JPH10168822A - Structural elastic supporting body and its manufacture - Google Patents
Structural elastic supporting body and its manufactureInfo
- Publication number
- JPH10168822A JPH10168822A JP8346456A JP34645696A JPH10168822A JP H10168822 A JPH10168822 A JP H10168822A JP 8346456 A JP8346456 A JP 8346456A JP 34645696 A JP34645696 A JP 34645696A JP H10168822 A JPH10168822 A JP H10168822A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- plug
- lead plug
- rubber
- damping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229920001971 elastomer Polymers 0.000 claims abstract description 77
- 238000013016 damping Methods 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000003014 reinforcing effect Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 13
- 238000013461 design Methods 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 8
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract description 4
- 230000002787 reinforcement Effects 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 244000043261 Hevea brasiliensis Species 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920003052 natural elastomer Polymers 0.000 description 3
- 229920001194 natural rubber Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Vibration Prevention Devices (AREA)
- Laminated Bodies (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、橋梁桁その他の構
造物を弾性的に移動可能に支承する目的で用いる構造物
用弾性支承体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elastic bearing for a structure used for elastically movably supporting a bridge girder or other structures.
【0002】[0002]
【従来の技術】鋼板等の硬質板とゴム等の粘弾性的性質
を有する軟質板とを積層した弾性支承体が、防振性,吸
振性等が要求される支承部材として広く使用されてい
る。2. Description of the Related Art An elastic bearing in which a hard plate such as a steel plate and a soft plate having a viscoelastic property such as rubber are laminated has been widely used as a bearing member which is required to have a vibration-proof property and a vibration-absorbing property. .
【0003】このような弾性支承体の一般的な構造とし
ては、図5に示されるように軟質の天然ゴム又は高減衰
ゴムのゴム層1と肉薄の複数の補強板2とを積層一体化
し、かつこのゴム層1と補強板2とを貫通して1本又は
複数本の鉛プラグ3を設けて弾性支承本体4が構成さ
れ、この弾性支承本体4の上下に上部取付け部材5と下
部取付け部材6とが一体的に取付けられている。上下の
各取付け部材5,6に形成されたプラグ挿入孔7に鉛プ
ラグ3の上下端部が挿入され、かつ、プラグ挿入孔7は
固着ボルト8を用いて上下の各取付け部材5,6に固着
した蓋板10で閉じられている。上部取付け部材5には
橋梁等の上記部構造物が、下部取付け部材6には橋脚等
の下部構造物が取付けられる。As a general structure of such an elastic bearing body, as shown in FIG. 5, a rubber layer 1 of soft natural rubber or high damping rubber and a plurality of thin reinforcing plates 2 are laminated and integrated. Further, one or a plurality of lead plugs 3 are provided through the rubber layer 1 and the reinforcing plate 2 to form an elastic support main body 4, and an upper mounting member 5 and a lower mounting member are provided above and below the elastic support main body 4. 6 are integrally mounted. The upper and lower ends of the lead plug 3 are inserted into plug insertion holes 7 formed in the upper and lower mounting members 5, 6, and the plug insertion holes 7 are connected to the upper and lower mounting members 5, 6 using fixing bolts 8. It is closed by the fixed lid plate 10. The upper structural member such as a bridge is mounted on the upper mounting member 5, and the lower structural member such as a pier is mounted on the lower mounting member 6.
【0004】また、前記鉛プラグ入り弾性支承体は、図
7,図8の工程を経て製作される。すなわち、図7に示
されるように、ベース11に載置された支持台12上か
らプラグ挿入孔形成用のガイド突起12が起立してお
り、このガイド突起12に下側から順にそれぞれプラグ
貫通孔14を有する下部取付け部材6と、ゴム層1と、
補強板2とが積層され、さらに最上部にはプラグ挿入孔
7を有する上部取付け部材5が積層される。上部取付け
部材5の上面には調整板15が載置され、これらの外側
には外周分割型16が配置され、調整板15の上に押圧
板17が載置されてモールド用型が組立てられ、押圧板
17をプレスすることで積層ゴム層1に熱と圧力を掛
け、積層ゴムの最終形状が作られる。The lead plug-containing elastic bearing body is manufactured through the steps shown in FIGS. That is, as shown in FIG. 7, a guide projection 12 for forming a plug insertion hole is erected from above a support base 12 placed on a base 11, and the plug projection hole 12 is formed on the guide projection 12 in order from the bottom. A lower mounting member 6 having a rubber layer 1;
The upper mounting member 5 having the plug insertion hole 7 is further laminated on the uppermost portion. An adjusting plate 15 is placed on the upper surface of the upper mounting member 5, an outer peripheral split mold 16 is arranged outside these, and a pressing plate 17 is placed on the adjusting plate 15 to assemble a mold. By pressing the pressing plate 17, heat and pressure are applied to the laminated rubber layer 1, and the final shape of the laminated rubber is made.
【0005】その後、前記のモールド型を分解し、弾性
支承本体をモールド型から脱型し、図8に示すように中
心のプラグ貫通孔14に鉛プラグ3を圧入し、その後、
上下の取付け板5,6に蓋板10を取付けて鉛プラグ入
り弾性支承体を完成させる。After that, the above-mentioned mold is disassembled, the elastic supporting body is released from the mold, and the lead plug 3 is pressed into the central plug through hole 14 as shown in FIG.
The lid plate 10 is mounted on the upper and lower mounting plates 5 and 6 to complete the elastic support body containing the lead plug.
