnet. The thickness of the central portion of each of the rare-earth magnets cut using the outer peripheral blades prepared in Example 3 and Comparative Example 4 was measured with a micrometer, and the thickness was 1.2 ± 0.
If it was 05 mm, it was determined to be acceptable. If the dimension was out of place, the thickness of the spacer was adjusted and multi-correction was performed so as to be within the management width as in Example 1. Further, when the spacer adjustment was performed three times or more at the same outer peripheral edge position, it was determined that the outer peripheral edge was not stable, and the outer peripheral edge was replaced with a new one. As is clear from Table 3, by using the multi-diamond grindstone of the present invention for the multi-cutting of the Nd-Fe-B-based rare earth sintered magnet, even with a thin metal-bonded blade, it is accurate and stable for a long time. It was confirmed that cutting was possible.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】本発明のマルチダイヤモンド砥石を用い
て希土類磁石をマルチ切断すれば、刃厚が薄くても長期
に亘り切断精度を維持しながら切断が可能であり、マル
チ切断を能率よく、しかも切断加工代を極力小さくでき
るので材料歩留まりを向上させることができ、産業上そ
の利用価値は極めて高い。
According to the present invention, when the rare-earth magnet is multi-cut using the multi-diamond grindstone of the present invention, cutting can be performed over a long period of time while maintaining the cutting accuracy even if the blade thickness is small. Since the cutting allowance can be reduced as much as possible, the material yield can be improved, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダイヤモンド砥石外周刃の構造を示した図で、
(a)は上面図、(b)はA−A線縦断面図、(c)は
外周端部Aの拡大図である。
FIG. 1 is a diagram showing the structure of a diamond grinding wheel outer peripheral blade,
(A) is a top view, (b) is a vertical sectional view taken along line AA, and (c) is an enlarged view of an outer peripheral end portion A.

【図2】外周刃によるマルチ組みの構造を示した図で、
(a)は概念図、(b)は断面図である。
FIG. 2 is a view showing a structure of a multi-assembly using an outer peripheral blade;
(A) is a conceptual diagram, (b) is a sectional view.

【図3】希土類磁石製品製作工程の概念図で、(a)は
1個取りの場合、(b)は多数個取りの場合を示した図
である。
3A and 3B are conceptual diagrams of a process for manufacturing a rare earth magnet product, in which FIG. 3A is a diagram showing a case of taking one piece, and FIG.

【符号の説明】[Explanation of symbols]

