JPH101739A - Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production - Google Patents

Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production

Info

Publication number
JPH101739A
JPH101739A JP14933496A JP14933496A JPH101739A JP H101739 A JPH101739 A JP H101739A JP 14933496 A JP14933496 A JP 14933496A JP 14933496 A JP14933496 A JP 14933496A JP H101739 A JPH101739 A JP H101739A
Authority
JP
Japan
Prior art keywords
temperature
steel
strength
weldability
alloy heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14933496A
Other languages
Japanese (ja)
Inventor
Yusuke Minami
雄介 南
Tamako Ariga
珠子 有賀
Yoshikazu Ishizawa
嘉一 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14933496A priority Critical patent/JPH101739A/en
Publication of JPH101739A publication Critical patent/JPH101739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low alloy heat resistant steel excellent in weldability while maintaining sufficient high temp. strength required of a steel for high temp. use. SOLUTION: The low alloy heat resistant steel, excellent in high temp. strength and weldability, has a composition consisting of, by weight ratio, 0.02-0.10% C, 0.05-0.40% Si, 0.1-1.0% Mn, 2.0-3.0% Cr, 0.1-1.0% Mo, 0.5-2.0% W, 0.2-0.5% V, 0.02-0.12% Ti, 0.0010-0.0050% B, and the balance Fe with inevitable impurities and satisfying Mo+W=0.6 to 2.5%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温クリープ破断
強度と溶接性に優れた高強度フェライト系低合金耐熱鋼
およびその製造方法に関する。
The present invention relates to a high-strength ferritic low-alloy heat-resistant steel excellent in high-temperature creep rupture strength and weldability and a method for producing the same.

【0002】[0002]

【従来の技術】高温用鋼としては、使用温度、応力、環
境に応じて、炭素鋼からオーステナイトステンレス鋼ま
で、種々の鋼が使用されている。その中でも使用条件と
して厳しい環境にボイラ用鋼がある。
2. Description of the Related Art Various steels, from carbon steel to austenitic stainless steel, are used as high-temperature steels according to operating temperature, stress and environment. Among them, boiler steel is used under severe conditions.

【0003】近年ボイラは、蒸気条件の高温・高圧化が
計画されており、従来材より高強度の材料が要求されて
いる。600℃以下の温度においては、現在2.25C
r−1Mo鋼が主に使用されている。同じ温度で蒸気圧
力を高圧にする場合、現用の2.25Cr−1Mo鋼の
肉厚を厚くして対処することは可能であるが、プラント
の重量が増加するため大幅な設計変更を余儀なくされ
る。
[0003] In recent years, boilers are being planned to have high temperature and high pressure steam conditions, and materials having higher strength than conventional materials are required. At temperatures below 600 ° C, 2.25C
r-1Mo steel is mainly used. If the steam pressure is increased at the same temperature, it is possible to cope with the problem by increasing the wall thickness of the current 2.25Cr-1Mo steel, but the weight of the plant increases, which necessitates a drastic design change. .

【0004】より高強度の材料として、例えばSTBA
28(9Cr−1Mo−Nb−V)が火力基準に規格化
されているが、高Cr材は高価になるため経済性に難点
がある。
As higher strength materials, for example, STBA
28 (9Cr-1Mo-Nb-V) is standardized to the thermal power standard, but high Cr materials are expensive and therefore have economical difficulties.

【0005】一方、高強度の低合金鋼として、Nbの添
加を特徴としたものが提案されている(特開平2−21
7438号、特開平2−217439号、特開平3−8
7333号、特開平4−268040号、特開平5−3
45949号など)。
On the other hand, as a high-strength low-alloy steel, one characterized by the addition of Nb has been proposed (JP-A-2-21).
No. 7438, JP-A-2-217439, JP-A-3-8
No. 7333, JP-A-4-268040, JP-A-5-3
No. 45949).

