JPH10172912A - Quantum structure forming method - Google Patents

Quantum structure forming method

Info

Publication number
JPH10172912A
JPH10172912A JP32742296A JP32742296A JPH10172912A JP H10172912 A JPH10172912 A JP H10172912A JP 32742296 A JP32742296 A JP 32742296A JP 32742296 A JP32742296 A JP 32742296A JP H10172912 A JPH10172912 A JP H10172912A
Authority
JP
Japan
Prior art keywords
mask
fine
opening
quantum structure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32742296A
Other languages
Japanese (ja)
Inventor
Kiyoteru Yoshida
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32742296A priority Critical patent/JPH10172912A/en
Publication of JPH10172912A publication Critical patent/JPH10172912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a fine quantum structure with good productivity on a board, by emitting a reactive gas locally onto a mask provided on the board and forming a fine opening in the mask, and then feeding a material gas to this fine opening. SOLUTION: A semiconductor substrate 8 of GaAs, etc., provided with a mask 10 of SiO2 etc., is put on a susceptor 3. AsBr3 is led into a heating molecular beam cell 1 as a reactive gas, and a nozzle is heated to a hot temperature, and AsBr3 is heated and decomposed into a gas such as As2 , Br2 , Br radical, etc. A reactive gas decomposed in this way is emitted onto a mask 10 through openings 2a, 4a, and a mask 10 is etched and an opening is formed in the mask 10. Following this, TMG of group III material and AsH3 of group V material are led into the heating molecular beam cell 1 in turn, heated and decomposed and emitted on a board. A Ga layer and an As layer is crystal-grown on a mask opening, and a GaAs layer is laminated selectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、量子細線、量子箱
などの微細な量子構造の形成方法に関する。
The present invention relates to a method for forming a fine quantum structure such as a quantum wire or a quantum box.

【0002】[0002]

【従来の技術】量子細線や量子井戸箱などのナノレベル
の微細な量子構造を利用した素子開発が注目されてい
る。。従来、微細な量子構造の形成方法としては、例え
ば、3−5族化合物半導体基板上にSiO2 の微細な開
口部を有するマスクを形成し、原子交互供給エピタキシ
ャル成長法により前記微細な開口部のみに選択的に3−
5族化合物半導体を成長させ、量子構造を形成する。こ
こで、原子交互供給エピタキシャル成長法はMBE法を
基にした成長方法で、例えば3族と5族原料をシャッタ
ー操作により交互にパルス状に基板上に供給し、3−5
族化合物半導体を成長させるものである。この成長方法
では、成長温度を比較的低くしても、完全性の高い結晶
を得ることができるという特徴がある。例えばGaAs
の場合には、原料としてトリメチルガリウム、アルシン
などを用い、これらのガスをパルス状に交互に供給し、
基板温度を450〜550℃の比較的低温にして、Ga
とAsの原子を交互に基板上に一層づつ積層させること
ができる。
2. Description of the Related Art Attention has been focused on the development of devices utilizing nano-level fine quantum structures such as quantum wires and quantum well boxes. . Conventionally, as a method for forming a fine quantum structure, for example, a mask having a fine opening of SiO 2 is formed on a Group 3-5 compound semiconductor substrate, and only a mask having the fine opening is formed by an alternate supply atomic growth method. Selectively 3-
A group V compound semiconductor is grown to form a quantum structure. Here, the atom alternate supply epitaxial growth method is a growth method based on the MBE method. For example, materials of group 3 and group 5 are alternately supplied to the substrate in a pulsed manner by a shutter operation.
A group compound semiconductor is grown. This growth method is characterized in that a crystal with high integrity can be obtained even when the growth temperature is relatively low. For example, GaAs
In the case of using trimethylgallium, arsine, etc. as raw materials, these gases are alternately supplied in a pulsed manner,
By setting the substrate temperature to a relatively low temperature of 450 to 550 ° C.,
And As atoms can be alternately stacked on the substrate one by one.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
微細な量子構造の形成方法には次のような問題があっ
た。即ち、 1)マスクに微細な開口部のパターンを化学エッチング
などにより形成していたが、エッチングによるパターン
の微細化には限界があった。 2)マスクのパターン形成と結晶成長のプロセスを別個
の装置で行うため、生産性の向上に限界があった。
However, the above-described method for forming a fine quantum structure has the following problems. 1) Although a fine opening pattern is formed on a mask by chemical etching or the like, there is a limit to miniaturization of the pattern by etching. 2) Since the process of forming the mask pattern and the process of growing the crystal are performed by separate apparatuses, there is a limit in improving the productivity.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決すべくなされたもので、基板上に設けたマスクに反応
性ガスを局所的に照射して前記マスクに微細開口部を形
成し、次いで、前記微細開口部に原料ガスを供給し、前
記基板上に微細な量子構造を形成することを特徴とする
量子構造の形成方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a reactive gas is locally applied to a mask provided on a substrate to form a fine opening in the mask. Then, a raw material gas is supplied to the fine opening to form a fine quantum structure on the substrate.

