JP2868180B2 - Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same - Google Patents
Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the sameInfo
- Publication number
- JP2868180B2 JP2868180B2 JP7339616A JP33961695A JP2868180B2 JP 2868180 B2 JP2868180 B2 JP 2868180B2 JP 7339616 A JP7339616 A JP 7339616A JP 33961695 A JP33961695 A JP 33961695A JP 2868180 B2 JP2868180 B2 JP 2868180B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- rare earth
- diamond
- base plate
- outer peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D61/00—Tools for sawing machines or sawing devices; Clamping devices for these tools
- B23D61/02—Circular saw blades
- B23D61/028—Circular saw blades of special material
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ダイヤモンド砥石
外周刃、特には希土類焼結磁石を切断するのに有効な希
土類磁石切断用ダイヤモンド砥石外周刃とそれを用いた
希土類磁石の切断方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outer peripheral edge of a diamond grindstone, and more particularly to an outer peripheral edge of a diamond grindstone for cutting a rare earth magnet, which is effective for cutting a rare earth sintered magnet .
The present invention relates to a method for cutting a rare earth magnet .
【0002】[0002]
【従来の技術】各種の希土類焼結磁石の切断刃としては
大きく分けると、図1に示したような薄板ドーナツ円板
の内周部分にダイヤモンド砥粒を接着したダイヤモンド
砥石内周刃や、図2に示したような薄板円板を台板とし
てその外周部分にダイヤモンド砥粒を固着したダイヤモ
ンド砥石外周刃の2種類があるが、最近では特に生産性
の点から外周刃を用いた切断が主流となってきている。2. Description of the Related Art The cutting blade of various rare earth sintered magnets can be broadly classified into a diamond grindstone inner peripheral blade having diamond abrasive grains adhered to the inner peripheral portion of a thin donut disk as shown in FIG. There are two types of diamond grindstones, in which a thin disk as shown in Fig. 2 is used as a base plate and diamond abrasive grains are adhered to the outer periphery thereof. It is becoming.
【0003】[0003]
【発明が解決しようとする課題】切断砥石を使用して希
土類焼結磁石を切断加工する時、例えばある大きさのブ
ロックを切断して多数の製品を切り出す場合には、切断
砥石の刃厚と被切断物(希土類焼結磁石)の材料歩留り
との関係が非常に重要なコスト要因となり、できるだけ
薄い刃を用いてしかも精度良く切断し切断加工代を少な
くし、得られる製品の数を多くして材料歩留りを上げ、
生産性を高めることが肝要である。薄い切断刃にするた
めには、当然砥石台板を薄くする必要がある。図1の内
周刃では、切断加工時に太鼓の皮を張るように全外周に
テンションを加えて張り上げておいて回転するために比
較的薄い切断刃の製作が可能であり、厚み0.1mm程
度のステンレス製台板を用いて厚み0.25〜0.5m
m程度の切れ刃をもつ内周刃が製作可能である。一方、
図2の外周刃の場合、その台板材質として従来は主に材
料コスト及び機械強度の点から鉄鋼材料が用いられてお
り、特に実用化されているものとしてJIS規格でS
K、SKS、SKD、SKT、SKH等と規定される合
金工具鋼が専ら使用されてきた。しかし、希土類焼結磁
石のような硬質材料を薄い外周刃によって切断しようと
すると、前述した従来の合金工具鋼の台板では機械強度
が不足し、切断に際し曲がり、うねり等の変形を生じ寸
法精度が失われてしまう。更に被切断物の希土類焼結磁
石は、従来の砥石台板に用いられている合金工具鋼より
硬くて脆いため、その切り屑が台板と被切断物の間に挟
まって排除されにくい場合、砥石台板を傷つけ台板の寿
命を低下させたり、台板の曲がりやうねりを助長させる
ことになり問題であった。本発明は、このような問題点
を解決した変形が少なく、切断精度が高く、切断加工代
が小さくかつ耐久性に優れた希土類焼結磁石切断用のダ
イヤモンド砥石外周刃とそれを用いた希土類磁石の切断
方法を提供しようとするものである。When cutting a rare earth sintered magnet using a cutting whetstone, for example, when cutting a block of a certain size and cutting out a large number of products, the blade thickness of the cutting whetstone is reduced. The relationship with the material yield of the object to be cut (rare-earth sintered magnet) is a very important cost factor, and cutting is performed with as thin a blade as possible and with high accuracy to reduce the cutting cost and increase the number of products obtained. To increase material yield,
It is important to increase productivity. In order to make a thin cutting blade, it is necessary to make the grindstone base plate thin. With the inner peripheral blade of FIG. 1, a relatively thin cutting blade can be manufactured because the entire outer periphery is tensioned and rotated so that the drum skin is stretched at the time of cutting, and a relatively thin cutting blade can be manufactured. 0.25-0.5m using stainless steel base plate
An inner peripheral blade having a cutting edge of about m can be manufactured. on the other hand,
In the case of the outer peripheral blade shown in FIG. 2, a steel material is conventionally used as a base plate material mainly from the viewpoint of material cost and mechanical strength.
Alloy tool steels defined as K, SKS, SKD, SKT, SKH, etc. have been exclusively used. However, when cutting a hard material such as a rare earth sintered magnet with a thin outer blade, the conventional alloy tool steel base plate described above has insufficient mechanical strength, causing bending and undulation when cutting, resulting in dimensional accuracy. Will be lost. Furthermore, the rare earth sintered magnet of the object to be cut is harder and more brittle than the alloy tool steel used for the conventional grindstone base plate, so when the chips are hardly removed by being caught between the base plate and the cut object, The grinding wheel base plate is damaged, and the life of the base plate is shortened, and bending and undulation of the base plate are promoted, which is a problem. SUMMARY OF THE INVENTION The present invention solves such problems by reducing the deformation, increasing the cutting accuracy, reducing the cutting allowance, and excelling in durability.Diamond grinding wheel outer peripheral blade for cutting rare earth sintered magnets and rare earth magnet using the same Cutting
It seeks to provide a way .