【0006】しかしながら、現用鋼や、上記低合金鋼で
は、強度が十分とはいえない。すなわち、現在の蒸気圧
力246kg/cm2 を350kg/cm2 まで高圧に
する場合、同じ肉厚で設計するためには、約1.5倍の
強度が必要となり、現用の2.25Cr−1Moの60
0℃の許容応力2.8kgf/mm2 の1.5倍である
4.2kgf/mm2 もの許容応力が必要となるが、上
記いずれの鋼においてもこのような強度を達成すること
ができず、より高強度の鋼が要望されている。また、ボ
イラ鋼は溶接して用いるため、このように高温で高強度
であるばかりでなく溶接性も要求される。
However, the working steel and the low alloy steels mentioned above have insufficient strength. That is, when increasing the current steam pressure from 246 kg / cm 2 to 350 kg / cm 2 , in order to design with the same wall thickness, the strength is required to be about 1.5 times, and the current 2.25Cr-1Mo is used. 60
0 ℃ the allowable stress 4.2kgf / mm 2 things allowable stress is 1.5 times of 2.8 kgf / mm 2 but is required, it is not possible to also achieve such strength in any of the above steel There is a demand for higher strength steel. Further, since the boiler steel is used by welding, not only high strength at such a high temperature but also weldability is required.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、高温用鋼として十分な高
温強度を保持しつつ、溶接性にも優れた低合金耐熱鋼お
よびその製造方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and a low-alloy heat-resistant steel having excellent weldability while maintaining sufficient high-temperature strength as a high-temperature steel and its production. It is an object to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明者らは、低合金鋼
のクリープ破断強度、靱性および溶接性におよぼす各種
添加元素の影響を検討した結果、以下の知見を得た。 (1)固溶強化元素としてのMo、Wはクリープ破断強
度を改善するが、重量比で2%以上添加してもその効果
は飽和し、靱性を低下させる。
The present inventors have studied the effects of various additional elements on the creep rupture strength, toughness and weldability of a low alloy steel, and have obtained the following findings. (1) Mo and W as solid solution strengthening elements improve the creep rupture strength, but the effect is saturated and the toughness is reduced even if added by 2% or more by weight.

【0009】(2)析出強化元素としてのNb、Ti、
Vは単独または複合添加した場合、適量範囲で鋼かがあ
るが、過剰添加は逆にクリープ破断強度を低下させる。 (3)1000℃以上の高温で十分炭化物析出元素を固
溶させた後、焼き戻すことで引張およびクリープ破断強
度が著しく向上する。
(2) Nb, Ti,
When V is added alone or in combination, there is steel in an appropriate amount range, but excessive addition decreases the creep rupture strength conversely. (3) Tensile and creep rupture strength is remarkably improved by sufficiently dissolving the carbide precipitation element at a high temperature of 1000 ° C. or higher and then tempering.

【0010】(4)C量を0.1%以下にし固溶強化お
よび析出強化元素の添加量を最適化することにより、ク
リープ破断強度を損なわず良好な溶接性を示す。本発明
はこのような知見に基づいて完成されたものであり、重
量比で、C:0.02〜0.10%、Si:0.05〜
0.40%、Mn:0.1〜1.0%、Cr:2.0〜
3.0%、Mo:0.1〜1.0%、W:0.5〜2.
0%、V:0.2〜0.5%、Ti:0.02〜0.1
2%、B:0.0010〜0.0050%を含み、残部
Feおよび不可避不純物からなリ、Mo+W:0.6〜
2.5%であることを特徴とする高温強度と溶接性に優
れた低合金耐熱鋼を提供するものである。
(4) By setting the amount of C to 0.1% or less and optimizing the amounts of elements for solid solution strengthening and precipitation strengthening, good weldability is exhibited without impairing creep rupture strength. The present invention has been completed based on such findings, and the weight ratio of C: 0.02 to 0.10% and Si: 0.05 to
0.40%, Mn: 0.1-1.0%, Cr: 2.0-
3.0%, Mo: 0.1-1.0%, W: 0.5-2.
0%, V: 0.2-0.5%, Ti: 0.02-0.1
2%, B: 0.0010 to 0.0050%, the balance consisting of Fe and inevitable impurities, Mo + W: 0.6 to
It is intended to provide a low-alloy heat-resistant steel excellent in high-temperature strength and weldability characterized by being 2.5%.

【0011】また、重量比で、C:0.02〜0.10
%、Si:0.05〜0.40%、Mn:0.1〜1.
0%、Cr:2.0〜3.0%、Mo:0.1〜1.0
%、W:0.5〜2.0%、V:0.2〜0.5%、T
i:0.02〜0.12%、B:0.0010〜0.0
050%を含み、残部Feおよび不可避不純物からな
リ、Mo+W:0.6〜2.5%である鋼を、1000
〜1100℃の範囲の温度で焼準し、700℃以上Ac
1 点以下の範囲の温度で焼き戻すことを特徴とする高温
強度と溶接性に優れた低合金耐熱鋼の製造方法を提供す
るものである。
Further, C: 0.02 to 0.10 by weight ratio.
%, Si: 0.05 to 0.40%, Mn: 0.1 to 1.%.
0%, Cr: 2.0 to 3.0%, Mo: 0.1 to 1.0
%, W: 0.5 to 2.0%, V: 0.2 to 0.5%, T
i: 0.02 to 0.12%, B: 0.0010 to 0.0
Steel containing 050%, the balance being Fe and unavoidable impurities, Mo + W: 0.6-2.5%,
Normalized at a temperature in the range of ~ 1100 ° C and 700 ° C or more
An object of the present invention is to provide a method for producing a low-alloy heat-resistant steel excellent in high-temperature strength and weldability, characterized by tempering at a temperature within one point or less.