【0005】本発明は鋭意検討した結果として得られた
ものである。即ち、反応性ガスを基板上のマスクに照射
すると、マスクをエッチングすることができるので、こ
の反応ガスを十分に微細な開口部を通すなどして絞り、
局所的にマスクに照射することにより、マスクに所望の
サイズの微細開口部を形成することができる。反応性ガ
スとしては、SiO2 、GaNなどからなるマスクに対
して、例えばAsBr3 、PBr3 、AsCl3 、PC
3 などのガスを高温で熱分解した、腐食性の強いガス
を用いることができる。また、上述のように形成された
マスクの微細開口部に原料ガスを供給すると、前記基板
上に微細な量子構造を気相成長させることができる。気
相成長方法としては、前述の原子交互供給エピタキシャ
ル成長法、MBE法などを用いることができる。さら
に、同一超高真空装置内に反応ガス供給源と原料ガス供
給源を設けると、マスクに微細開口部を形成する工程
と、前記微細開口部に量子構造を形成する工程を同一装
置内で連続して行うことができるので、生産性が向上す
る。
The present invention has been obtained as a result of intensive studies. That is, when the reactive gas is irradiated on the mask on the substrate, the mask can be etched, so that the reactive gas is squeezed by passing through a sufficiently fine opening or the like,
By irradiating the mask locally, a fine opening having a desired size can be formed in the mask. As the reactive gas, for example, a mask made of SiO 2 , GaN, or the like may be used, for example, AsBr 3 , PBr 3 , AsCl 3 , PC
a gas such as l 3 were pyrolyzed at a high temperature, it is possible to use a highly corrosive gas. Further, when a raw material gas is supplied to the fine opening of the mask formed as described above, a fine quantum structure can be vapor-phase grown on the substrate. As the vapor phase growth method, the above-described alternate supply epitaxial growth method or MBE method can be used. Further, when a reaction gas supply source and a source gas supply source are provided in the same ultra-high vacuum apparatus, a step of forming a fine opening in a mask and a step of forming a quantum structure in the fine opening are continuously performed in the same apparatus. Productivity can be improved.