【0006】鉛プラグ入り弾性支承体には次の特性があ
る。すなわち、図9,図10には、鉛プラグ入り弾性支
承体の振動試験における1stサイクルと2ndサイクルの
履歴曲線を示す。この試験は、一定の鉛直荷重及び加振
速度で、図6に示すタイプの弾性支承体である試供体を
強制的に引戻した履歴ループである。特に1stサイクル
と2ndサイクルの差異に注目すると分かるように、鉛プ
ラグを圧入した弾性支承体は、その動的特性(履歴特
性)により所定の減衰性能を有することは、周知のとお
りである。The lead plug-containing elastic bearing has the following characteristics. That is, FIGS. 9 and 10 show hysteresis curves of the 1st cycle and the 2nd cycle in the vibration test of the elastic support body containing the lead plug. This test is a hysteresis loop in which a specimen, which is an elastic bearing of the type shown in FIG. 6, is forcibly pulled back at a constant vertical load and vibration rate. As can be seen particularly from the difference between the first cycle and the second cycle, it is well known that the elastic bearing body into which the lead plug is press-fitted has a predetermined damping performance due to its dynamic characteristics (history characteristics).
【0007】ところで、鉛プラグ入り積層ゴム支承(L
・R・B)は、そのゴム材はNR材JIS K6 38
6のA06〜A13構造性能特性は鉛プラグの再結晶性
を活用した、減衰沓である。また、鉛プラグと減衰性能
の関係は、ゴム支承平面内に占める鉛の面積が大(例え
ば4%〜12%で、中心は6%前後)では減衰性能が
大。また、ゴム支承平面に占める鉛の面積が小(4%以
下)では減衰性能が小の関係がある。また、一般的に橋
梁に使用されるL・R・B内の鉛プラグの本数は4本が
主流であり、建築に使用されるL・R・B内の鉛プラグ
の本数は1本が多い。By the way, a laminated rubber bearing containing lead plugs (L
・ R ・ B) is the rubber material is NR material JIS K6 38
The A06 to A13 structural performance characteristics of No. 6 are damping shoes utilizing recrystallization of lead plugs. The relationship between the lead plug and the damping performance is large when the area of lead occupying the rubber bearing plane is large (for example, 4% to 12%, and the center is around 6%). When the area of lead occupying the rubber bearing plane is small (4% or less), there is a relationship that the damping performance is small. In general, the number of lead plugs in L, R, and B used for bridges is generally four, and the number of lead plugs in L, R, and B used for construction is generally one. .
【0008】また、鉛プラグの量と耐久性の関係は、鉛
プラグの面積と本数が多い程、塑性域のせん断繰り返し
により熱エネルギーの変換により支承内部の温度は蓄熱
により昇温し、耐久性は悪くなる関係がある。つまり、
鉛プラグのゴム部への食い込み、補強鋼板の曲がり,反
り,及びゴムとの接着剥離と鉛プラグ自身の損傷等があ
り、例えば、せん断変形率γ±100%〜150%〜2
00%のN=50回〜100回の連続繰り返しにより、
鉛プラグ自身の部位による損傷は避けられない。すなわ
ち図示説明すると、図11〜図17には、ゴム層1と肉
薄の複数の補強板2とが積層一体化され、かつこのゴム
層1と補強板2とを貫通して図示の配置で複数本の鉛プ
ラグ3が貫通して設けられ、かつ上下部取付け部材5,
6が取着されて弾性支承が構成された例が示されてい
る。この弾性支承体に水平矢印の加振方向に振動が加わ
ったとき、弾性支承体の上部は図13,図14に示す右
移動と、図15,図16に示す左移動とを繰り返した
後、最初の図11,図12の状態で静止する。なお、こ
の場合、γ=±100%〜150%〜200%、N=5
0回〜100回である。The relationship between the amount of lead plugs and the durability is such that as the area and the number of lead plugs increase, the temperature inside the bearing increases due to heat storage due to thermal energy conversion due to repetitive shearing of the plastic region. Has a bad relationship. That is,
The lead plug bites into the rubber portion, the reinforcing steel plate bends and warps, and the adhesive peels off from the rubber and the lead plug itself is damaged. For example, the shear deformation rate γ ± 100% to 150% to 2
By continuous repetition of 00% N = 50 to 100 times,
Damage from the lead plug itself is inevitable. More specifically, in FIG. 11 to FIG. 17, a rubber layer 1 and a plurality of thin reinforcing plates 2 are laminated and integrated, and a plurality of Lead plugs 3 are provided therethrough, and the upper and lower mounting members 5,
6 shows an example in which an elastic bearing is configured by being attached. When vibration is applied to the elastic bearing in the vibration direction of the horizontal arrow, the upper portion of the elastic bearing repeats rightward movement shown in FIGS. 13 and 14 and leftward movement shown in FIGS. It comes to rest in the initial state of FIGS. In this case, γ = ± 100% to 150% to 200%, N = 5
0 to 100 times.
【0009】鉛プラグ入り弾性支承体に前記水平振動が
加わったときにおけるせん断の繰り返しは、鉛プラグと
補強鋼板及びゴム部境界では絶えず力の伝達がなされ
る。このため、図17(c)に示されるように加振方向
に対し鉛プラグ貫通孔14で分断されない補強板部位
(図13のロ部分)はダメージがないのに対し、図17
(A),(B)に示すように鉛プラグ貫通孔14により
分断された部位(図13のイ部分)、つまり補強板端部
18には、反り、貫通孔周辺部のゴム切れ、一部剥離等
が生じ、また、前記個所の一部はゴム支承の支圧機構に
より、平均応力の約2倍の応力発生個所に近く、長期的
耐久劣化の点でも問題となる。When the horizontal vibration is applied to the lead plug-containing elastic bearing body, the shearing is repeated, so that the force is constantly transmitted at the boundary between the lead plug, the reinforcing steel plate and the rubber portion. For this reason, as shown in FIG. 17 (c), the reinforcing plate portion (part B in FIG. 13) which is not divided by the lead plug through hole 14 in the vibration direction has no damage, whereas FIG.