【0012】さらに、重量比で、C:0.02〜0.1
0%、Si:0.05〜0.40%、Mn:0.1〜
1.0%、Cr:2.0〜3.0%、Mo:0.1〜
1.0%、W:0.5〜2.0%、V:0.2〜0.5
%、Ti:0.02〜0.12%、B:0.0010〜
0.0050%を含み、残部Feおよび不可避不純物か
らなリ、Mo+W:0.6〜2.5%である鋼を、10
00℃以上の温度で加熱し、1000〜800℃の範囲
の温度で30%以上の加工を加えた後、200℃以下の
温度まで冷却し、700℃以上Ac1 点以下の範囲の温
度で焼き戻すことを特徴とする高温強度と溶接性に優れ
た低合金耐熱鋼の製造方法を提供するものである。
Further, C: 0.02 to 0.1 in weight ratio.
0%, Si: 0.05 to 0.40%, Mn: 0.1 to
1.0%, Cr: 2.0 to 3.0%, Mo: 0.1 to
1.0%, W: 0.5 to 2.0%, V: 0.2 to 0.5
%, Ti: 0.02 to 0.12%, B: 0.0010
Steel containing 0.0050%, the balance being Fe and unavoidable impurities, Mo + W: 0.6-2.5%
After heating at a temperature of at least 00 ° C. and processing at least 30% at a temperature in the range of 1000 to 800 ° C., cooling to a temperature of at most 200 ° C. and baking at a temperature of at least 700 ° C. and at most one point of Ac. An object of the present invention is to provide a method for producing a low-alloy heat-resistant steel excellent in high-temperature strength and weldability characterized by returning.

【0013】[0013]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係る低合金耐熱鋼は、重量比で、C:
0.02〜0.10%、Si:0.05〜0.40%、
Mn:0.1〜1.0%、Cr:2.0〜3.0%、M
o:0.1〜1.0%、W:0.5〜2.0%、V:
0.2〜0.5%、Ti:0.02〜0.12%、B:
0.0010〜0.0050%であり、さらにMo+
W:0.6〜2.5%である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The low-alloy heat-resistant steel according to the present invention has a C:
0.02 to 0.10%, Si: 0.05 to 0.40%,
Mn: 0.1-1.0%, Cr: 2.0-3.0%, M
o: 0.1 to 1.0%, W: 0.5 to 2.0%, V:
0.2-0.5%, Ti: 0.02-0.12%, B:
0.0010 to 0.0050%, and Mo +
W: 0.6 to 2.5%.

【0014】以下、各成分の限定理由について説明す
る。 C:0.02〜0.10% Cは、Ti,VとMC型炭化物、CrとM236 炭化物
を形成し、またMo,Wとも炭化物を形成して、引張強
度、クリープ破断強度を向上させる元素である。しか
し、その含有量が0.02%以下では炭化物の析出量が
少なく十分な強度が得られない。また、0.10%を超
えると靭性が低下するとともに、溶接割れが生じる。し
たがって、C含有量を0.02〜0.10%の範囲とす
る。
The reasons for limiting each component will be described below. C: 0.02 to 0.10% C forms carbides of the MC type with Ti, V, and carbides of Cr and M 23 C 6 , and also forms carbides of Mo and W, thereby reducing the tensile strength and creep rupture strength. It is an element to improve. However, if the content is 0.02% or less, the amount of carbide precipitated is small and sufficient strength cannot be obtained. On the other hand, if it exceeds 0.10%, toughness is reduced and weld cracks occur. Therefore, the C content is in the range of 0.02 to 0.10%.

【0015】Si:0.05〜0.40% Siは、脱酸剤として添加されるが、その含有量が0.
05%以下では脱酸が十分でなく靭性を低下させる。ま
た、Siは耐酸化性の観点からは有効であるが、0.4
0%を超えると炭化物の凝集、粗大化を促進し、クリー
プ破断強度を低下させ、焼戻し後の靭性も低下させる。
したがって、Si含有量を0.05〜0.4%の範囲と
する。
Si: 0.05 to 0.40% Si is added as a deoxidizing agent, but its content is 0.1%.
If it is less than 05%, deoxidation will not be sufficient and the toughness will decrease. Further, Si is effective from the viewpoint of oxidation resistance,
If it exceeds 0%, it promotes agglomeration and coarsening of carbides, lowers creep rupture strength and lowers toughness after tempering.
Therefore, the Si content is in the range of 0.05 to 0.4%.