1……台板 2……砥粒層(切り刃部) 3……スペーサー 4……逃げ 5……刃厚(切断加工代) 6……外周刃 71…希土類磁石(プレス成形後) 72…希土類磁石(焼結・熱処理後) 73…希土類磁石(研磨加工後) DESCRIPTION OF SYMBOLS 1 ... Base plate 2 ... Abrasive grain layer (cutting edge part) 3 ... Spacer 4 ... Relief 5 ... Blade thickness (cutting allowance) 6 ... Peripheral blade 71 ... Rare earth magnet (after press forming) 72 ... Rare earth magnet (after sintering and heat treatment) 73 ... Rare earth magnet (after polishing)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石をマルチ切断加工するマルチ
ダイヤモンド砥石において、該砥石を構成するダイヤモ
ンド外周刃の台板が、ビッカース硬度(Hv)で900 〜
2000の超硬合金からなることを特徴とする希土類磁石切
断用マルチダイヤモンド砥石。
1. A multi-diamond grindstone for multi-cutting rare earth magnets, wherein a base plate of a diamond outer peripheral blade constituting the grindstone has a Vickers hardness (Hv) of 900 to less.
A multi-diamond grinding wheel for cutting rare-earth magnets, made of 2000 cemented carbide.
【請求項2】 外周刃の台板が、外径200mm 以下、厚み
0.1 〜1mmの超硬薄板であり、切り刃である砥粒層の厚
みが、超硬台板の厚みよりも片側で0.01〜0.2mm 、両側
で0.02〜0.4mm 厚く、砥石の逃げが0.01〜0.2mm である
請求項1に記載の希土類磁石切断用マルチダイヤモンド
砥石。
2. The base plate of the outer peripheral blade has an outer diameter of 200 mm or less and a thickness of 200 mm or less.
It is a carbide thin plate of 0.1 to 1 mm, and the thickness of the abrasive layer which is the cutting edge is 0.01 to 0.2 mm on one side and 0.02 to 0.4 mm thick on both sides and 0.01 to 0.2 mm thicker than the thickness of the carbide base plate. The multi-diamond grinding wheel for cutting rare earth magnets according to claim 1, which has a diameter of 0.2 mm.
【請求項3】 マルチダイヤモンド砥石が、3〜200 枚
のダイヤモンド外周刃と2〜199 枚のスペーサー及びシ
ャフト部で構成される請求項1または2に記載の希土類
磁石切断用マルチダイヤモンド砥石。
3. The multi-diamond grinding wheel for cutting rare earth magnets according to claim 1, wherein the multi-diamond grinding wheel comprises 3 to 200 diamond outer peripheral blades, 2 to 199 spacers and a shaft portion.
【請求項4】 外周刃の切り刃部に含有される砥粒は、
ダイヤモンドあるいはcBN あるいはこれらの混合物から
なり、その平均粒径が50〜250 μmの範囲内で、切り刃
部における体積含有率が10〜50%の範囲内である請求項
1乃至3のいずれかに記載の希土類磁石切断用マルチダ
イヤモンド砥石。
4. The abrasive grains contained in the cutting edge portion of the outer peripheral blade,
4. The method according to claim 1, comprising diamond, cBN or a mixture thereof, having an average particle size in the range of 50 to 250 μm and a volume content in the cutting edge portion in the range of 10 to 50%. A multi-diamond grinding wheel for cutting rare earth magnets as described.
【請求項5】 希土類磁石がR−Fe−B系(RはYを
含む希土類元素のうち少なくとも1種)からなる希土類
焼結磁石である請求項1乃至4のいずれかに記載の希土
類磁石切断用マルチダイヤモンド砥石。
5. The rare-earth magnet cutting device according to claim 1, wherein the rare-earth magnet is a rare-earth sintered magnet made of an R—Fe—B system (R is at least one of rare-earth elements including Y). For multi diamond wheel.
JP33604096A 1996-12-16 1996-12-16 Multi diamond grinding wheel for cutting rare earth magnet Pending JPH10175172A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33604096A JPH10175172A (en) 1996-12-16 1996-12-16 Multi diamond grinding wheel for cutting rare earth magnet
TW87102651A TW522079B (en) 1996-12-16 1998-02-24 Abrasive-bladed multiple cutting wheel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33604096A JPH10175172A (en) 1996-12-16 1996-12-16 Multi diamond grinding wheel for cutting rare earth magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007139209A Division JP2007253326A (en) 2007-05-25 2007-05-25 Method for multiple cutting of rare earth magnet using multiple diamond abrasive wheel

Publications (1)

Publication Number Publication Date
JPH10175172A true JPH10175172A (en) 1998-06-30

Family

ID=18295089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33604096A Pending JPH10175172A (en) 1996-12-16 1996-12-16 Multi diamond grinding wheel for cutting rare earth magnet

Country Status (1)