【0006】[0006]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を詳細に説明する。図1は、本発明にかかる量
子構造の形成方法の一実施形態に用いた装置の部分説明
図である。この装置は、超高真空装置内に加熱分子線セ
ル1、スキマー2、基板8を載置するサセプタ3を設け
たものである。この装置では、微細構造を形成するため
の反応性ガスと、量子構造を形成するための原料ガスの
供給を同一の加熱分子線セル1を用いて行う。この加熱
分子線セル1は、先端に500Å径の開口部4aを有す
る石英ガラス製の細いノズル4と、その外周を覆う熱遮
蔽管5から構成されている。このノズル4の中には供給
されるガスへの熱伝達をよくするための多孔質の棒状セ
ラミックス体6が挿入されており、また、ノズル4の外
側にはノズル4を加熱するためのタングステンのヒータ
ー7が巻かれている。また、スキマー(極細かい穴の開
いた治具)2は500Å径の開口部2aを有し、ノズル
4と基板8の間に、基板8に100Å以下に接近して、
かつ、基板表面の汚染を防止するために基板8に接しな
いように設置されている。スキマー2の開口部2aとノ
ズル4の開口部4aの位置合わせは、ノズル4内を供給
ガスの導入方向に(図1において、左方向に)レーザ光
線を照射して、開口部2a、4aを通過する光強度が最
大になるようにして行う。さらに、サセプタ3は基板8
を加熱するためのヒーター9を内蔵している。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a partial explanatory view of an apparatus used in one embodiment of a method for forming a quantum structure according to the present invention. In this apparatus, a susceptor 3 on which a heated molecular beam cell 1, a skimmer 2, and a substrate 8 are placed is provided in an ultra-high vacuum apparatus. In this apparatus, a reactive gas for forming a fine structure and a source gas for forming a quantum structure are supplied using the same heated molecular beam cell 1. The heated molecular beam cell 1 is composed of a thin nozzle 4 made of quartz glass having an opening 4a having a diameter of 500 mm at the tip and a heat shield tube 5 covering the outer periphery thereof. A porous rod-shaped ceramic body 6 for improving heat transfer to the supplied gas is inserted into the nozzle 4, and tungsten outside the nozzle 4 for heating the nozzle 4 is inserted outside the nozzle 4. The heater 7 is wound. Also, the skimmer (a jig with a very fine hole) 2 has an opening 2a having a diameter of 500 mm, and is located between the nozzle 4 and the substrate 8 at a distance of 100 mm or less from the substrate 8.
In addition, in order to prevent contamination of the substrate surface, it is installed so as not to contact the substrate 8. The alignment between the opening 2a of the skimmer 2 and the opening 4a of the nozzle 4 is performed by irradiating the inside of the nozzle 4 with a laser beam in the supply gas introducing direction (to the left in FIG. 1). This is performed so that the intensity of the passing light is maximized. Further, the susceptor 3 is mounted on the substrate 8
Has a built-in heater 9 for heating.

【0007】この装置を用いて、量子構造は例えば以下
の手順で作製される。即ち、図2に示すように、 1)SiO2 あるいはGaNからなるマスク10をつけ
たGaAsなどの半導体基板8をサセプタ3上に設置す
る(図2(a))。 2)AsBr3 を反応性ガスとして加熱分子線セル1の
中に導入し、ノズル4を800℃以上の温度に加熱し、
AsBr3 をAs2 、Br2 、Brラジカルなどのガス
に加熱分解する。こうして分解した反応性ガスを開口部
2a、4aを通してマスク10に照射し、マスク10を
エッチングして、マスク10に約500Å径の開口部1
0aを形成する(図2(b))。このエッチングの際の
基板温度は200〜400℃とする。マスク10が完全
にエッチングされたところで、反応性ガスを止める。 3)次いで、以下の条件で原子交互供給エピタキシャル
成長法により、GaAsの結晶成長を行う。即ち、ノズ
ル温度を900℃にし、3族原料のトリメチルガリウム
(TMG)と5族原料のAsH3 を交互に加熱分子線セ
ル1に導入し、加熱分解して、450〜550℃の基板
に照射し、マスクの開口部10aにGa層とAs層を一
層づつ原子オーダーで結晶成長をし、選択的にGaAs
層を積層する。次いで、TMGの代わりにトリメチルア
ルミニウム(TMA)を導入し、Al層とAs層を一層
づつ原子オーダーで結晶成長をし、選択的にAlAs層
を積層する。このような原料供給を繰り返すことによ
り、GaAs層とAlAs層を交互に積層した微細な量
子構造11を基板8上に成長させる(図2(c))。
Using this device, a quantum structure is produced, for example, by the following procedure. That is, as shown in FIG. 2, 1) A semiconductor substrate 8 such as GaAs with a mask 10 made of SiO 2 or GaN is placed on the susceptor 3 (FIG. 2A). 2) AsBr 3 is introduced as a reactive gas into the heated molecular beam cell 1 and the nozzle 4 is heated to a temperature of 800 ° C. or higher,
AsBr 3 is thermally decomposed into gases such as As 2 , Br 2 , and Br radicals. The mask 10 is irradiated with the reactive gas decomposed in this manner through the openings 2a and 4a, and the mask 10 is etched.
0a is formed (FIG. 2B). The substrate temperature during this etching is 200 to 400 ° C. When the mask 10 is completely etched, the reactive gas is stopped. 3) Next, a GaAs crystal is grown by the alternately supplying epitaxial growth method under the following conditions. That is, the nozzle temperature is set to 900 ° C., and trimethyl gallium (TMG) as a Group 3 raw material and AsH 3 as a Group 5 raw material are alternately introduced into the heated molecular beam cell 1 and thermally decomposed to irradiate a substrate at 450 to 550 ° C. Then, a Ga layer and an As layer are crystal-grown one by one in the opening 10a of the mask in the atomic order, and GaAs is selectively formed.
Stack the layers. Next, trimethylaluminum (TMA) is introduced instead of TMG, an Al layer and an As layer are crystal-grown one by one in the atomic order, and an AlAs layer is selectively laminated. By repeating such material supply, a fine quantum structure 11 in which GaAs layers and AlAs layers are alternately stacked is grown on the substrate 8 (FIG. 2C).