【0016】Mn:0.1〜1.0% Mnは脱酸、脱硫剤として添加されるが、0.1%未満
ではその効果が十分ではなく、1.0%を超えるとSi
と同様靭性を低下させる。したがって、Mn含有量を
0.1〜1.0%の範囲とする。
Mn: 0.1-1.0% Mn is added as a deoxidizing and desulfurizing agent, but if its content is less than 0.1%, its effect is not sufficient.
Reduces toughness as well. Therefore, the Mn content is set in the range of 0.1 to 1.0%.

【0017】Cr:2.0〜3.0% Crは耐酸化性に有効であり、M236 を形成し、高温
強度を向上させる元素であるが、2.0%未満では耐酸
化性が十分でなく、3.0%を超えるとMC炭化物の生
成量を減少させ、クリープ破断強度を低下させる。した
がって、Cr量を2.0〜3.0%の範囲とする。
Cr: 2.0-3.0% Cr is effective for oxidation resistance, forms M 23 C 6 and improves the high-temperature strength. Is not sufficient, and if it exceeds 3.0%, the amount of MC carbide formed is reduced, and the creep rupture strength is lowered. Therefore, the amount of Cr is set in the range of 2.0 to 3.0%.

【0018】Mo:0.1〜1.0%、W:0.5〜
2.0%、Mo+W:0.6〜2.5% Mo、Wは、固溶強化元素、炭化物形成元素として高温
強度に有効であるが、高価な元素であるため過剰な添加
は経済性を損なう。また、凝固時に偏析しやすい元素で
あり、材質の不均一さを生じ靭性等を低下させる。その
ため、これらの含有量をMo:0.1〜1.0%、W:
0.5〜2.0%の範囲とし、かつその合計含有量を
0.6〜2.5%とする。
Mo: 0.1-1.0%, W: 0.5-
2.0%, Mo + W: 0.6-2.5% Mo, W is effective for high-temperature strength as a solid-solution strengthening element and a carbide-forming element, but excessive addition increases economic efficiency because it is an expensive element. Spoil. Further, it is an element that is easily segregated at the time of solidification, and causes non-uniformity of the material to lower toughness and the like. Therefore, these contents are set to Mo: 0.1 to 1.0%, W:
The range is 0.5 to 2.0%, and the total content is 0.6 to 2.5%.

【0019】V:0.2〜0.5% Vは、VCを形成して、高温強度、特に高温側のクリー
プ破断強度の向上に有効な元素である。しかし、その含
有量が0.2%未満ではVCとしての析出量が少ないた
め十分なクリープ破断強度が得られない。一方、0.5
%を超えると1000℃以上の高温加熱を実施しても未
固溶の粗大なVCが残存し、クリープ破断強度低下の原
因となり、また靭性も低下させる。したがって、V含有
量を0.2〜0.5%の範囲とする。
V: 0.2 to 0.5% V is an element which forms VC and is effective for improving high-temperature strength, particularly creep rupture strength on the high-temperature side. However, if the content is less than 0.2%, the amount of precipitation as VC is small, so that sufficient creep rupture strength cannot be obtained. On the other hand, 0.5
%, Even if high-temperature heating of 1000 ° C. or more is carried out, undissolved coarse VC remains, causing a decrease in creep rupture strength and a decrease in toughness. Therefore, the V content is set in the range of 0.2 to 0.5%.

【0020】Ti:0.02〜0.12% TiはVと同様、MC炭化物形成元素であり、TiCと
して析出し、クリープ破断強度を向上させる。しかし、
0.02%未満ではその効果が発揮されず、0.12%
を超えると高温加熱時にVの場合と同様に未固溶のTi
Cが残存し、クリープ破断強度を低下させる。したがっ
て、Ti含有量を0.02〜0.12%の範囲とする。
Ti: 0.02 to 0.12% Ti, like V, is an MC carbide forming element and precipitates as TiC to improve creep rupture strength. But,
If less than 0.02%, the effect is not exhibited, and 0.12%
If the temperature is higher than that of V, undissolved Ti
C remains and reduces the creep rupture strength. Therefore, the Ti content is in the range of 0.02 to 0.12%.