【0004】[0004]
【課題を解決するための手段】本発明者等は、かかる課
題を解決すべく鋭意検討した結果、外周切断刃の台板が
いわゆる超硬合金のドーナツ状孔あき薄板円板から成
り、該台板外周の切り刃部にダイヤモンド系砥粒粉末を
体積率で10〜80%含有させたダイヤモンド砥石外周
刃を用いることによって、薄い外周刃であっても寸法精
度が良く長期に渡り安定して希土類焼結磁石の切断が可
能であることを見出し、諸条件を確立して本発明を完成
させたもので、その要旨は、希土類焼結磁石を切断加工
するダイヤモンド砥石外周刃において、該外周刃を構成
する台板が超硬合金のドーナツ状孔あき薄板円板から成
り、かつ該台板外周の切り刃部にダイヤモンド系砥粒粉
末を体積率で10〜80%含有させることを特徴とする
希土類磁石切断用ダイヤモンド砥石外周刃にある。更に
詳しくは、1)超硬合金のヤング率が45000〜70
000kgf/mm2 であり、2)ダイヤモンド系砥粒
粉末が天然または合成工業用ダイヤモンドの粉末、cB
N粉末およびこれらの混合物から成り、その平均粒径
が、10〜500μmであり、3)外周刃の台板が外径
250mmΦ以下であり、かつ厚み0.1〜1mmの薄
板から成り、4)被切断物の希土類磁石がR−Co系ま
たはR−Fe−B系(ここにRはYを含む希土類元素の
内少なくとも1種)の希土類焼結磁石である希土類磁石
切断用ダイヤモンド砥石外周刃と、上記希土類磁石切断
用ダイヤモンド砥石外周刃を用いる希土類磁石の切断方
法にある。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the base plate of the outer peripheral cutting blade is formed of a so-called cemented carbide donut-shaped perforated thin plate disk. By using a diamond grindstone peripheral blade containing diamond-based abrasive powder at a volume ratio of 10 to 80% in the cutting edge portion of the outer periphery of the plate, even with a thin peripheral blade, the dimensional accuracy is good and stable over a long period of time. The present inventors have found that cutting of a sintered magnet is possible, established various conditions and completed the present invention, and the gist of the present invention is to use a diamond grinding wheel for cutting a rare earth sintered magnet. A rare earth element characterized in that a base plate to be formed is a doughnut-shaped perforated thin disk made of cemented carbide, and that diamond-based abrasive powder is contained in a cutting blade portion on the outer periphery of the base plate in a volume ratio of 10 to 80%. Magnet cutting tool In Yamondo grindstone peripheral cutting edge. More specifically, 1) the cemented carbide has a Young's modulus of 45,000 to 70
2,000 kgf / mm 2 , 2) diamond-based abrasive powder is natural or synthetic industrial diamond powder, cB
N) and a mixture thereof, the average particle size of which is 10 to 500 μm, 3) the base plate of the outer peripheral blade has an outer diameter of 250 mmΦ or less, and is made of a thin plate having a thickness of 0.1 to 1 mm. 4) A diamond wheel for cutting a rare-earth magnet, wherein the rare-earth magnet to be cut is an R-Co-based or R-Fe-B-based (where R is at least one of rare earth elements including Y) rare-earth sintered magnets; The above rare earth magnet cutting
In cutting method of the rare earth magnet Ru with use diamond wheel peripheral cutting edge.
【0005】以下、本発明を詳細に説明する。本発明の
最大の特徴は、硬くて脆い硬質材料である希土類焼結磁
石を外周切断する際の薄い切断刃として、該切断刃台板
を超硬合金のドーナツ状孔あき薄板円板とし、さらに該
台板外周の切り刃にダイヤモンド粉末を体積率で10〜
80%含有させることにある。希土類磁石を薄い外周刃
で切断する場合、その構造上台板の材質が非常に重要で
ある。従来の合金工具鋼に比べ、切断時に力を受けても
曲がりやうねりの出ない薄い砥石台板になり得る材料を
種々検討した結果、超硬合金が最も適していることを見
出した。硬さの点でいえばアルミナ等のセラミックスの
方が優れているが靭性に乏しく、特に被加工物が希土類
焼結磁石の場合、切断中に衝撃で割れてしまうこともし
ばしばあり非常に危険であり薄い砥石台板には適さな
い。Hereinafter, the present invention will be described in detail. The greatest feature of the present invention is that the cutting blade base plate is used as a thin cutting blade for cutting the outer periphery of a rare earth sintered magnet which is a hard and brittle hard material.
Is a doughnut-shaped perforated thin disk made of cemented carbide , and diamond powder is applied to the cutting edge on the outer periphery of the base plate at a volume ratio of 10 to 10.
80%. When a rare earth magnet is cut with a thin outer blade, the material of the base plate is very important in terms of its structure. As a result of various investigations into materials that can form a thin whetstone base plate that does not bend or undulate even when subjected to force during cutting as compared with conventional alloy tool steel, it was found that cemented carbide is most suitable. In terms of hardness, ceramics such as alumina are superior, but have poor toughness. Particularly when the workpiece is a rare earth sintered magnet, it often breaks due to impact during cutting, which is extremely dangerous. Not suitable for thin whetstone base plate.
【0006】超硬合金は、WC、Ti C、Mo C、Nb
C、Ta C、Cr3C2 等のIVa 、Va 、VIa 族に属
する金属の炭化物粉末をFe 、Co 、Ni 、Mo 、Cu
、Pb 、Sn またはそれらの合金を用いて焼結結合し
た合金であり、これらの中でも特にWC−Co 系、WC
−Ti C−Co 系、WC−Ti C−Ta C−Co 系の合
金が代表的である。本発明では希土類磁石切断用超硬合
金台板として組成、成分には特にこだわらないが、超硬
合金のヤング率が 45000〜70000kgf/mm2の範囲内である
必要がある。台板のヤング率が45000kgf/mm2未満の場
合、超硬合金といえども切断時の抵抗で曲がりやうねり
を生じ、結果として台板を薄くできず超硬合金のメリッ
トがなくなる。また、70000kgf/mm2を越えると曲がりや
うねりの点では問題ないものの硬く脆くなるため、使用
時に破損し易くなり危険であったので45000〜70000kgf/
mm2の範囲内に限定した。Cemented carbides are WC, TiC, MoC, Nb
C, Ta C, Cr 3 C 2 , etc. of the IVa, Va, a carbide powder of a metal belonging to Group VIa Fe, Co, Ni, Mo, Cu
, Pb, Sn or alloys sintered using these alloys. Among them, WC-Co type, WC
-TiC-Co-based and WC-TiC-TaC-Co-based alloys are typical. In the present invention, the composition and components of the cemented carbide base plate for cutting rare earth magnets are not particularly limited, but the cemented carbide must have a Young's modulus in the range of 45,000 to 70,000 kgf / mm 2 . If the Young's modulus of the base plate is less than 45000 kgf / mm 2 , even if it is a cemented carbide, bending or undulation occurs due to resistance at the time of cutting, and as a result, the base plate cannot be thinned and the advantage of the cemented carbide is lost. Also, since the rigid and brittle but no problem in terms of the bending or undulation exceeds 70000kgf / mm 2, since a danger becomes easily broken during use 45000~70000Kgf /
It was limited to within the range of mm 2.