【0008】なお、上記の実施形態は、本発明を具体化
した一例であって、本願発明の技術的範囲を限定するも
のではない。例えば、反応性ガスのみを微細開口部を有
する加熱分子線セルで供給して、マスクに微細開口部を
形成し、量子構造をMBE法で成長させてもよい。ま
た、反応性ガスとしては、As系の量子構造を成長させ
る際には、AsBr 3 の代わりにAsCl3 を用いるこ
とができ、P系の量子構造を成長させる際には、PBr
3 、PCl3 を用いることができる。また、原料ガスと
しては、Alにはジメチルアルミニウムハライドを用い
てもよい。また、InP/GaP系量子構造の原料ガス
としてはトリメチルインジウム(TMI)とTMGを用
いることができる。さらに、3族原料ガスと反応性ガス
の組み合わせを代えることにより、AlGaAs、In
GaP、GaAsPなどの量子構造を形成することがで
きる。
The above embodiments embody the present invention.
It is an example that limits the technical scope of the present invention.
Not. For example, only reactive gas has fine openings.
To supply microscopic openings to the mask
It may be formed and the quantum structure may be grown by MBE. Ma
As a reactive gas, an As-based quantum structure was grown.
AsBr ThreeInstead of AsClThreeUsing
When growing a P-based quantum structure, PBr
Three, PClThreeCan be used. In addition, raw material gas
Therefore, dimethyl aluminum halide is used for Al
You may. Also, a source gas of an InP / GaP quantum structure
Use trimethyl indium (TMI) and TMG
Can be. In addition, group 3 source gas and reactive gas
By changing the combination of AlGaAs, InGaAs
A quantum structure such as GaP or GaAsP can be formed.
Wear.

【0009】[0009]

【発明の効果】本発明によれば、微細な量子構造を生産
性よく形成することができるという優れた効果がある。
According to the present invention, there is an excellent effect that a fine quantum structure can be formed with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る量子構造の形成方法の一実施形態
に用いた装置の部分説明図である。
FIG. 1 is a partial explanatory view of an apparatus used in an embodiment of a method for forming a quantum structure according to the present invention.

【図2】(a)〜(c)は、上記装置を用いた量子構造
の形成方法の説明図である。
FIGS. 2A to 2C are explanatory diagrams of a method for forming a quantum structure using the above-described device.