As shown in (A) and (B), a portion (a portion in FIG. 13) divided by the lead plug through hole 14, that is, a reinforcing plate end portion 18, has a warp, a rubber cut around the through hole, and a part thereof. Peeling or the like occurs, and a part of the location is close to a location where a stress of about twice the average stress is generated due to a bearing mechanism of a rubber bearing, which causes a problem in terms of long-term durability deterioration.
【0010】すなわち、前記鉛プラグ入りの免震ゴム支
承(L・R・B)は、その性能特性の上下限の性能値
は、鉛プラグのゴム支承内に占める量、つまり、鉛プラ
グの直径と本数であり、それによりバイリニア特性と複
元力と、エネルギー吸収能力等の設計対応となり、その
特性値(特に減衰機能と等価鋼性)は、鉛の再結晶の性
質による塑性域の変形の繰り返しによる耐久性となる
が、必然的に繰り返し回数による熱エネルギーの変換に
より、弾性支承体内部の昇温による蓄熱は不可避であ
り、その性能特性とは二律背反である。[0010] That is, the seismic isolation rubber bearing (L, R, B) containing the lead plug has the upper and lower limit performance values of the amount of the lead plug in the rubber bearing, that is, the diameter of the lead plug. The number corresponds to the design, such as bilinear characteristics, compound force, and energy absorption capability. The characteristic values (particularly, damping function and equivalent steel properties) depend on the deformation of the plastic region due to the recrystallization property of lead. Although durability is obtained by repetition, heat energy conversion by inevitably raising the temperature inside the elastic bearing body is inevitable due to conversion of thermal energy by the number of repetitions, and its performance characteristics are inconsistent with its performance characteristics.
【0011】また、鉛プラグを複数本(一般的に4個)
使用するものとして設計製作された免震沓は、図11で
示す平面構造から容易に想像されるように、変形の繰り
返しによる耐久面での位置的な損傷が発生し易い。Also, a plurality of lead plugs (generally four)
A seismic isolation shoe designed and manufactured for use is liable to suffer positional damage on a durable surface due to repeated deformation, as easily imagined from the planar structure shown in FIG.
【0012】前記の損傷傾向に鑑みて、少しでも耐久性
を高めるためには、元来鉛プラグの本数は、中央に1本
が望ましい(但し、本数との兼ね合いでは、鉛の径と高
さでは、1.25≦Hp/D≦5という制約もある。H
p は、高さ(ゴムの総厚)Dは、鉛の直径)。L・R・
Bの性能特性は、その減衰特性からは、鉛プラグの総量
が支配的となり、橋梁用としては、鉛プラグの本数も4
本が主流とならざるを得ない。In view of the above-mentioned damage tendency, it is originally desirable that the number of lead plugs be one at the center in order to slightly increase the durability (however, in consideration of the number of leads, the lead diameter and height are not preferable). Then, there is also a constraint that 1.25 ≦ Hp / D ≦ 5.
p is height (total thickness of rubber) D is diameter of lead). LR
As for the performance characteristics of B, the total amount of lead plugs is dominant from the damping characteristics, and the number of lead plugs is 4 for bridge use.
Books must be mainstream.
【0013】[0013]
【発明が解決しようとする課題】従来の鉛プラグ入り弾
性支承体は、前述のとおり種々の問題点があったことに
鑑み、本発明では、鉛の性能特性を最小限度活用する構
造とし、鉛プラグは従来の1/2〜1/3の使用量と
し、鉛プラグの量も原則として中央部分一個所として、
周辺部の補強板の繰り返しによる耐力の低下を防ぐ構造
とするもので、前記の欠点を改良した構造物用弾性支承
体を提供することを目的とする。In view of the various problems as described above, the conventional elastic bearing with a lead plug has a structure in which the performance characteristics of lead are minimized, The amount of plug used is 1/2 to 1/3 of the conventional amount.
An object of the present invention is to provide an elastic bearing for a structure, which has a structure for preventing a reduction in proof stress due to repetition of a reinforcing plate in a peripheral portion, and in which the above-mentioned disadvantages are improved.