【0007】切り刃部は図2に示したように超硬合金台
板3の外周部分にダイヤモンド系砥粒粉末(砥粒層4)
を結合剤を用いて固着させて外周切断刃とするが、結合
剤については、メタルボンド、レジンボンド、ビトリフ
ァイドボンド、電着ボンド等のいずれの方法でもよい。
ただし、砥粒層部の中でダイヤモンド系砥粒の体積率が
10%未満では切断に寄与するダイヤモンド系砥粒が少な
すぎて切れ味が悪くなり切断速度を極端に遅くせざるを
えなくなり切断効率が低くなってしまう。また80%を越
えると逆に結合剤が少なすぎてダイヤモンド系砥粒を保
持する力が減少し、希土類焼結磁石のような硬い被切断
物では砥粒が切断に十分寄与せずに脱粒してしまう。従
って、希土類焼結磁石切断用外周刃のダイヤモンド系砥
粒の砥粒層部における体積率は10%〜80%の範囲が好ま
しい。As shown in FIG. 2, the cutting edge portion is formed on the outer peripheral portion of the cemented carbide base plate 3 by diamond-based abrasive powder (abrasive layer 4).
Is fixed using a binder to form an outer peripheral cutting blade, but the binder may be any method such as a metal bond, a resin bond, a vitrified bond, and an electrodeposition bond.
However, the volume ratio of diamond-based abrasive grains in the abrasive layer
If it is less than 10%, the amount of diamond-based abrasive grains contributing to cutting is too small, resulting in poor sharpness, and the cutting speed must be extremely slow, resulting in low cutting efficiency. On the other hand, if it exceeds 80%, on the contrary, the amount of the binder is too small and the holding force of the diamond-based abrasive grains decreases, and on hard cutting objects such as rare-earth sintered magnets, the abrasive grains do not sufficiently contribute to the cutting and break off. Would. Accordingly, the volume ratio of the diamond-based abrasive grains of the outer peripheral blade for cutting the rare earth sintered magnet in the abrasive grain layer portion is preferably in the range of 10% to 80%.
【0008】また、台板外周部分の砥粒層部のダイヤモ
ンド系砥粒は天然または合成工業用ダイヤモンド粉末以
外に、cBN(立方晶窒化ホウ素)粉末、天然または合
成工業用ダイヤモンド粉末−cBN粉末の混合物でもよ
い。cBNはダイヤモンドに次いで硬い物質であり、熱
に対してはダイヤモンドより安定であり、さらに鋼鉄に
対する反応性が非常に少ないという特徴を有している。
このcBN粉末をダイヤモンド粉末の一部または全てと
置き換えても希土類磁石の外周切断刃としてダイヤモン
ド砥粒の場合と同じ性能を示すことが確認されている。[0008] In addition to the diamond powder for natural or synthetic industrial use, the diamond-based abrasive grains in the abrasive layer portion of the outer peripheral portion of the base plate may be cBN (cubic boron nitride) powder, natural or synthetic industrial diamond powder-cBN powder. It may be a mixture. cBN is the second hardest material after diamond, is more stable to heat than diamond, and has very low reactivity to steel.
It has been confirmed that even when this cBN powder is replaced with part or all of diamond powder, the same performance as that of diamond abrasive grains is obtained as the outer peripheral cutting blade of the rare earth magnet.
【0009】さらに、砥粒の種類以外に砥粒粒度につい
ても検討した結果、ダイヤモンド粉末、cBN粉末、そ
れらの混合物の砥粒の平均粒度が10〜 500μmの範囲内
であることを見出した。希土類磁石を切断するに際し、
平均粒度が10μm未満の砥粒を用いると砥粒の突き出し
が悪いため目詰まりし易く切断能率が低くなってしま
う。また平均粒度が 500μmを越えると切断能率は高い
ものの、希土類磁石の切断面粗さが荒くなったり、いく
ら台板を薄くしても砥粒層部の厚みが厚くなり結果とし
て薄い外周刃が得られない等の不具合を生じるためであ
る。Furthermore, as a result of examining the grain size of the abrasive grains in addition to the type of the abrasive grains, it was found that the average grain size of the abrasive grains of the diamond powder, the cBN powder, and a mixture thereof was in the range of 10 to 500 μm. When cutting a rare earth magnet,
If abrasive grains having an average particle size of less than 10 μm are used, the abrasive grains are poorly protruded, so that the grains are easily clogged and the cutting efficiency is reduced. If the average particle size exceeds 500 μm, the cutting efficiency is high, but the cut surface roughness of the rare earth magnet becomes rough, and even if the base plate is thinned, the thickness of the abrasive layer layer becomes thick, resulting in a thin outer blade. This is because such problems as not being possible occur.