【0021】B:0.0010〜0.0050% Bはクリープ破断強度の改善に有効な元素であるが、
0.0010%未満ではその効果が認められず、0.0
050%を超えると熱間加工性を低下させ、キズ等の発
生原因になる。したがって、B含有量を0.0010〜
0.0050%の範囲とする。
B: 0.0010 to 0.0050% B is an element effective for improving the creep rupture strength.
If less than 0.0010%, the effect is not recognized, and 0.0
If it exceeds 050%, the hot workability will be reduced, which may cause scratches and the like. Therefore, the B content is 0.0010
The range is 0.0050%.

【0022】次に、製造方法について説明する。まず本
発明の第2の態様に係る製造方法では、上記鋼を、10
00〜1100℃の範囲の温度で焼準し、700℃以上
Ac1 点以下の範囲の温度で焼き戻す。
Next, the manufacturing method will be described. First, in the manufacturing method according to the second aspect of the present invention, the steel
Normalization is performed at a temperature in the range of 00 to 1100 ° C., and tempering is performed at a temperature in the range of 700 ° C. or more and one Ac or less.

【0023】焼準は、組織の均一化と炭化物生成元素の
固溶のために行うが、その温度が1000℃未満である
と炭化物生成元素が十分固溶せず、1100℃を超える
と結晶粒が粗大化するため、1000〜1100℃の範
囲の温度で行う。
The normalization is performed for the purpose of homogenizing the structure and dissolving the carbide forming element. If the temperature is lower than 1000 ° C., the carbide forming element does not sufficiently form a solid solution. Is carried out at a temperature in the range of 1000 to 1100 ° C.

【0024】焼戻しは、組織の軟化と強度調整のために
行うが、その温度が700℃未満であると十分軟化せず
高強度で靭性が不十分となり、Ac1 点を超えると焼戻
し後の冷却で硬化相が生成し靭性が低下する。したがっ
て、したがって、700℃以上Ac1 点以下の範囲の温
度で焼き戻しを行う。
The tempering is carried out for softening and intensity adjustment of the tissue, the temperature toughness is insufficient in strength not sufficiently softened is less than 700 ° C., cooling after tempering exceeds Ac 1 point , A hardened phase is formed and toughness is reduced. Therefore, tempering is performed at a temperature in the range of 700 ° C. or more and the Ac 1 point or less.

【0025】本発明の第3の態様に係る方法では、上記
鋼を、1000℃以上の温度で加熱し、1000〜80
0℃の範囲の温度で30%以上の加工を加えた後、20
0℃以下の温度まで冷却し、700℃以上Ac1 点以下
の範囲の温度で焼き戻す。
In the method according to the third aspect of the present invention, the steel is heated at a temperature of 1000 ° C. or more,
After processing at least 30% at a temperature in the range of 0 ° C.,
It is cooled to a temperature of 0 ° C. or less and tempered at a temperature in a range of 700 ° C. or more and one Ac or less.

【0026】加熱温度を1000℃以上としたのは、組
織の均一化と炭化物生成元素の固溶のためである。ま
た、1000〜800℃の範囲の温度で30%以上の加
工を加えるのは、加工による動的再結晶を生じさせ、組
織および結晶粒の均一化を生じさせるためである。
The reason why the heating temperature is set to 1000 ° C. or higher is to homogenize the structure and dissolve the carbide forming element. The reason why the processing of 30% or more is performed at a temperature in the range of 1000 to 800 ° C. is to cause dynamic recrystallization by the processing and to make the structure and the crystal grains uniform.

【0027】200℃以下の温度まで冷却するのは、ベ
イナイト変態を完了させるためであり、その後焼戻しを
行うことにより、組織の軟化、強度調整を行う。焼戻し
の温度範囲は700℃以上Ac1 点以下であるが、その
理由は上記第2の態様に係る製造方法の場合と同様であ
る。
The purpose of cooling to a temperature of 200 ° C. or less is to complete the bainite transformation. Thereafter, tempering is performed to soften the structure and adjust the strength. The tempering temperature range is 700 ° C. or more and Ac 1 point or less, for the same reason as in the case of the manufacturing method according to the second embodiment.

【0028】[0028]

【実施例】以下本発明の実施例について説明する。表1
に示す化学組成の鋼を、真空溶解し、10kgの鋼塊と
した後、1000〜1200℃に加熱し、熱間圧延で1
2mm厚の板にした。熱間での加工率は85%であっ
た。
Embodiments of the present invention will be described below. Table 1
A steel having the chemical composition shown in Table 1 was melted in vacuum to form a 10 kg steel ingot, and then heated to 1000 to 1200 ° C.
It was a 2 mm thick plate. The hot working ratio was 85%.