【0014】[0014]
【課題を解決するための手段】本発明は、ゴム層と補強
板とが積層一体化されて、かつ、この弾性体と補強板と
を軸方向に貫通して鉛プラグが設けられて弾性支承本体
が構成され、前記弾性支承本体の上下に各々上下取付け
部材が一体的に取付けられている構造物用弾性支承体に
おいて、前記ゴム層を通常の高減衰ゴムの非線形性より
も線形性寄りとなるように材料配合(分子設計)した高
減衰ゴム材で構成し、それによる若干の減衰性能低下分
を補う鉛プラグを弾性支承本体の中央に1個を原則と
し、嵌入した構成を特徴とする。また、本発明の構造物
用弾性支承体の製造方法は、支持台上に載置した下部取
付け部材の上面に鉛プラグを立設し、この鉛プラグにそ
れぞれプラグ挿入孔を有しており、通常の高減衰ゴムの
非線形性よりも線形性寄りとなるように材料配合(分子
設計)した高減衰ゴム材と補強板を交互に積層して僅少
の隙間を介して前記鉛プラグに加圧嵌入し、前記積層体
の上部から突出した鉛プラグの上部を上部取付け部材の
下面に当接して、積層体上面と上部取付け部材の下面と
の間に隙間Lを形成し、モールド型内において前記上部
取付け部材を介して鉛プラグを軸方向に与圧しながら前
記線形性寄り高減衰ゴム材を加熱,加圧して加硫するこ
とを特徴とする。According to the present invention, a rubber layer and a reinforcing plate are laminated and integrated, and a lead plug is provided through the elastic body and the reinforcing plate in the axial direction. In a structural elastic support body in which a main body is configured and upper and lower mounting members are integrally mounted on upper and lower sides of the elastic support main body, respectively, the rubber layer is more linear than normal non-linearity of high damping rubber. It is composed of a high-damping rubber material blended with a material (molecular design), and a lead plug, which compensates for a slight decrease in damping performance due to it, is inserted into the center of the elastic support body in principle. . Further, in the method for manufacturing an elastic bearing for a structure according to the present invention, a lead plug is erected on an upper surface of a lower mounting member placed on a support base, and each of the lead plugs has a plug insertion hole, A high-damping rubber material blended with a material (molecular design) and a reinforcing plate are alternately laminated so as to be closer to the linearity than the nonlinearity of a normal high-damping rubber, and press-fit into the lead plug through a small gap. Then, the upper part of the lead plug protruding from the upper part of the laminate is brought into contact with the lower surface of the upper mounting member to form a gap L between the upper surface of the laminate and the lower surface of the upper mounting member. The method is characterized in that the linear plugged high damping rubber material is heated and pressurized and vulcanized while pressurizing the lead plug in the axial direction via the mounting member.
【0015】本発明によると鉛プラグ入り弾性支承体に
おいて、従来の通常の高減衰ゴムの非線形性とそれによ
る欠点が、線形性寄りの高減衰ゴム材により改良され、
かつこのように構成したことによる減衰性能低下分を補
うものとして鉛プラグが使用されているので、本来性能
と耐久性の二律背反の関係にある高減衰ゴムと鉛プラグ
の特性が調和して生かされており、減衰性や耐久性に優
れた鉛プラグ入り弾性支承体の最も理想的な免震機能を
発揮する。According to the present invention, in a lead plug-containing elastic bearing, the non-linearity of the conventional ordinary high-damping rubber and its disadvantages are improved by the high-damping rubber material closer to linearity.
In addition, since lead plugs are used to compensate for the decrease in damping performance due to this configuration, the characteristics of high-damping rubber and lead plugs, which are essentially trade-offs between performance and durability, are harmonized and utilized. It provides the most ideal seismic isolation function of a lead-plugged elastic bearing with excellent damping and durability.
【0016】また、本発明の構造物用弾性支承体の製造
方法によれば、ゴム支承加硫後、従来のような後工程で
鉛プラグ圧入することなく、製作工程内での与圧と密着
を図ることができる。また、当支承体は鉛プラグ入り支
承とゴム材料(分子設計)とう複合沓として機能し、収
縮ひずみにより鉛プラグの蓋を必要としない(一般に
は、フランジ付き蓋を必要とし、蓋を皿ビスで固定す
る)減衰沓としての減衰定数のレベルの任意な設計も容
易である。Further, according to the method of manufacturing an elastic bearing for a structure of the present invention, after vulcanization of the rubber bearing, pressurization and contact in the manufacturing process can be performed without press-fitting a lead plug in a conventional post-process. Can be achieved. In addition, this support functions as a composite shoe with a lead plug bearing and rubber material (molecular design), and does not require a lead plug lid due to shrinkage strain (generally, a flanged lid is required, Arbitrary design of the level of the damping constant as a damping shoe is also easy.
【0017】[0017]
【発明の実施の形態】本発明の実施形態を以下説明す
る。本発明では、鉛プラグ入り弾性支承体のゴム材料を
天然ゴムを基板に、分子設計された高減衰ゴム材を使用
し、耐久性を考慮して高減衰ゴムの非線形性能をやや線
形性よりの高減衰ゴム配合となし、その分減衰性能は若
干低下するが、その低下分を補うに足りる鉛プラグを弾
性支承体の中央に1個ないし2個入るように設計し、所
定のせん断変形率での減衰沓としての減衰定数値を確保
する考え方を基本としている。Embodiments of the present invention will be described below. In the present invention, the rubber material of the elastic support body containing the lead plug is made of natural rubber as a substrate, using a molecularly designed high-damping rubber material, and considering the durability, the nonlinear performance of the high-damping rubber is slightly more linear. A high-damping rubber compound is used, and the damping performance is slightly reduced by that amount. However, one or two lead plugs are designed to fit in the center of the elastic bearing to compensate for the reduced amount, and at a predetermined shear deformation rate Is based on the idea of securing a damping constant value as a damping shoe.
【0018】結果的には、純粋な高減衰ゴム材の欠点
(ヒステリシスロスが大きく、せん断方向の残留歪みも
必然的に大きく、かつ耐久性も天然ゴム材に劣る)を改
善し、減衰沓としての機能性能(減衰定数)は鉛プラグ
で増強を図り、鉛プラグ入り弾性支承体の鉛の専有面積
も1/2ないし1/3にとどめ、高減衰ゴム支承体と同
様、鉛プラグ入り弾性支承体の鉛による減衰効果と耐久
性は二律背反性があるが、鉛プラグの使用量を低減する
ことにより、高減衰ゴム単独沓同様に、鉛プラグ入り弾
性支承体オンリーよりも耐久性能を高める効果が期待さ
れる。As a result, the disadvantages of a pure high damping rubber material (having a large hysteresis loss, inevitably a large residual strain in the shear direction, and a poor durability in comparison with a natural rubber material) are improved. The functional performance (damping constant) of the lead plug is enhanced by the lead plug, and the area occupied by the lead of the elastic support containing the lead plug is reduced to な い し or 3. As with the high damping rubber bearing, the elastic support containing the lead plug is used. There is a trade off between the damping effect and the durability of the body lead, but by reducing the amount of lead plug used, the effect of increasing the durability performance is higher than the elastic support body with lead plug only, like the high damping rubber sole shoe. Be expected.