Country Link
JP (1) JPH10175172A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150344A (en) * 1999-09-16 2001-06-05 Sumitomo Special Metals Co Ltd Grinding method and grinding device for magnetic member, and disposal method and disposal device for waste liquid
JP2003311619A (en) * 1999-09-16 2003-11-05 Sumitomo Special Metals Co Ltd Grinding method and grinding device for magnetic member
US7040969B1 (en) 1999-09-16 2006-05-09 Neomax Co., Ltd. Method and apparatus for grinding magnetic member and method and apparatus for treating waste fluid
DE10027086B4 (en) * 1999-06-01 2009-04-16 Hitachi Metals, Ltd. Magnetic element cutting method and magnetic element cutting device
EP2075092A2 (en) 2007-12-28 2009-07-01 Shinetsu Chemical Co., Ltd. Cutting wheels, their manufacture and use
EP2189245A2 (en) 2008-11-05 2010-05-26 Shin-Etsu Chemical Co., Ltd. Methods and apparatus for multiple cutoff machining of rare earth magnet blocks
KR20100119730A (en) 2009-05-01 2010-11-10 신에쓰 가가꾸 고교 가부시끼가이샤 Method and jig assembly for manufacturing outer blade cutting wheel
EP2397254A1 (en) 2010-06-16 2011-12-21 Shin-Etsu Chemical Co., Ltd. Method for multiple cutoff machining of rare earth magnet
WO2012073855A1 (en) 2010-11-29 2012-06-07 信越化学工業株式会社 Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
WO2012073854A1 (en) 2010-11-29 2012-06-07 信越化学工業株式会社 Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
CN102528670A (en) * 2011-11-10 2012-07-04 贵州英特利智能控制工程研究有限责任公司 Method for purifying and circulating grinding fluid of machine tool and device
EP2543478A2 (en) 2011-07-04 2013-01-09 Shin-Etsu Chemical Co., Ltd. Cemented carbide base outer blade cutting wheel and making method
EP2596929A1 (en) 2011-11-28 2013-05-29 Shin-Etsu Chemical Co., Ltd. Saw blade and method for multiple sawing of rare earth magnet
EP2612728A2 (en) 2012-01-06 2013-07-10 Shin-Etsu Chemical Co., Ltd. Dressing and manufacture of outer blade cutting wheel
EP3412409A1 (en) 2017-06-09 2018-12-12 Shin-Etsu Chemical Co., Ltd. Outer circumference cutting wheel and making method thereof
EP3412408A1 (en) 2017-06-09 2018-12-12 Shin-Etsu Chemical Co., Ltd. Outer circumference cutting wheel and making method thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027086B4 (en) * 1999-06-01 2009-04-16 Hitachi Metals, Ltd. Magnetic element cutting method and magnetic element cutting device
JP2001150344A (en) * 1999-09-16 2001-06-05 Sumitomo Special Metals Co Ltd Grinding method and grinding device for magnetic member, and disposal method and disposal device for waste liquid
JP2003311619A (en) * 1999-09-16 2003-11-05 Sumitomo Special Metals Co Ltd Grinding method and grinding device for magnetic member
US7040969B1 (en) 1999-09-16 2006-05-09 Neomax Co., Ltd. Method and apparatus for grinding magnetic member and method and apparatus for treating waste fluid
CN1328011C (en) * 1999-09-16 2007-07-25 株式会社新王磁材 Method and apparatus for grinding magnetic components and method and apparatus for treatment of waste liquid
CN105773457A (en) * 2007-12-28 2016-07-20 信越化学工业株式会社 Outer blade cutting wheel and manufacturing method thereof
US8733336B2 (en) 2007-12-28 2014-05-27 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method
US8459246B2 (en) 2007-12-28 2013-06-11 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method
US11364591B2 (en) 2007-12-28 2022-06-21 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method
EP2075092A2 (en) 2007-12-28 2009-07-01 Shinetsu Chemical Co., Ltd. Cutting wheels, their manufacture and use
JP2013082072A (en) * 2007-12-28 2013-05-09 Shin-Etsu Chemical Co Ltd Outer periphery cutting blade and method for manufacturing the same
JP2009172751A (en) * 2007-12-28 2009-08-06 Shin Etsu Chem Co Ltd External periphery cutting blade and its manufacturing method
EP2735404A2 (en) 2007-12-28 2014-05-28 Shin-Etsu Chemical Co., Ltd. Cutting wheels, their manufacture and use
US8753174B2 (en) 2008-11-05 2014-06-17 Shin-Etsu Chemical Co., Ltd. Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting fluid feed nozzle, and magnet block securing jig
EP2189245A3 (en) * 2008-11-05 2012-12-12 Shin-Etsu Chemical Co., Ltd. Methods and apparatus for multiple cutoff machining of rare earth magnet blocks
US9314892B2 (en) 2008-11-05 2016-04-19 Shin-Etsu Chemical Co., Ltd. Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting fluid feed nozzle, and magnet block securing jig
US8568203B2 (en) 2008-11-05 2013-10-29 Shin-Etsu Chemical Co., Ltd. Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting fluid feed nozzle, and magnet block securing jig
EP2641695A1 (en) * 2008-11-05 2013-09-25 Shin-Etsu Chemical Co., Ltd. Method and apparatus for cutting-off rare earth magnet blocks with a multiple blade assembly
US8567383B2 (en) 2008-11-05 2013-10-29 Shin-Etsu Chemical Co., Ltd. Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting fluid feed nozzle, and magnet block securing jig
EP2189245A2 (en) 2008-11-05 2010-05-26 Shin-Etsu Chemical Co., Ltd. Methods and apparatus for multiple cutoff machining of rare earth magnet blocks
EP2260963A1 (en) 2009-05-01 2010-12-15 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
US9156098B2 (en) 2009-05-01 2015-10-13 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
KR20100119730A (en) 2009-05-01 2010-11-10 신에쓰 가가꾸 고교 가부시끼가이샤 Method and jig assembly for manufacturing outer blade cutting wheel
US8753412B2 (en) 2009-05-01 2014-06-17 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
US10391602B2 (en) 2010-06-16 2019-08-27 Shin-Etsu Chemical Co., Ltd. Method for multiple cutoff machining of rare earth magnet
EP2397254A1 (en) 2010-06-16 2011-12-21 Shin-Etsu Chemical Co., Ltd. Method for multiple cutoff machining of rare earth magnet
US9517547B2 (en) 2010-11-29 2016-12-13 Shin-Etsu Chemical Co., Ltd. Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
WO2012073855A1 (en) 2010-11-29 2012-06-07 信越化学工業株式会社 Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
WO2012073854A1 (en) 2010-11-29 2012-06-07 信越化学工業株式会社 Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
EP2543478A2 (en) 2011-07-04 2013-01-09 Shin-Etsu Chemical Co., Ltd. Cemented carbide base outer blade cutting wheel and making method
KR20130004886A (en) 2011-07-04 2013-01-14 신에쓰 가가꾸 고교 가부시끼가이샤 Cemented carbide base outer blade cutting wheel and making method
CN102528670A (en) * 2011-11-10 2012-07-04 贵州英特利智能控制工程研究有限责任公司 Method for purifying and circulating grinding fluid of machine tool and device
JP2013136143A (en) * 2011-11-28 2013-07-11 Shin-Etsu Chemical Co Ltd Resinous grindstone sawing blade and method for multiple sawing of rare earth magnet
EP2596929A1 (en) 2011-11-28 2013-05-29 Shin-Etsu Chemical Co., Ltd. Saw blade and method for multiple sawing of rare earth magnet
EP2612728A2 (en) 2012-01-06 2013-07-10 Shin-Etsu Chemical Co., Ltd. Dressing and manufacture of outer blade cutting wheel
EP3412409A1 (en) 2017-06-09 2018-12-12 Shin-Etsu Chemical Co., Ltd. Outer circumference cutting wheel and making method thereof
EP3412408A1 (en) 2017-06-09 2018-12-12 Shin-Etsu Chemical Co., Ltd. Outer circumference cutting wheel and making method thereof
US11052511B2 (en) 2017-06-09 2021-07-06 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method