【0010】台板自体に反りやうねりがあり寸法精度が
良くない場合、それを反映して切断後の希土類磁石の寸
法精度が悪くなり結果的に切断加工代が大きくなり問題
である。台板の反りやうねりは台板が薄くなればなるほ
どまだ直径が大きくなればなるほど発生し易くなり、精
度の良い台板自体の製作が困難になる。本発明の超硬合
金台板について精度良い台板自体が製作可能であり、希
土類磁石を寸法精度良くしかも長期に亙り安定して切断
可能な台板寸法について検討した結果、外径が250mmφ
以下であり、かつ厚みが 0.1〜1mmの範囲内であること
を見出した。すなわち外径が 250mmφを越えてもまた外
径が 250mmφ以下であっても厚みが 0.1mm未満の場合、
大きな反りが発生し寸法精度の良い超硬台板自体の製作
が不可能となる。さらに厚みが1mmを越えると従来の合
金工具銅製の台板でも精度良く希土類磁石を切断可能な
る、切断加工代が大きくなり過ぎ本発明の主旨から外れ
る等の理由による。外径を 250mmφ以下としたのは、例
えば台板内径(中心孔直径)が通常40mmφの場合の適応
限界であって、被切断物の大きさによっては、台板内径
を40mmφ以下に細くする場合もあり、外径も比例的に20
〜30mm φ程度まで小さくする場合もある。If the base plate itself is warped or undulated and the dimensional accuracy is not good, the dimensional accuracy of the rare earth magnet after cutting is deteriorated by reflecting the warp and undulation, resulting in a problem that the cutting margin is increased. The warpage or undulation of the base plate is more likely to occur as the base plate becomes thinner and as the diameter becomes larger, and it becomes difficult to manufacture the base plate itself with high accuracy. As for the cemented carbide base plate of the present invention, it is possible to manufacture the base plate with high accuracy, and as a result of examining the base plate size capable of cutting the rare earth magnet with high dimensional accuracy and stably for a long time, the outer diameter is 250 mmφ.
And the thickness was in the range of 0.1 to 1 mm. That is, even if the outer diameter exceeds 250 mmφ and the outer diameter is 250 mmφ or less and the thickness is less than 0.1 mm,
Large warpage occurs, making it impossible to manufacture a cemented carbide base plate with good dimensional accuracy. Further, if the thickness exceeds 1 mm, it is possible to cut the rare earth magnet with high precision even with a conventional base plate made of an alloy tool copper, and the cutting allowance becomes too large and deviates from the gist of the present invention. The reason why the outer diameter is set to 250 mmφ or less is, for example, an adaptation limit when the inner diameter of the base plate (diameter of the center hole) is usually 40 mmφ, and when the inner diameter of the base plate is reduced to 40 mmφ or less depending on the size of the workpiece. And the outer diameter is proportionally 20
It may be as small as ~ 30mm φ.
【0011】本発明の希土類磁石切断用ダイヤモンド砥
石外周刃を特にR−Co 系またはR−Fe-B系(ここに
RはYを含む希土類元素の内少なくとも1種)の希土類
焼結磁石に適用すれば、本発明の効果が顕著に現われ非
常に有効である。これらの磁石は次のようにして製造さ
れる。R−Co 系希土類焼結磁石は、RCo5系、R2 C
o17 系等があるが、実用に供されているのは、殆どがR
2 Co17 系である。R2 Co17 系希土類焼結磁石は、通
常、重量百分率で20〜28%のR,5〜30%のFe 、3〜
10%のCu 、1〜5%のZr 、残部Co からなり、先
ず、原料金属を秤量して溶解、鋳造し、得られた合金を
平均粒径1〜20μmまで微粉砕し、R2 Co17 系磁石粉
末を得る。その後磁場中で成形し、さらに1100〜1250℃
で0.5 〜5時間の焼結、次いで焼結温度よりも0〜50℃
低い温度で0.5 〜5時間溶体化し、最後に時効処理が施
される。時効処理は通常初段時効として 700〜 950℃で
一定の時間保持し、その後連続冷却または多段時効を行
う。The diamond cutting wheel for cutting a rare earth magnet according to the present invention is applied particularly to a rare earth sintered magnet of R-Co type or R-Fe-B type (where R is at least one of rare earth elements including Y). If so, the effect of the present invention is remarkably exhibited and is very effective. These magnets are manufactured as follows. R-Co based rare earth sintered magnets are RCo 5 based, R 2 C
o Although there are 17 series, etc., most of the
2 Co 17 system. R 2 Co 17 rare earth sintered magnets are usually 20 to 28% R, 5 to 30% Fe, 3 to 3% by weight.
10% Cu, 1 to 5 percent of Zr, and the balance Co, firstly dissolved materials were weighed metal, cast, pulverizing the obtained alloy to an average particle size of 1 to 20 [mu] m, R 2 Co 17 A magnetic powder is obtained. Then molded in a magnetic field, 1100-1250 ℃
Sintering for 0.5-5 hours, then 0-50 ° C above sintering temperature
The solution is solutioned at a low temperature for 0.5 to 5 hours, and is finally aged. The aging treatment is usually carried out at 700 to 950 ° C. for a certain period of time as the first stage aging, followed by continuous cooling or multi-stage aging.
【0012】R−Fe-B系希土類焼結磁石は、通常、重
量百分率で5〜40%のR、50〜90%のFe 、0.2 〜8%
のBからなり、磁気特性や耐食性を改善するために、
C、Al、Si、Ti、V、 Cr、Mn、Co、Ni、Cu、Zn、Ga、Z
r、Nb、Mo、Ag、Sn、Hf、Ta、W等の添加元素を加えるこ
とが多い。これら添加元素の添加量は、Co の場合、30
重量%以下、その他の元素の場合には8重量%以下とす
るのが普通である。これ以上加えると逆に磁気特性を劣
化させてしまう。R−Fe-B系希土類焼結磁石の製造方
法は、先ず、原料金属を秤量して溶解、鋳造し、得られ
た合金を平均粒径1〜20μmまで微粉砕し、R−Fe-B
系磁石粉末を得る。その後磁場中で成形し、1000〜1200
℃で0.5 〜5時間の焼結を行い、さらに 400〜1000℃で
時効処理を施こして製造される。R-Fe-B based rare earth sintered magnets usually have a weight percentage of 5 to 40% R, 50 to 90% Fe, 0.2 to 8%.
B, to improve magnetic properties and corrosion resistance,
C, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Z
In many cases, additional elements such as r, Nb, Mo, Ag, Sn, Hf, Ta, and W are added. The added amount of these additional elements is 30 for Co.
Usually, the content is not more than 8% by weight in the case of other elements. Addition of more than this will adversely degrade the magnetic properties. The method for producing an R-Fe-B rare earth sintered magnet is as follows. First, a raw metal is weighed, melted and cast, and the obtained alloy is finely pulverized to an average particle size of 1 to 20 μm.
A magnetic powder is obtained. Then molded in a magnetic field, 1000-1200
It is manufactured by sintering at 0.5 to 5 hours at ℃ and further aging at 400 to 1000 ° C.