【0019】また、本発明では、前記の構成を基本とし
て、鉛プラグとゴムとの複合沓として、ゴム支承製作時
に鉛プラグを入れた状態で完成させる複合沓(線形寄り
に分子設計した高減衰ゴム材使用し、かつ当初より鉛プ
ラグ入りとする)と位置付ける。これに対し、従来の鉛
プラグ入り弾性支承体は、通常は鉛プラグ挿入(圧入)
のために、従来例で説明したように予め鉛プラグ径プラ
ス若干量の余裕の孔(コアー部)に用意した鉛プラグを
後工程で圧入することを基本としている。つまり、コア
ーゴム部の収縮による凹部にも鉛を充填するために、鉛
プラグに所定の鉛直力が負荷し、鉛の応力歪み(応力と
伸び)特性より、弾性的もしくは塑性的に外径変形をう
ながし、変形速度を調整し、遷移クリープによる鉛プラ
グによるゴム孔周辺部への密着を図るものである。従っ
て、この鉛プラグ圧入方法では、その圧入工程の繁雑
化、構造の複雑化、減衰定数の所期値設定の困難化等が
ある。Further, according to the present invention, based on the above-described structure, as a composite shoe made of a lead plug and rubber, a composite shoe completed with a lead plug inserted at the time of manufacturing a rubber bearing (highly damped with a molecular design closer to linearity) Rubber material is used and lead plugs are included from the beginning). On the other hand, the conventional elastic support with lead plug is usually inserted with lead plug (press fit).
For this purpose, as described in the conventional example, a lead plug prepared in advance into a hole (core portion) having a lead plug diameter plus a small amount of margin in advance is press-fitted in a later step. In other words, a predetermined vertical force is applied to the lead plug in order to fill the concave portion caused by the contraction of the core rubber portion with lead, and the outer diameter is elastically or plastically deformed due to the stress distortion (stress and elongation) characteristics of lead. The purpose of this is to adjust the deformation speed, so that the lead plug adheres to the periphery of the rubber hole by transition creep. Therefore, in this lead plug press-fitting method, the press-fitting process is complicated, the structure is complicated, and it is difficult to set a desired value of the damping constant.
【0020】上記に対し、本発明では次のように構成さ
れている。図1〜図5を参照して説明すると、線形性寄
り高減衰ゴムのゴム層21と、肉薄の複数の補強板22
とが積層一体化され、かつこのゴム層21と補強板22
とを貫通して1本又は複数本の鉛プラグ23が設けられ
て弾性支承本体24が構成され、この弾性支承本体24
の上下に上部取付け部材25と下部取付け部材26とが
一体的に取付けられている。上下の各取付け部材25,
26の内側面に形成されたプラグ嵌入用凹部27に鉛プ
ラグ23の上下端部が嵌入され固着されている。また、
上部取付け部材25には橋梁等の上部構造物が、下部取
付け部材26には橋脚等の下部構造物が取付けられる。In contrast, the present invention is configured as follows. Referring to FIGS. 1 to 5, a rubber layer 21 of a highly linear damping rubber and a plurality of thin reinforcing plates 22 will be described.
And the rubber layer 21 and the reinforcing plate 22
And one or a plurality of lead plugs 23 are provided to form an elastic support main body 24.
The upper mounting member 25 and the lower mounting member 26 are integrally mounted on the upper and lower sides. Upper and lower mounting members 25,
The upper and lower ends of the lead plug 23 are fitted into and fixed to the plug fitting concave portions 27 formed on the inner side surface of the plug 26. Also,
An upper structure such as a bridge is mounted on the upper mounting member 25, and a lower structure such as a pier is mounted on the lower mounting member 26.
【0021】前記鉛プラグ入り弾性支承体は、図2,図
3,図4の工程を経て製作される。すなわち、図2に示
されるように、ベース11に載置された支持台12上に
下部取付け部材26が載置され、その内面中心部のプラ
グ嵌入凹部27に鉛プラグ23の下端部が嵌入固着され
ている。次に、それぞれのプラグ貫通孔28を鉛プラグ
23に嵌合させながら、線形性寄りの高減衰ゴムのゴム
層21と薄鋼板の補強板22を交互に複数積層する。こ
のとき、ゴム層21及び補強板22それぞれのプラグ貫
通孔28の内径は、鉛プラグ23の外径よりも若干大と
して、両者間に僅少の隙間29を形成して、鉛プラグ2
3へのゴム層21と補強板22の嵌合を容易に行なえる
ようにしておく。The lead plug-containing elastic bearing body is manufactured through the steps shown in FIGS. That is, as shown in FIG. 2, the lower mounting member 26 is mounted on the support base 12 mounted on the base 11, and the lower end of the lead plug 23 is fitted and fixed in the plug fitting concave portion 27 at the center of the inner surface. Have been. Next, a plurality of rubber layers 21 of high-attenuation rubber and a thin steel plate 22 are alternately laminated while the respective plug through holes 28 are fitted to the lead plugs 23. At this time, the inner diameter of the plug through hole 28 of each of the rubber layer 21 and the reinforcing plate 22 is slightly larger than the outer diameter of the lead plug 23, and a small gap 29 is formed between the two.
3 so that the rubber layer 21 and the reinforcing plate 22 can be easily fitted to each other.