Similar Documents

Publication Publication Date Title
US6517427B1 (en) Abrasive-bladed multiple cutting wheel assembly
JP2868180B2 (en) Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same
JPH10175172A (en) Multi diamond grinding wheel for cutting rare earth magnet
US6012977A (en) Abrasive-bladed cutting wheel
US10391602B2 (en) Method for multiple cutoff machining of rare earth magnet
JP5900298B2 (en) Resin grinding wheel cutting blade and multi-cutting method of rare earth magnet
JP3623740B2 (en) A thin whetstone bonded rigidly
JP5228811B2 (en) Magnet fixing jig and rare earth magnet cutting processing apparatus having the same
JPH10175171A (en) Multi diamond grinding wheel for cutting rare earth magnet
JP6737171B2 (en) Multi-cutting method for rare earth sintered magnets
JP2010110850A (en) Grinding fluid supply nozzle and cutting device with the same for rare earth magnet
JP5481837B2 (en) Multi-cutting method of rare earth magnet
JP6665775B2 (en) Jig for fixing rare earth sintered magnet
KR100542088B1 (en) Abrasive-bladed multiple cutting wheel assembly
JP4825622B2 (en) Multi-layered thin blade and manufacturing method thereof
JP2002137168A (en) Super abrasive tool
JP2007253326A (en) Method for multiple cutting of rare earth magnet using multiple diamond abrasive wheel
JP3308246B2 (en) Diamond blade core metal for rare earth magnet cutting
TW522079B (en) Abrasive-bladed multiple cutting wheel assembly
JP2001205568A (en) Grinding wheel blade for cutting rare-earth magnet
JP2002160166A (en) Super abrasive grain tool
JP2000094337A (en) Super abrasive grain grinding wheel blade for cutting rare earth magnet and manufacture of it
JP2001009730A (en) Super-abrasive grain tool
JP2003251566A (en) Super abrasive grain cutting wheel with cermet as base plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070706