【符号の説明】[Explanation of symbols]

1 加熱分子線セル 2 スキマー 2a、4a、10a 開口部 3 サセプタ 4 ノズル 5 熱遮蔽管 6 セラミックス体 7、9 ヒーター 8 基板 10 マスク 11 量子構造 DESCRIPTION OF SYMBOLS 1 Heated molecular beam cell 2 Skimmer 2a, 4a, 10a Opening 3 Susceptor 4 Nozzle 5 Heat shielding tube 6 Ceramics body 7, 9 Heater 8 Substrate 10 Mask 11 Quantum structure

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けたマスクに反応性ガスを局
所的に照射して前記マスクに微細開口部を形成し、次い
で、前記微細開口部に原料ガスを供給し、前記基板上に
微細な量子構造を形成することを特徴とする量子構造の
形成方法。
1. A mask provided on a substrate is locally irradiated with a reactive gas to form a fine opening in the mask, and then a raw material gas is supplied to the fine opening to form a fine gas on the substrate. A method for forming a quantum structure, comprising forming a simple quantum structure.
JP32742296A 1996-12-09 1996-12-09 Quantum structure forming method Pending JPH10172912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32742296A JPH10172912A (en) 1996-12-09 1996-12-09 Quantum structure forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32742296A JPH10172912A (en) 1996-12-09 1996-12-09 Quantum structure forming method

Publications (1)

Publication Number Publication Date
JPH10172912A true JPH10172912A (en) 1998-06-26

Family

ID=18198994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32742296A Pending JPH10172912A (en) 1996-12-09 1996-12-09 Quantum structure forming method

Country Status (1)

Country Link
JP (1) JPH10172912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015145A1 (en) * 2001-08-07 2003-02-20 The New Industry Research Organization Micromachining method using ionbeam
WO2006065474A2 (en) * 2004-12-13 2006-06-22 3M Innovative Properties Company Method for patterning by surface modification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015145A1 (en) * 2001-08-07 2003-02-20 The New Industry Research Organization Micromachining method using ionbeam
JP2003051488A (en) * 2001-08-07 2003-02-21 New Industry Research Organization Ion beam micromachining method
WO2006065474A2 (en) * 2004-12-13 2006-06-22 3M Innovative Properties Company Method for patterning by surface modification
WO2006065474A3 (en) * 2004-12-13 2006-10-05 3M Innovative Properties Co Method for patterning by surface modification

Similar Documents

Publication Publication Date Title
US4911102A (en) Process of vapor growth of gallium nitride and its apparatus
US11031212B2 (en) Semiconductor manufacturing apparatus
JP3726252B2 (en) Ultraviolet light emitting device and method for producing InAlGaN light emitting layer
JPH10172912A (en) Quantum structure forming method
JP4856666B2 (en) Light emitting diode element and method for manufacturing the same
KR101708867B1 (en) Method of deposition of chemical compound semiconductor and device
JPH05190465A (en) Photo-excited vapor growth device
JP3671532B2 (en) Manufacturing method of semiconductor light emitting device
JP2631285B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
JP3757698B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing system
JP5490597B2 (en) Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth
JPH09213998A (en) Method and apparatus for growth of nitride semiconductor single crystal thin film
JP2631286B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
JPH05186295A (en) Method for growing crystal
JPH0431391A (en) Epitaxial growth
JP6710795B2 (en) Method of manufacturing semiconductor device
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JP2001237192A (en) Substrate for formation, nitride iii-v compound layer, manufacturing method of nitride iii-v compound substrate and semiconductor element
JPH0267721A (en) Manufacture of compound semiconductor thin film
JP2001302398A (en) Method and device for growing epitaxial layer of nitride of group iii on single crystal substrate
JP3668802B2 (en) Thin film formation method by atomic layer growth
JPH0744154B2 (en) Light irradiation type low temperature MOCVD method and apparatus
JP2952831B2 (en) Method for manufacturing semiconductor device
JPS63186418A (en) Manufacture of compound semiconductor crystal layer
KR20000020020A (en) Method and apparatus for fabricating short wavelength photoelectric conversion devices