【0022】ゴム層21と補強板22の全部の積層が終
わったら、その上部から突出している鉛プラグ23の上
端を上部取付け部材25の下面のプラグ嵌入凹部27に
嵌入し固着する。このとき、最上部のゴム層21と上部
取付け部材25の間にはLの隙間が形成されている。After the rubber layer 21 and the reinforcing plate 22 have been completely stacked, the upper end of the lead plug 23 projecting from the upper portion is fitted into the plug fitting recess 27 on the lower surface of the upper mounting member 25 and fixed. At this time, an L gap is formed between the uppermost rubber layer 21 and the upper attachment member 25.
【0023】つぎに、図に示すように上部取付け部材2
5の上面には調整板15が載置され、これらの外側には
外周分割型16が配置され、調整板15の上から押圧板
17でプレスすることで、積層ゴム層21に熱と圧力を
掛け、積層ゴムの最終形状を作る。前記押圧板17でプ
レスすることにより、鉛プラグ23は、最上部のゴム層
21と上部取付け部材25のL間隙分軸方向に圧縮され
て、その分径が大きくなり、鉛プラグ23の外周がゴム
層21と補強板22のプラグ貫通孔28の内周面と密着
し、かつ相互間の隙間29がなくなる。Next, as shown in FIG.
An adjusting plate 15 is placed on the upper surface of the device 5, and an outer peripheral split mold 16 is disposed outside the adjusting plate 15. By pressing the adjusting plate 15 with a pressing plate 17, heat and pressure are applied to the laminated rubber layer 21. Hang it to make the final shape of the laminated rubber. By pressing with the pressing plate 17, the lead plug 23 is compressed in the axial direction corresponding to the L gap between the uppermost rubber layer 21 and the upper mounting member 25, and its diameter increases, so that the outer periphery of the lead plug 23 The rubber layer 21 and the inner peripheral surface of the plug through hole 28 of the reinforcing plate 22 are in close contact with each other, and the gap 29 between them is eliminated.
【0024】その後、前記のモールド型を分解し、弾性
支承体をモールド型から脱型し鉛プラグ入り弾性支承体
を完成させる。After that, the mold is disassembled, and the elastic support is removed from the mold to complete the lead plug-containing elastic support.
【0025】前記の方法によると、ゴム支承加硫後、従
来のような鉛プラグ圧入の省略による工程の省力化が達
成され、かつ、鉛プラグ圧入による鉛の展性(延性)を
最小圧tを必要とせず自然応力歪みを発生させて密着を
図ることができる。また、せん断直下に鉛一体構造によ
る鉛入り複合沓として鉛プラグ挿入後の当該鉛プラグの
蓋を必要とせず(一般には、フランジ付き蓋を必要と
し、蓋を皿ビスで固定する)、さらに、減衰沓としての
減衰定数の大小を任意に設計することができる。According to the above method, after vulcanization of the rubber bearing, the labor saving of the process can be achieved by omitting the press-fitting of the lead plug as in the prior art, and the ductility (ductility) of the lead by the press-fitting of the lead plug is reduced to the minimum pressure t. , A natural stress strain can be generated and adhesion can be achieved. In addition, as a lead-containing composite shoe with a lead-integrated structure directly under the shear, there is no need for a lid for the lead plug after the lead plug is inserted (generally, a flanged lid is required, and the lid is fixed with a countersunk screw). The magnitude of the damping constant of the damping shoe can be arbitrarily designed.
【0026】また、鉛プラグと線形性寄り高減衰ゴムと
の相乗効果により、小せん断変形域の剛性の強さは、そ
のまま生かされ、トリガ機構が再現される。Further, due to the synergistic effect of the lead plug and the linearly high-damping rubber, the rigidity in the small shear deformation region is utilized as it is, and the trigger mechanism is reproduced.
【0027】[0027]
【発明の効果】以上説明したように本発明によると、鉛
プラグ入り弾性支承体において、従来の通常の高減衰ゴ
ムの非線形性とそれによる欠点が、線形性寄りの高減衰
ゴム材により改良され、かつ、このように構成したこと
による減衰性能低下分を補うものとして鉛プラグが使用
されているので、本来性能と耐久性とが二律背反の関係
にある高減衰ゴムと鉛プラグの特性が調和して生かされ
ており、減衰性や耐久性に優れた鉛プラグ入り弾性支承
体が得られるという効果がある。さらに、本発明の鉛プ
ラグ入り弾性支承体の製造方法によると、前記の効果に
加え、鉛プラグ圧入を不要とすることによる省力化と、
積層ゴムとの密着一体化、さらには大小任意な減衰定数
を容易に設計が可能な効果がある。As described above, according to the present invention, in the elastic support body containing lead plugs, the nonlinearity of the conventional ordinary high damping rubber and its disadvantages are improved by the linear damping high damping rubber material. In addition, since lead plugs are used to compensate for the decrease in damping performance due to this configuration, the characteristics of high-damping rubber and lead plugs, which originally have a trade-off relationship between performance and durability, are harmonized. Therefore, there is an effect that an elastic bearing body containing a lead plug having excellent damping properties and durability can be obtained. Furthermore, according to the manufacturing method of the lead plug-containing elastic bearing body of the present invention, in addition to the above-described effects, labor saving by eliminating the need for press-fitting of the lead plug,
There is an effect that it is possible to easily design a large and small damping constant with close integration with the laminated rubber.
【図1】本発明の実施形態に係る鉛プラグ入り弾性支承
体の縦断面図である。FIG. 1 is a longitudinal sectional view of a lead plug-containing elastic bearing according to an embodiment of the present invention.