【0013】[0013]
【発明の実施の形態】本発明の作用は、外周切断刃の台
板を超硬合金のドーナツ状孔あき薄板円板とし、さらに
外周切れ刃部分にダイヤモンド粉末による砥粒層を設け
ることによって、薄い外周刃でも希土類磁石を精度良く
長期に亙って安定して切断加工でき、切断コストの削
減、材料歩留まりの向上に寄与することができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention is achieved by forming the base plate of the outer peripheral cutting blade into a donut-shaped perforated thin disk made of cemented carbide and further providing an abrasive layer of diamond powder on the outer peripheral cutting edge portion. Even with a thin outer peripheral blade, the rare-earth magnet can be cut stably with high precision over a long period of time, which can contribute to a reduction in cutting cost and an improvement in material yield.
【0014】[0014]
【実施例】以下、本発明の実施形態を実施例と比較例を
挙げて具体的に説明するが、本発明はこれらに限定され
るものではない。 (実施例1、比較例1)ヤング率58000kgf/mm2の超硬合
金(WC−90/Co −10重量%の組成)を 125mmφ×40
mmφ× 0.4mmのドーナツ状孔あき薄板円板に加工し、砥
石台板とした。次いで、砥石台板の外周部に結合剤にレ
ジンを使用するレジンボンド法によりダイヤモンド砥粒
を固着し、外周切断刃を作製した。すなわち、円板砥石
形状の金型に該超硬合金の台板をセットし、この外周部
分に熱硬化性フェノール樹脂をバインダーとし、平均粒
径 150μmの人工ダイヤモンドを体積率で25%(砥粒25
%、レジン75%)に混合した粉末を充填し、次いでプレ
スにより砥石形状に成形した後、金型にセットしたまま
180℃で2時間加熱硬化させ、冷却後ラップ盤にて刃厚
0.5mmに仕上げ加工し、希土類磁石用ダイヤモンド砥石
外周刃とした。EXAMPLES Hereinafter, embodiments of the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these. (Example 1, Comparative Example 1) A cemented carbide having a Young's modulus of 58000 kgf / mm 2 (composition of WC-90 / Co-10% by weight) is 125 mmφ × 40
The plate was machined into a doughnut-shaped perforated thin disk having a diameter of 0.4 mm and a diameter of 0.4 mm. Next, diamond abrasive grains were fixed to the outer peripheral portion of the grindstone base plate by a resin bond method using a resin as a binder to produce an outer peripheral cutting blade. That is, the base plate of the cemented carbide is set in a disk-shaped grindstone-shaped mold, and a thermosetting phenol resin is used as a binder on the outer periphery thereof, and artificial diamond having an average particle diameter of 150 μm is 25% by volume ratio (abrasive particles). twenty five
%, Resin 75%), then form into a whetstone shape by pressing, and leave it in the mold
Heat-cured at 180 ° C for 2 hours, cooled, and blade thickness on lapping machine
Finished to 0.5 mm to make a diamond grindstone peripheral edge for rare earth magnets.
【0015】また、比較例1として実施例1と同形状の
SKD (工具用合金JIS )製砥石台板を用いて、前記同様
にダイヤモンド砥粒の固着を行ない、刃厚 0.5mmのSKD
製ダイヤモンド砥石外周刃を製作した。As Comparative Example 1, the same shape as in Example 1 was used.
Using a grinding wheel base plate made of SKD (alloy for tool JIS), fix diamond abrasive grains in the same manner as above, and use a 0.5 mm blade thickness SKD.
A diamond grinding wheel was manufactured.
【0016】実施例1及び比較例1で作製した外周刃を
用いて、Nd-Fe-B系希土類焼結磁石を被切断物として
切断試験を行なった。図3(a)に切断枚数と寸法の変
化及び(b)に切断枚数と平行度で示した切断精度の関
係について表した。なお、切断試験は次のような条件で
行なった。実施例1の外周刃2枚及び比較例1の外周刃
2枚を 1.5mm間隔でマルチに組んで、回転数5000rpm 、
切断速度12mm/minで被切断物を切断した。被切断物であ
るNd-Fe-B系希土類焼結磁石の切断面積は幅40mm×高
さ20mmである。切断を始めてから50枚毎に各々2枚の外
周刃で切断された希土類磁石の中央部1点と隅部4点の
計5点の厚みをマイクロメーターで測定し、中央部の値
をその切断された希土類磁石の寸法とみなし、また5点
の最大値と最小値の差を平行度すなわち切断精度とし
た。なお、切断後の希土類磁石の目標寸法は厚み 1.4mm
である。図3から明らかなように、Nd-Fe-B系や希土
類焼結磁石の外周切断刃として超硬合金からなる台板を
用い外周部にダイヤモンド砥粒を固着させた希土類磁石
用ダイヤモンド砥石外周刃を使うことによって、刃厚が
薄くても精度良く、また長期に亙って安定して切断可能
であることが確認された。A cutting test was performed using the Nd-Fe-B-based rare earth sintered magnet as an object to be cut using the outer peripheral blades manufactured in Example 1 and Comparative Example 1. FIG. 3A shows the relationship between the number of cut pieces and the change in dimensions, and FIG. 3B shows the relationship between the number of cut pieces and the cutting accuracy indicated by the parallelism. The cutting test was performed under the following conditions. The two outer peripheral blades of Example 1 and the two outer peripheral blades of Comparative Example 1 were assembled into a multi at 1.5 mm intervals, and the rotation speed was 5000 rpm.
The object was cut at a cutting speed of 12 mm / min. The cut area of the Nd-Fe-B based rare earth sintered magnet to be cut is 40 mm wide × 20 mm high. The thickness of the center of the rare earth magnet and the four corners of the rare-earth magnet cut by two outer blades every 50 sheets from the start of cutting is measured with a micrometer, and the value at the center is cut. It is regarded as the size of the rare earth magnet obtained, and the difference between the maximum value and the minimum value of the five points is defined as the parallelism, that is, the cutting accuracy. The target dimensions of the rare earth magnet after cutting are 1.4 mm in thickness.
It is. As is apparent from FIG. 3, a diamond grindstone for a rare earth magnet, in which a diamond abrasive grain is fixed to the outer periphery using a base plate made of a cemented carbide as an outer cutting blade for an Nd—Fe—B or rare earth sintered magnet. It has been confirmed that the use of No. 1 enables accurate cutting even with a small blade thickness and stable cutting over a long period of time.