【0029】表1中、1〜6は本発明鋼であり、7〜1
3は比較鋼である。比較鋼の7は規格化されたもので現
用のSTBA24(2.25Cr−1Mo鋼)である。
比較鋼の8は本発明の範囲の組成にNbを添加した鋼、
比較鋼の9、10はMo,Wを過剰に添加した鋼、比較
鋼の11はCを過剰に添加した鋼、比較鋼の12はVを
過剰に添加した鋼、比較鋼の13はTiを過剰に添加し
た鋼である。
In Table 1, 1 to 6 are steels of the present invention, and 7 to 1
3 is a comparative steel. Comparative steel No. 7 is a standardized and currently used STBA24 (2.25Cr-1Mo steel).
Comparative steel No. 8 is a steel obtained by adding Nb to the composition in the range of the present invention;
Comparative steels 9 and 10 are steels to which Mo and W are excessively added, 11 of comparative steels are steels to which C is excessively added, 12 of comparative steels are steels to which V is excessively added, and 13 of comparative steels are Ti. Excessive addition of steel.

【0030】熱処理は、比較鋼の7は通常の930℃の
オーステナイト化後徐冷し690℃で保持する恒温焼鈍
をし、それ以外の鋼は、1030℃×1時間加熱し、空
冷の後、760℃×1時間の焼戻し処理を施した。
In the heat treatment, the comparative steel 7 was austenitized to a normal temperature of 930 ° C., gradually cooled, and then subjected to isothermal annealing at 690 ° C., and the other steels were heated at 1030 ° C. × 1 hour, and air-cooled. Tempering treatment was performed at 760 ° C. × 1 hour.

【0031】[0031]

【表1】 [Table 1]

【0032】各鋼の熱処理材から、試験片を採取し、常
温の引張試験、クリープ破断試験およびシャルピー衝撃
試験を実施した。クリープ破断試験は、600℃および
650℃で実施し、600℃、10000時間の破断強
度を求めた。また、溶接性は、斜めy字拘束溶接割れ試
験(JIS Z3158)を行い、割れを防止できる予
熱温度をもって評価した。これらの結果を表2に示す。
Test pieces were taken from the heat-treated material of each steel, and subjected to a normal temperature tensile test, a creep rupture test and a Charpy impact test. The creep rupture test was performed at 600 ° C. and 650 ° C., and the breaking strength at 600 ° C. for 10,000 hours was determined. In addition, the weldability was evaluated by performing a diagonal y-shaped restraint welding crack test (JIS Z3158) and a preheating temperature capable of preventing cracking. Table 2 shows the results.

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示すように、現用2.25Cr−1
Mo鋼である比較鋼の7は、クリープ破断強度が低かっ
た。また、比較鋼の9、10はクリープ破断強度は高い
が、衝撃特性がいずれも30J以下となった。Nbを添
加した比較鋼の8は10J程度の著しく低い吸収エネル
ギーしか示さなかった。比較鋼の11は、C量が高いた
め、y割れ防止予熱温度は200℃以上となった。さら
に比較鋼の12、13は衝撃特性は比較的良好である
が、クリープ破断強度の低下が著しかった。これに対
し、本発明鋼はいずれも良好な衝撃特性および高いクリ
ープ破断強度を有しており、溶接性も良好であった。
As shown in Table 2, the current 2.25Cr-1
Comparative steel 7, which is a Mo steel, had a low creep rupture strength. The creep rupture strengths of Comparative Steels 9 and 10 were high, but the impact characteristics were all 30 J or less. The comparative steel 8 to which Nb was added showed a remarkably low absorbed energy of about 10 J. Since the comparative steel 11 had a high C content, the preheating temperature for preventing the y-crack was 200 ° C. or more. Furthermore, the comparative steels 12 and 13 had relatively good impact properties, but had a marked decrease in creep rupture strength. In contrast, all of the steels of the present invention had good impact properties, high creep rupture strength, and good weldability.

【0035】次に、表1の符号2の鋼を用いて、熱処理
条件(焼準温度)を変化させた。その結果を表3に示
す。ここでの素材の加熱、圧延条件は、1150℃加熱
で85%加工し、960℃の圧延仕上がり温度とした。
Next, the heat treatment conditions (normalization temperature) were changed using the steel indicated by reference numeral 2 in Table 1. Table 3 shows the results. The heating and rolling conditions of the material here were 85% processing by heating at 1150 ° C., and the rolling finish temperature was 960 ° C.