【図2】図1の鉛プラグ入り弾性支承体製造の第1工程
図である。FIG. 2 is a first process diagram of manufacturing the lead plug-containing elastic bearing body of FIG. 1;
【図3】同じく第2工程図である。FIG. 3 is a second process drawing.
【図4】同じく第3工程図である。FIG. 4 is a third process drawing.
【図5】前記各工程をフローチャートで示す図である。FIG. 5 is a view showing each of the steps in a flowchart.
【図6】従来の鉛プラグ入り弾性支承体の縦断面図であ
る。FIG. 6 is a longitudinal sectional view of a conventional elastic support body containing a lead plug.
【図7】図6の鉛プラグ入り弾性支承体製造の第1工程
図である。FIG. 7 is a first process diagram of manufacturing the lead plug-containing elastic bearing body of FIG. 6;
【図8】同じく第2工程図である。FIG. 8 is a second process drawing.
【図9】鉛プラグ入り弾性支承体の第1回目の履歴ルー
プの図である。FIG. 9 is a diagram of a first hysteresis loop of a lead plug-containing elastic bearing body.
【図10】同じく第2回目の履歴ループの図である。FIG. 10 is a diagram of a second history loop.
【図11】振動実験を説明するために示す従来の鉛プラ
グ入り弾性支承体の静止時の平面図である。FIG. 11 is a plan view of a conventional lead plug-containing elastic bearing body at rest for illustrating a vibration experiment.
【図12】図11の縦断面図である。FIG. 12 is a longitudinal sectional view of FIG.
【図13】図11の鉛プラグ入り弾性支承体の左移動時
の平面図である。13 is a plan view of the lead plug-containing elastic bearing body of FIG. 11 when it is moved to the left.
【図14】図13の縦断面図である。FIG. 14 is a longitudinal sectional view of FIG.
【図15】図11の鉛プラグ入り弾性支承体の右移動時
の平面図である。FIG. 15 is a plan view of the lead plug-containing elastic bearing body of FIG. 11 when moved to the right.
【図16】図15の縦断面図である。FIG. 16 is a longitudinal sectional view of FIG.
【図17】分図(A),(B)は、図13のイ部の異な
る振動状況下における縦断面図、分図(C)は、図13
のロ部の縦断面図である。17 (A) and 17 (B) are longitudinal cross-sectional views of part A of FIG. 13 under different vibration conditions, and FIG. 13 (C) is a sectional view of FIG.
It is a longitudinal cross-sectional view of the part B of FIG.
1 ゴム層 2 補強板 3 鉛プラグ 4 弾性支承本体 5 上部取付け部材 6 下部取付け部材 7 プラグ挿入孔 8 固着ボルト 10 蓋板 11 ベース 12 支持台 13 ガイド突起 14 プラグ貫通孔 15 調整板 16 外周分割型 17 押圧板 18 補強板端部 21 ゴム層 22 補強板 23 鉛プラグ 24 弾性支承本体 25 上部取付け部材 26 下部取付け部材 27 プラグ嵌入用凹部 28 プラグ貫通孔 29 隙間 DESCRIPTION OF SYMBOLS 1 Rubber layer 2 Reinforcement plate 3 Lead plug 4 Elastic bearing main body 5 Upper mounting member 6 Lower mounting member 7 Plug insertion hole 8 Fixing bolt 10 Cover plate 11 Base 12 Support base 13 Guide projection 14 Plug through hole 15 Adjustment plate 16 Perimeter split type REFERENCE SIGNS LIST 17 pressure plate 18 end of reinforcing plate 21 rubber layer 22 reinforcing plate 23 lead plug 24 elastic support body 25 upper mounting member 26 lower mounting member 27 plug fitting recess 28 plug through hole 29 gap
Claims (2)
かつ、この弾性体と補強板とを軸方向に貫通して鉛プラ
グが設けられて弾性支承本体が構成され、前記弾性支承
本体の上下に各々上下取付け部材が一体的に取付けられ
ている構造物用弾性支承体において、前記ゴム層を、通
常の高減衰ゴムの非線形性よりも線形性寄りとなるよう
に材料配合(分子設計)した線形性寄り高減衰ゴム材で
構成し、それによる減衰性能低下分を補う鉛プラグを弾
性支承本体の中央部に1個ないし2個嵌入した構成を特
徴とする構造物用弾性支承体。1. A rubber layer and a reinforcing plate are laminated and integrated,
A structure in which a lead plug is provided to penetrate the elastic body and the reinforcing plate in the axial direction to form a resilient support body, and upper and lower mounting members are integrally mounted on the upper and lower sides of the resilient support body, respectively. In the elastic bearing member for use, the rubber layer is made of a linearly high-damping rubber material blended with a material (molecular design) so as to be more linear than the non-linearity of a normal high-damping rubber, and the damping performance thereby. An elastic bearing body for a structure, characterized in that one or two lead plugs, which compensate for the drop, are fitted into the center of the elastic bearing body.