【0017】(実施例2、比較例2)ヤング率50000kgf
/mm2の超硬合金(WC−80/Co −20重量%の組成)を
80mmφ×40mmφ× 0.3mmのドーナツ状孔あき薄板円板に
加工し、砥石台板とした。次いで、砥石台板の外周部に
結合剤にメタルを使用するメタルボンド法によりダイヤ
モンド砥粒を固着し、外周切断刃を作製した。製作工程
は実施例1と同様であるが、バインダーとして、Cu −
70/Sn −30重量%の組成からなる粉末を用い、砥粒と
して平均粒径 100μmの人工ダイヤモンド及びcBNを
重量比1:1に混合した粉末を体積率で15%(砥粒15
%、メタルバインダー85%)になるように配合した。な
お、プレス後の加熱焼成は 700℃×2時間行ない、次い
で仕上げ加工を施し、刃厚 0.4mmの希土類磁石用ダイヤ
モンド砥石外周刃とした。(Example 2, Comparative Example 2) Young's modulus 50,000 kgf
/ mm 2 cemented carbide (WC-80 / Co-20% by weight)
It was processed into a donut-shaped perforated thin disk disk of 80 mmφ × 40 mmφ × 0.3 mm to obtain a grindstone base plate. Next, diamond abrasive grains were fixed to the outer peripheral portion of the grindstone base plate by a metal bond method using metal as a binder, thereby producing an outer peripheral cutting blade. The manufacturing process is the same as in Example 1, except that Cu −
Using a powder having a composition of 70 / Sn-30% by weight, a powder obtained by mixing artificial diamond having an average particle diameter of 100 μm and cBN in a weight ratio of 1: 1 as abrasive grains in a volume ratio of 15% (abrasive grains 15%) was used.
%, Metal binder 85%). The heating and sintering after pressing was performed at 700 ° C. for 2 hours, followed by finishing, thereby obtaining a diamond grinding stone outer peripheral blade for a rare earth magnet having a blade thickness of 0.4 mm.
【0018】また、比較例2として実施例2と同形状の
SKH (高速度鋼)製砥石台板を用いて、実施例2と同様
にダイヤモンド砥粒の固着を行ない、刃厚 0.4mmのSKH
製ダイヤモンド砥石外周刃を製作した。As Comparative Example 2, the same shape as in Example 2 was used.
Using a SKH (high-speed steel) grindstone base plate, the diamond abrasive grains were fixed in the same manner as in Example 2, and the SKH with a 0.4 mm blade thickness was used.
A diamond grinding wheel was manufactured.
【0019】実施例2及び比較例2で作製した外周刃を
用いて、Sm-Co 系希土類焼結磁石を被切断物として実
施例1と同様な切断試験を行なった。図4(a)に切断
枚数と寸法の変化及び(b)に切断枚数と平行度で示し
た切断精度の関係について表した。切断試験条件は、切
断刃2枚の間隔を 1.0mmでマルチに組み(切断後の希土
類磁石の目標寸法は 0.9mmt )、回転数5000rpm 、切断
速度8mm/minで被切断物を切断した。また被切断物であ
るSm-Co 系希土類焼結磁石の切断面積は幅50mm×高さ
10mmである。A cutting test similar to that of Example 1 was performed using the outer peripheral blades prepared in Example 2 and Comparative Example 2 and using an Sm-Co-based rare earth sintered magnet as an object to be cut. FIG. 4A shows the relationship between the number of cut pieces and the change in dimensions, and FIG. 4B shows the relationship between the number of cut pieces and the cutting accuracy indicated by the parallelism. The cutting test conditions were as follows: the cutting blades were cut into multiple pieces with a 1.0 mm gap between the two cutting blades (the target size of the rare earth magnet after cutting was 0.9 mmt), the number of revolutions was 5,000 rpm, and the cutting speed was 8 mm / min. The cut area of the Sm-Co based rare earth sintered magnet to be cut is 50 mm width x height
10 mm.
【0020】(実施例3、比較例3)ヤング率55000kgf
/mm2の超硬合金(WC−85/Co −15重量%の組成)を
150mmφ×40mmφ× 0.5mmのドーナツ状孔あき薄板円板
に加工し、砥石台板とした。次いで、砥石台板の外周部
に平均粒径50μmの天然ダイヤモンドをセットしNiワ
ット浴を使った電気めっき法によりダイヤモンド砥粒を
固着し、電着ボンドの刃厚 0.6mmの希土類磁石用ダイヤ
モンド砥石外周刃とした。なお、電気めっきの時間でめ
っき厚みを管理し、砥粒層部中のダイヤモンド砥粒の体
積率が40%(砥粒40%、Ni めっき60%)になるように
調整した。(Example 3, Comparative Example 3) Young's modulus 55,000 kgf
/ mm 2 of cemented carbide (WC-85 / Co -15% by weight of the composition)
It was processed into a donut-shaped perforated thin disk disk of 150 mmφ × 40 mmφ × 0.5 mm to obtain a grindstone base plate. Next, a natural diamond having an average particle diameter of 50 μm is set on the outer periphery of the grindstone base plate, and the diamond abrasive grains are fixed by an electroplating method using a Ni watt bath. The outer edge was used. The plating thickness was controlled by the time of electroplating, and the volume ratio of diamond abrasive grains in the abrasive grain layer was adjusted to be 40% (abrasive grains 40%, Ni plating 60%).
【0021】また、比較例3として実施例3と同形状の
SKH (高速度鋼)製砥石台板を用いて、実施例3と同様
にダイヤモンド砥粒の固着を行ない、刃厚 0.6mmのSKH
製ダイヤモンド砥石外周刃を製作した。As Comparative Example 3, the same shape as in Example 3 was used.
Using a SKH (high-speed steel) grindstone base plate, the diamond abrasive grains were fixed in the same manner as in Example 3, and the SKH with a blade thickness of 0.6 mm was used.
A diamond grinding wheel was manufactured.