【0036】[0036]

【表3】 [Table 3]

【0037】この表に示すように、焼準温度が高い場
合、クリープ破断強度は向上するが、条件Dのように1
100℃を超えた温度で焼準した場合、結晶粒が粗大化
したため衝撃特性が低下した。また、焼準温度が100
0℃未満の場合、条件E、Fのようにクリープ破断強度
が明らかに低下した。図1に焼準温度と600℃、10
000時間クリープ破断強度の関係を示す。この図から
も1000℃以上の焼準温度でクリープ破断強度が向上
することが確認される。なお、y割れ防止予熱温度は、
いずれも100℃以下と良好であった。次に、表1の符
号2の鋼を用いて、加熱温度、圧延仕上がり温度、加工
率を変化させた。その結果を表4に示す。
As shown in the table, when the normalizing temperature is high, the creep rupture strength is improved.
When normalization was performed at a temperature exceeding 100 ° C., the crystal grains became coarse and the impact characteristics were reduced. When the normalizing temperature is 100
When the temperature is lower than 0 ° C., the creep rupture strength clearly decreases as in the conditions E and F. FIG. 1 shows the normalizing temperature and 600 ° C., 10 ° C.
9 shows the relationship between the creep rupture strength for 000 hours. This figure also confirms that the creep rupture strength is improved at a normal temperature of 1000 ° C. or higher. The preheating temperature for preventing y cracking is
In each case, it was as good as 100 ° C. or less. Next, the heating temperature, the finished rolling temperature, and the working ratio were changed using steel No. 2 in Table 1. Table 4 shows the results.

【0038】[0038]

【表4】 [Table 4]

【0039】この表に示すように、加熱温度が低い条件
Kはクリープ破断強度が9.6kg/mm2 と低かっ
た。また、加熱温度を1000℃以上にしても圧延時の
加工量が少ない条件Jはクリープ破断強度は高いが衝撃
特性が低下した。なお、y割れ防止予熱温度は、いずれ
も100℃以下と良好であった。
As shown in this table, the creep rupture strength was as low as 9.6 kg / mm 2 under the condition K where the heating temperature was low. Further, even when the heating temperature was set to 1000 ° C. or higher, the creep rupture strength was high but the impact characteristics were reduced under the condition J in which the amount of processing during rolling was small. The preheating temperature for preventing the occurrence of y cracks was 100 ° C. or less in all cases.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
高温用鋼として十分な高温強度を保持しつつ、溶接性に
も優れた低合金耐熱鋼およびその製造方法が提供され
る。このため、本発明は蒸気条件を高温高圧にした火力
発電設備に実現を可能にするものである。
As described above, according to the present invention,
A low-alloy heat-resistant steel excellent in weldability while maintaining sufficient high-temperature strength as a high-temperature steel and a method for producing the same are provided. For this reason, the present invention makes it possible to realize a thermal power plant in which steam conditions are set to high temperature and high pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼準温度とクリープ破断強度との関係を示す
図。
FIG. 1 is a diagram showing the relationship between normalizing temperature and creep rupture strength.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:0.02〜0.10%、
Si:0.05〜0.40%、Mn:0.1〜1.0
%、Cr:2.0〜3.0%、Mo:0.1〜1.0
%、W:0.5〜2.0%、V:0.2〜0.5%、T
i:0.02〜0.12%、B:0.0010〜0.0
050%を含み、残部Feおよび不可避不純物からな
リ、Mo+W:0.6〜2.5%であることを特徴とす
る高温強度と溶接性に優れた低合金耐熱鋼。
1. C: 0.02 to 0.10% by weight,
Si: 0.05 to 0.40%, Mn: 0.1 to 1.0
%, Cr: 2.0 to 3.0%, Mo: 0.1 to 1.0
%, W: 0.5 to 2.0%, V: 0.2 to 0.5%, T
i: 0.02 to 0.12%, B: 0.0010 to 0.0
A low-alloy heat-resistant steel excellent in high-temperature strength and weldability, characterized by containing 050%, the balance being Fe and inevitable impurities, and Mo + W: 0.6 to 2.5%.
【請求項2】 重量比で、C:0.02〜0.10%、
Si:0.05〜0.40%、Mn:0.1〜1.0
%、Cr:2.0〜3.0%、Mo:0.1〜1.0
%、W:0.5〜2.0%、V:0.2〜0.5%、T
i:0.02〜0.12%、B:0.0010〜0.0
050%を含み、残部Feおよび不可避不純物からな
リ、Mo+W:0.6〜2.5%である鋼を、1000
〜1100℃の範囲の温度で焼準し、700℃以上Ac
1 点以下の範囲の温度で焼き戻すことを特徴とする高温
強度と溶接性に優れた低合金耐熱鋼の製造方法。
2. C: 0.02 to 0.10% by weight,
Si: 0.05 to 0.40%, Mn: 0.1 to 1.0
%, Cr: 2.0 to 3.0%, Mo: 0.1 to 1.0
%, W: 0.5 to 2.0%, V: 0.2 to 0.5%, T
i: 0.02 to 0.12%, B: 0.0010 to 0.0
Steel containing 050%, the balance being Fe and unavoidable impurities, Mo + W: 0.6-2.5%,
Normalized at a temperature in the range of ~ 1100 ° C and 700 ° C or more
A method for producing a low-alloy heat-resistant steel having excellent high-temperature strength and weldability, characterized by tempering at a temperature within one point or less.
【請求項3】 重量比で、C:0.02〜0.10%、
Si:0.05〜0.40%、Mn:0.1〜1.0
%、Cr:2.0〜3.0%、Mo:0.1〜1.0
%、W:0.5〜2.0%、V:0.2〜0.5%、T
i:0.02〜0.12%、B:0.0010〜0.0
050%を含み、残部Feおよび不可避不純物からな
リ、Mo+W:0.6〜2.5%である鋼を、1000
℃以上の温度で加熱し、1000〜800℃の範囲の温
度で30%以上の加工を加えた後、200℃以下の温度
まで冷却し、700℃以上Ac1 点以下の範囲の温度で
焼き戻すことを特徴とする高温強度と溶接性に優れた低
合金耐熱鋼の製造方法。
3. C: 0.02 to 0.10% by weight,
Si: 0.05 to 0.40%, Mn: 0.1 to 1.0
%, Cr: 2.0 to 3.0%, Mo: 0.1 to 1.0
%, W: 0.5 to 2.0%, V: 0.2 to 0.5%, T
i: 0.02 to 0.12%, B: 0.0010 to 0.0
Steel containing 050%, the balance being Fe and unavoidable impurities, Mo + W: 0.6-2.5%,
After heating at a temperature of at least 100 ° C. and applying a processing of at least 30% at a temperature within the range of 1000 to 800 ° C., cooling to a temperature of at most 200 ° C. and tempering at a temperature of at least 700 ° C. and at most one point of Ac. A method for producing a low-alloy heat-resistant steel excellent in high-temperature strength and weldability, characterized in that:
JP14933496A 1996-06-11 1996-06-11 Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production Pending JPH101739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14933496A JPH101739A (en) 1996-06-11 1996-06-11 Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14933496A JPH101739A (en) 1996-06-11 1996-06-11 Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production