面に鉛プラグを立設し、この鉛プラグにそれぞれプラグ
挿入孔を有しており、通常の高減衰ゴムの非線形性より
も線形性寄りとなるように材料配合した高減衰ゴム材と
補強板を交互に積層して僅少の隙間を介して前記鉛プラ
グに嵌入し、前記積層体の上部から突出した鉛プラグの
上部を上部取付け部材の下面に当接して、積層体上面と
上部取付け部材の下面との間に間隙Lを形成し、モール
ド型内において前記上部取付け部材を介して鉛プラグを
軸方向に押圧しながら前記線形性寄り高減衰ゴム材を加
熱,加圧して加硫することを特徴とする構造物用弾性支
承体の製造方法。2. A lead plug is erected on the upper surface of a lower mounting member placed on a support base, and each of the lead plugs has a plug insertion hole, and is more linear than normal nonlinearity of high damping rubber. A high-damping rubber material and a reinforcing plate, which are blended so as to be close to each other, are alternately laminated, fitted into the lead plug through a small gap, and the upper part of the lead plug protruding from the upper part of the laminate is attached to the upper part. A gap L is formed between the upper surface of the laminate and the lower surface of the upper mounting member in contact with the lower surface of the member, and the linearity is reduced while pressing the lead plug in the mold via the upper mounting member in the axial direction. A method for manufacturing an elastic bearing body for a structure, comprising heating and pressurizing a high-damping rubber material to vulcanize the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08346456A JP3106300B2 (en) | 1996-12-11 | 1996-12-11 | Elastic bearing for structure and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08346456A JP3106300B2 (en) | 1996-12-11 | 1996-12-11 | Elastic bearing for structure and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10168822A true JPH10168822A (en) | 1998-06-23 |
JP3106300B2 JP3106300B2 (en) | 2000-11-06 |
Family
ID=18383561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08346456A Expired - Lifetime JP3106300B2 (en) | 1996-12-11 | 1996-12-11 | Elastic bearing for structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106300B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014152583A (en) * | 2013-02-13 | 2014-08-25 | Toyo Tire & Rubber Co Ltd | Shock absorbing apparatus and tank support structure for construction machine using the same |
JP2019183573A (en) * | 2018-04-16 | 2019-10-24 | 株式会社免制震ディバイス | Maintenance method for foundation of structure |
WO2020204031A1 (en) * | 2019-04-04 | 2020-10-08 | 株式会社ビー・ビー・エム | Laminated rubber bearing including lead plug and method for manufacturing laminated rubber bearing including lead plug |
CN111945553A (en) * | 2020-07-15 | 2020-11-17 | 黄山市尚义橡塑制品有限公司 | Modified high-damping composite material rubber support |
JP2022104779A (en) * | 2020-12-29 | 2022-07-11 | 天津市政工程設計研究総院有限公司 | High-performance rubber bearing for ductile earthquake-resistant system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101774875B1 (en) | 2017-03-27 | 2017-09-06 | (주) 에스제이에스일렉트릭 | Elastic support |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442363Y2 (en) * | 1987-06-18 | 1992-10-06 | ||
JPH0821484A (en) * | 1994-07-08 | 1996-01-23 | Oiles Ind Co Ltd | Lead-sealed laminated rubber support |
-
1996
- 1996-12-11 JP JP08346456A patent/JP3106300B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442363Y2 (en) * | 1987-06-18 | 1992-10-06 | ||
JPH0821484A (en) * | 1994-07-08 | 1996-01-23 | Oiles Ind Co Ltd | Lead-sealed laminated rubber support |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014152583A (en) * | 2013-02-13 | 2014-08-25 | Toyo Tire & Rubber Co Ltd | Shock absorbing apparatus and tank support structure for construction machine using the same |
JP2019183573A (en) * | 2018-04-16 | 2019-10-24 | 株式会社免制震ディバイス | Maintenance method for foundation of structure |
WO2020204031A1 (en) * | 2019-04-04 | 2020-10-08 | 株式会社ビー・ビー・エム | Laminated rubber bearing including lead plug and method for manufacturing laminated rubber bearing including lead plug |
JP2020169698A (en) * | 2019-04-04 | 2020-10-15 | 株式会社ビー・ビー・エム | Laminated rubber bearing including lead plug and manufacturing method of the same |
CN111945553A (en) * | 2020-07-15 | 2020-11-17 | 黄山市尚义橡塑制品有限公司 | Modified high-damping composite material rubber support |
JP2022104779A (en) * | 2020-12-29 | 2022-07-11 | 天津市政工程設計研究総院有限公司 | High-performance rubber bearing for ductile earthquake-resistant system |
Also Published As
Publication number | Publication date |
---|---|
JP3106300B2 (en) | 2000-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01501333A (en) | Spring system not found in | |
JP3106300B2 (en) | Elastic bearing for structure and method of manufacturing the same | |
JP2009008181A (en) | Manufacturing method for base isolation device embedded with plug | |
TWI672447B (en) | Base isolation supporting device | |
JP2001140977A (en) | Base isolation support body | |
JP2006308063A (en) | Base isolation bearing | |
JPS6256370B2 (en) | ||
JP4061818B2 (en) | Seismic isolation device | |
JP5231934B2 (en) | Laminated rubber bearing | |
JP4594183B2 (en) | Laminated support | |
KR101051439B1 (en) | Lead Isolation Support Device with Improved Isolation Performance | |
JP2001012545A (en) | Laminated rubber bearing body | |
JP3410172B2 (en) | Lead encapsulated laminated rubber bearing | |
JP2002195327A (en) | Laminated rubber pivotally supporting body | |
JPH09126272A (en) | Base isolation laminated rubber | |
JP2000297558A (en) | Base isolation device | |
JP3503712B2 (en) | Lead encapsulated laminated rubber | |
JP2001140978A (en) | Laminated rubber support body | |
JP2013044416A (en) | Laminated rubber bearing body | |
JP2001027283A (en) | Laminated rubber support body | |
KR200371648Y1 (en) | Steel-laminated elastomeric bearing for bridge | |
JP2001050322A (en) | Manufacture for laminated rubber supporting body | |
JP2909035B2 (en) | Elastic bearings for structures | |
JPH11190392A (en) | Manufacture of laminated rubber supporting body | |
JP2839988B2 (en) | Laminated rubber bearing |