【0022】実施例3及び比較例3で作製した外周刃を
用いて、Nd-Fe −B系希土類焼結磁石を被切断物とし
て実施例1と同様な切断試験を行なった。図5(a)に
切断枚数と寸法の変化及び(b)に切断枚数と切断精度
の関係について表した。切断試験条件は、切断刃2枚の
間隔を 1.8mmでマルチに組み(切断後の希土類磁石の目
標寸法は 1.7mm)、回転数5500rpm 、切断速度15mm/min
で被切断物を切断した。また被切断物であるNd-Fe-B
系希土類焼結磁石の切断面積は幅50mm×高さ30mmであ
る。A cutting test was performed in the same manner as in Example 1 except that the Nd-Fe-B-based rare earth sintered magnet was used as an object to be cut using the outer peripheral blades manufactured in Example 3 and Comparative Example 3. FIG. 5A shows the relationship between the number of cut pieces and the dimension, and FIG. 5B shows the relationship between the number of cut pieces and the cutting accuracy. The cutting test conditions were as follows: the cutting blades were assembled into a multi-piece with the spacing between the two cutting blades at 1.8 mm (the target size of the rare-earth magnet after cutting was 1.7 mm), the rotation speed was 5500 rpm, and the cutting speed was 15 mm / min
The cutting object was cut with. Nd-Fe-B which is the object to be cut
The cut area of the rare earth sintered magnet is 50 mm wide x 30 mm high.
【0023】[0023]
【発明の効果】本発明のダイヤモンド砥石外周刃を用い
て希土類磁石を切断すれば、刃厚が薄くても長期に亙り
切断精度を維持しながら切断可能であり、切断加工代を
極力小さくできるので材料歩留りを向上させることがで
き、産業上その利用価値は極めて高い。By cutting a rare earth magnet using the diamond wheel outer peripheral blade of the present invention, cutting can be performed for a long period of time while maintaining the cutting accuracy even with a small blade thickness, and the cutting margin can be minimized. The material yield can be improved, and its industrial value is extremely high.
【図1】内周刃の構造を示す図面である。(a)は上面
図、(b)はA−A線縦断面図、(c)は内周端部拡大
図である。FIG. 1 is a drawing showing a structure of an inner peripheral blade. (A) is a top view, (b) is a vertical sectional view taken along the line AA, and (c) is an enlarged view of an inner peripheral end portion.
【図2】外周刃の構造示す図面である。(a)は上面
図、(b)はB−B線縦断面図、(c)は外周端部拡大
図である。FIG. 2 is a drawing showing the structure of an outer peripheral blade. (A) is a top view, (b) is a vertical cross-sectional view taken along line BB, and (c) is an enlarged view of an outer peripheral end portion.
【図3】実施例1及び比較例1の、(a)切断枚数と切
断寸法との関係、(b)切断枚数と切断精度との関係を
表す図面である。FIG. 3 is a drawing showing (a) the relationship between the number of cuts and the cutting dimension and (b) the relationship between the number of cuts and the cutting accuracy in Example 1 and Comparative Example 1.
【図4】実施例2及び比較例2の、(a)切断枚数と切
断寸法との関係、(b)切断枚数と切断精度との関係を
表す図面である。FIG. 4 is a drawing showing (a) the relationship between the number of cuts and the cutting dimension and (b) the relationship between the number of cuts and the cutting accuracy in Example 2 and Comparative Example 2.
【図5】実施例3及び比較例3の、(a)切断枚数と切
断寸法との関係、(b)切断枚数と切断精度との関係を
表す図面である。FIG. 5 is a drawing showing (a) the relationship between the number of cuts and the cutting dimension and (b) the relationship between the number of cuts and the cutting accuracy in Example 3 and Comparative Example 3.
1 内周刃、 2 外周刃、 3 砥石台板、 4 砥粒層、 5 刃厚または切断加工代 1 inner peripheral blade, 2 outer peripheral blade, 3 wheel base plate, 4 abrasive layer, 5 blade thickness or cutting allowance
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B28D 1/24 B28D 1/24 (56)参考文献 特開 平1−164563(JP,A) 特開 昭62−292366(JP,A) 特開 平5−92420(JP,A) 特開 平6−238563(JP,A) 特開 平2−251113(JP,A) 特開 平2−252219(JP,A) 特公 昭52−15834(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B24D 5/12 B24D 3/00 310 B24D 3/00 320 B24D 3/00 350 B24D 5/00 B28D 1/24 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code FI B28D 1/24 B28D 1/24 (56) References JP-A-1-164563 (JP, A) JP-A-62-292366 (JP) JP-A-5-92420 (JP, A) JP-A-6-238563 (JP, A) JP-A-2-251113 (JP, A) JP-A-2-252219 (JP, A) 52-15834 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) B24D 5/12 B24D 3/00 310 B24D 3/00 320 B24D 3/00 350 B24D 5/00 B28D 1 / twenty four
Claims (6)
石外周刃において、該外周刃を構成する台板が超硬合金
のドーナツ状孔あき薄板円板から成り、かつ該台板外周
の切り刃部にダイヤモンド系砥粒粉末を体積率で10〜
80%含有させることを特徴とする希土類磁石切断用ダ
イヤモンド砥石外周刃。1. A diamond grinding wheel for cutting a rare earth magnet, wherein a base plate constituting the cutting edge is made of a cemented carbide.
Of a donut-shaped perforated thin disk , and a diamond-based abrasive powder in a volume ratio of 10 to 10
An outer peripheral edge of a diamond grindstone for cutting rare earth magnets, characterized by containing 80%.
00kgf/mm2 である請求項1に記載の希土類磁石
切断用ダイヤモンド砥石外周刃。2. The cemented carbide has a Young's modulus of 45,000 to 700.
2. The outer peripheral edge of the diamond grindstone for cutting rare earth magnets according to claim 1, wherein the outer diameter is 00 kgf / mm 2 .
工業用ダイヤモンドの粉末、cBN粉末およびこれらの
混合物から成り、その平均粒径が、10〜500μmで
ある請求項1または2に記載の希土類磁石切断用ダイヤ
モンド砥石外周刃。3. The rare earth magnet according to claim 1, wherein the diamond-based abrasive powder comprises natural or synthetic industrial diamond powder, cBN powder, or a mixture thereof, and has an average particle diameter of 10 to 500 μm. Outer edge of diamond wheel for cutting.
り、かつ厚み0.1〜1mmの薄板から成る請求項1〜
3の何れかに記載の希土類磁石切断用ダイヤモンド砥石
外周刃。4. The base plate of the outer peripheral blade is a thin plate having an outer diameter of 250 mm or less and a thickness of 0.1 to 1 mm.