Publications (1)

Publication Number Publication Date
JPH101739A true JPH101739A (en) 1998-01-06

Family

ID=15472843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14933496A Pending JPH101739A (en) 1996-06-11 1996-06-11 Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production

Country Status (1)

Country Link
JP (1) JPH101739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060389A (en) * 1999-12-20 2001-07-07 이구택 Method for manufacturing pressure vessel plates with excellent weldability
EP3889302A4 (en) * 2018-11-29 2022-06-01 Posco Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060389A (en) * 1999-12-20 2001-07-07 이구택 Method for manufacturing pressure vessel plates with excellent weldability
EP3889302A4 (en) * 2018-11-29 2022-06-01 Posco Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH10509769A (en) High strength duplex stainless steel with excellent toughness and weldability
JP6886519B2 (en) Sour-resistant thick plate steel with excellent low-temperature toughness and post-heat treatment characteristics and its manufacturing method
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
JP5028785B2 (en) High toughness high tensile steel sheet and method for producing the same
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JP4311226B2 (en) Manufacturing method of high-tensile steel sheet
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JP2004218081A (en) Method for producing high-tension steel plate
JPH101739A (en) Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production
JP2004269964A (en) Method for producing high strength steel sheet
JPH05222450A (en) Production of high tensile steel plate
JPH059570A (en) Production of high weldability and high strength steel
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH083636A (en) Production of low yield ratio high toughness steel
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPH0971845A (en) High chrome ferritic heat resistant steel
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JPH10152722A (en) Manufacture of thick steel plate
JPH0734126A (en) Production of low-alloy seamless steel pipe for finely grained structure
JP2001026838A (en) Heat resistant low alloy steel having high corrosion resistance and excellent in high temperature strength and weldability, and its manufacture