3. The outer peripheral edge of the diamond grindstone for cutting a rare earth magnet according to any one of 3.
B系(ここにRはYを含む希土類元素の内少なくとも1
種)の希土類焼結磁石である請求項1〜4の何れかに記
載の希土類磁石切断用ダイヤモンド砥石外周刃。5. The rare earth magnet according to claim 1, wherein said rare earth magnet is R-Co based or R-Fe-
B type (where R is at least one of rare earth elements including Y
The rare-earth sintered magnet according to any one of claims 1 to 4, wherein the diamond grindstone is an outer peripheral blade for cutting a rare-earth magnet.
ンド砥石外周刃を用いる希土類磁石の切断方法。6. A diamond for cutting a rare earth magnet according to claim 1.
The method for cutting a rare earth magnet Ru using command grindstone peripheral cutting edge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7339616A JP2868180B2 (en) | 1995-12-26 | 1995-12-26 | Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7339616A JP2868180B2 (en) | 1995-12-26 | 1995-12-26 | Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09174441A JPH09174441A (en) | 1997-07-08 |
JP2868180B2 true JP2868180B2 (en) | 1999-03-10 |
Family
ID=18329185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7339616A Expired - Fee Related JP2868180B2 (en) | 1995-12-26 | 1995-12-26 | Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2868180B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6517427B1 (en) * | 1998-02-23 | 2003-02-11 | Shin-Etsu Chemical Co., Ltd. | Abrasive-bladed multiple cutting wheel assembly |
JP2000210872A (en) * | 1999-01-22 | 2000-08-02 | Mitsubishi Materials Corp | Electrodeposited thin blade grinding wheel |
US6595094B1 (en) | 1999-01-29 | 2003-07-22 | Sumitomo Special Metals Co., Ltd. | Working cutting apparatus and method for cutting work |
TW440494B (en) * | 1999-05-13 | 2001-06-16 | Sumitomo Spec Metals | Machining method of rare earth alloy and manufacture of rare earth magnet using it |
JP2001341121A (en) * | 2000-06-02 | 2001-12-11 | Somar Corp | Method for cutting high hardness sheet body and adhesive sheet used in the method |
JP2002137168A (en) * | 2000-10-31 | 2002-05-14 | Sumitomo Electric Ind Ltd | Super abrasive tool |
JP2003300135A (en) * | 2002-04-08 | 2003-10-21 | Disco Abrasive Syst Ltd | Method and device for mirror processing cut face |
JP2008238304A (en) * | 2007-03-26 | 2008-10-09 | Noritake Super Abrasive:Kk | Cutting electrodeposition blade |
MY151755A (en) | 2007-12-28 | 2014-06-30 | Shinetsu Chemical Co | Outer blade cutting wheel and making method |
MY161144A (en) | 2008-11-05 | 2017-04-14 | Shinetsu Chemical Co | Method and apparatus for multiple cutoff machining of rare earth magnet block, cutting feed nozzle, and magnet block securing jig |
JP5481837B2 (en) * | 2008-11-05 | 2014-04-23 | 信越化学工業株式会社 | Multi-cutting method of rare earth magnet |
JP5051399B2 (en) * | 2009-05-01 | 2012-10-17 | 信越化学工業株式会社 | Peripheral cutting blade manufacturing method and outer peripheral cutting blade manufacturing jig |
JP2012056012A (en) * | 2010-09-08 | 2012-03-22 | Disco Corp | Cutting grinding wheel |
MY163735A (en) * | 2010-11-29 | 2017-10-31 | Shinetsu Chemical Co | Cemented carbide base outer blade cutting wheel and making method |
US20130252521A1 (en) | 2010-11-29 | 2013-09-26 | Shin-Etsu Chemical Co., Ltd. | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof |
JP5630389B2 (en) | 2011-07-04 | 2014-11-26 | 信越化学工業株式会社 | Cemented carbide base plate outer peripheral cutting blade and manufacturing method thereof |
JP5853946B2 (en) | 2012-01-06 | 2016-02-09 | 信越化学工業株式会社 | Manufacturing method of outer peripheral cutting blade |
JP7087284B2 (en) | 2017-06-09 | 2022-06-21 | 信越化学工業株式会社 | Manufacturing method of outer peripheral cutting blade |
JP6844430B2 (en) | 2017-06-09 | 2021-03-17 | 信越化学工業株式会社 | Peripheral cutting blade and its manufacturing method |
-
1995
- 1995-12-26 JP JP7339616A patent/JP2868180B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09174441A (en) | 1997-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2868180B2 (en) | Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same | |
US6012977A (en) | Abrasive-bladed cutting wheel | |
US6517427B1 (en) | Abrasive-bladed multiple cutting wheel assembly | |
US10391602B2 (en) | Method for multiple cutoff machining of rare earth magnet | |
JP4157082B2 (en) | Method for manufacturing rigidly bonded thin whetstone | |
JP5900298B2 (en) | Resin grinding wheel cutting blade and multi-cutting method of rare earth magnet | |
JPH10175172A (en) | Multi diamond grinding wheel for cutting rare earth magnet | |
JP5228811B2 (en) | Magnet fixing jig and rare earth magnet cutting processing apparatus having the same | |
JPH10175171A (en) | Multi diamond grinding wheel for cutting rare earth magnet | |
JP3132981B2 (en) | Cutting whetstone | |
JP6665775B2 (en) | Jig for fixing rare earth sintered magnet | |
KR100542088B1 (en) | Abrasive-bladed multiple cutting wheel assembly | |
JP2002137168A (en) | Super abrasive tool | |
JP2001205568A (en) | Grinding wheel blade for cutting rare-earth magnet | |
TW522079B (en) | Abrasive-bladed multiple cutting wheel assembly | |
JP3308246B2 (en) | Diamond blade core metal for rare earth magnet cutting | |
JP2002160166A (en) | Super abrasive grain tool | |
JPH11333729A (en) | Outer and inner peripheral cutting edges of diamond wheel | |
JP2000094337A (en) | Super abrasive grain grinding wheel blade for cutting rare earth magnet and manufacture of it | |
JP2007253326A (en) | Method for multiple cutting of rare earth magnet using multiple diamond abrasive wheel | |
JP2001310264A (en) | Bed plate for diamond cutter | |
JP2001009730A (en) | Super-abrasive grain tool | |
JP3132980B2 (en) | Cutting whetstone | |
JP2003251566A (en) | Super abrasive grain cutting wheel with cermet as base plate | |
JPH0929645A (en) | Abrasive cutting wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071225 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |