JPS6256370B2 - - Google Patents

Info

Publication number
JPS6256370B2
JPS6256370B2 JP53071032A JP7103278A JPS6256370B2 JP S6256370 B2 JPS6256370 B2 JP S6256370B2 JP 53071032 A JP53071032 A JP 53071032A JP 7103278 A JP7103278 A JP 7103278A JP S6256370 B2 JPS6256370 B2 JP S6256370B2
Authority
JP
Japan
Prior art keywords
elastic
layers
side end
laminated bearing
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53071032A
Other languages
Japanese (ja)
Other versions
JPS548247A (en
Inventor
Aaru Piitaason Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson Aerospace and Industry Inc
Original Assignee
Barry Wright Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barry Wright Corp filed Critical Barry Wright Corp
Publication of JPS548247A publication Critical patent/JPS548247A/en
Publication of JPS6256370B2 publication Critical patent/JPS6256370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/142Variation across the area of the layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • F16C27/063Sliding contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • F16F1/3935Conical sleeves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Support Of The Bearing (AREA)
  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は圧縮荷重用ベヤリングに係わり、特に
エラストマー等の弾性材料と金属等の非伸張材料
の交互接着層から成るような積層ベヤリングに関
する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to compressive load bearings, and more particularly to such laminated bearings comprising alternating adhesive layers of elastic materials such as elastomers and non-stretchable materials such as metals.

一定の厚みのエラストマー材料の圧縮荷重支持
能力は、それを複数の層に分けてそれら層を非伸
張材料の中間層によつて隔てることにより何倍に
も増加することが広く知られている。併し同時
に、この層と平行した方向のせん断または撚りに
対する弾性材料の能力は実質的に影響を受けな
い。この概念は次の米国特許で示されるように
種々の積層ベヤリングの設計に採用または利用さ
れている。すなわち、シユミツトの米国特許第
3679197号、ボツグスの特許第3377110号、オレイ
ンの特許第2995907号、ヒンクスの特許第2900182
号、およびワイルドヘイバの特許第2752766号で
ある。各種の積層ベヤリングは、通常一方向に大
きい圧縮荷重を支持し、且つまた他方向での限定
された相対運動に適合することを要するような工
業的用途に使用される。このベヤリングは大きい
圧縮荷重が弾性層に対し全体的に垂直に支持され
るように設計される。ベヤリングの有意義な工業
上の相違は共通の中心部のまわりに同心円状に配
置した交互の接着層によつて特徴づけられる。す
なわち、弾性材料と非伸張材料の交互に重なつた
層が共通の中心部から順次増加した半径距離に配
置されたことである。このベヤリングの種類は多
くの異なる形状のもの、特に形状が円筒形、円錐
形または全体的に球形または必然的に円筒、円錐
及び球での扇形のベヤリング等を含む。このよう
なベヤリングは典型的に航空用、特にヘリコプタ
ーのローターシヤフトの支持に使用される。上記
シユミツトによつて指摘されたように、この種の
ベヤリングは所定の軸のまわりの同期的撚り運動
に適合し、しかも同時にその軸に沿つて大きい圧
縮荷重を支持することを要求されることが多く、
その結果として共通の中心部に最も近い弾性層内
に大きな圧縮応力とせん断応力及び歪が起り、ま
た撚り運動に適合するために生ずる疲労破壊が最
も内側の弾性層で起り勝ちである。シユミツトは
半径の増加とともに弾性材料の相次ぐ層の厚みを
順次大きくし且つ同時に半径の増加とともに同じ
層の弾性係数を順次小さくすることによつて、こ
のようなベヤリングの疲労寿命を改善することを
提案した。併しながら、シユミツトの方法は各エ
ラストマー層を異なる材料で造らねばならないの
で高価である。すなわち、15の弾性層から成るエ
ラストマーベヤリングは15の異なるエラストマー
材料を用意せねばならない。これはたとえエラス
トマーの基本的供給材料を15ロツトに分け且つ各
ロツトを異なつた量またはタイプの添加剤によつ
て変化させることにより普通に達成できるとして
も、それは高価で時間が不経済であり且つ各弾性
層に対し異なる材料を準備するのは不便である。
更に、シユミツトが指示するように、半径の増加
と共に減少する弾性係数をもつて正しく配置でき
るように、材料を適正に揃えるには注意が必要で
ある。
It is widely known that the compressive load carrying capacity of an elastomeric material of a given thickness can be increased many times by dividing it into layers and separating the layers by intermediate layers of non-stretchable material. At the same time, however, the ability of the elastic material to shear or twist in a direction parallel to this layer is substantially unaffected. This concept has been adopted or utilized in various laminated bearing designs as shown in the following US patents: That is, Schmidt's U.S. Patent No.
3679197, Botsugus Patent No. 3377110, Olein Patent No. 2995907, Hinx Patent No. 2900182
No. 2,752,766, and Wildheiba Patent No. 2,752,766. Various types of laminated bearings are typically used in industrial applications where they are required to support large compressive loads in one direction and also accommodate limited relative movement in the other direction. This bearing is designed so that large compressive loads are supported generally perpendicular to the elastic layer. A significant industrial difference in bearings is characterized by alternating adhesive layers arranged concentrically around a common center. That is, alternating layers of elastic and non-stretchable materials are disposed at increasing radial distances from a common center. This type of bearing includes many different shapes, in particular cylindrical, conical or generally spherical or fan-shaped bearings which are necessarily cylindrical, conical and spherical in shape. Such bearings are typically used in aviation, particularly for supporting rotor shafts in helicopters. As pointed out by Schmidt supra, this type of bearing can be required to accommodate synchronous twisting movements about a given axis, while at the same time supporting large compressive loads along that axis. many,
As a result, large compressive and shear stresses and strains occur in the elastic layers closest to the common center, and fatigue failures are likely to occur in the innermost elastic layers to accommodate the twisting motion. Schmitt proposed to improve the fatigue life of such bearings by increasing the thickness of successive layers of elastic material with increasing radius and at the same time decreasing the elastic modulus of the same layers successively with increasing radius. did. However, Schmidt's method is expensive because each elastomer layer must be made of a different material. That is, an elastomer bearing consisting of 15 elastic layers must be prepared from 15 different elastomer materials. Even though this could commonly be accomplished by dividing the basic feed of elastomer into 15 lots and varying each lot with different amounts or types of additives, it is expensive, time-expensive, and It is inconvenient to provide different materials for each elastic layer.
Additionally, care must be taken to properly align the material so that it can be properly positioned with a modulus of elasticity that decreases with increasing radius, as directed by Schmidt.

よつて本発明の主要目的は、僅か2つの異なる
弾性材料を使用して各々異なる実効弾性係数を表
わす比較的多くの弾性層を得るような前述の積層
ベヤリングを提供することである。
The main object of the invention is therefore to provide a laminated bearing as described above, in which only two different elastic materials are used to obtain a relatively large number of elastic layers, each exhibiting a different effective elastic modulus.

本発明の他の目的は、エラストマーの積層ベヤ
リングの圧縮弾性率を大きくし、しかも同じ部品
のずれ弾性率を小さくするか、少なくとも大きく
しない積層ベヤリングを提供することである。
Another object of the invention is to provide a laminated bearing of an elastomer which has a high compressive modulus of elasticity and yet has a low, or at least no increased, shear modulus of the same part.

更に本発明の他の目的は、積層ベヤリングの疲
労寿命を改善し、且つ特に大きいせん断対許容圧
縮荷重比を有するだけでなく、弾性層の大きい歪
を生じ勝ちな部分に小さい歪エネルギーをもつ柔
軟な弾性材料を使用することにより、改善された
疲労寿命を有するエラストマーベヤリングを提供
することである。
Yet another object of the invention is to improve the fatigue life of laminated bearings and to provide flexible bearings which not only have a particularly high shear to permissible compressive load ratio but also have a low strain energy in areas prone to high strain in the elastic layer. The object of the present invention is to provide an elastomeric bearing with improved fatigue life by using a resilient material.

更に本発明の他の目的は、異なる用途において
起る特殊の歪分布に適応するように、ベヤリング
の同一部分での異なる動作方向のせん断剛性を変
えることの可能な積層ベヤリングを提供し、且つ
圧縮剛性を維持する目的で側端の膨張制限をする
ように選定し配置した弾性材料を有するベヤリン
グを提供することである。
Yet another object of the present invention is to provide a laminated bearing capable of varying the shear stiffness in different directions of motion in the same part of the bearing, in order to adapt to the special strain distributions occurring in different applications; It is an object of the present invention to provide a bearing having a resilient material selected and arranged to limit expansion of the side ends for the purpose of maintaining stiffness.

上記の目的、及び以下記載または明示される目
的及び長所の何れも、積層ベヤリングの弾性層の
少なくとも幾つかの各々を、異なつた弾性係数を
有する少なくとも2つの材料の部分から構成する
ことによつて達成される。弾性層はベヤリングの
縦方向の側端から側端まで配置した3つの部分で
形成され、2つの側端部分が中央部分より大きい
圧縮剛性を有し且つ軟かい中央部分に対し側端の
膨張制限部または障壁として働くようにすること
が望ましい。
The foregoing objects and the objects and advantages described or specified below are achieved by each of at least some of the elastic layers of the laminated bearing being comprised of at least two portions of material having different moduli of elasticity. achieved. The elastic layer is formed of three parts arranged from one end to the other in the longitudinal direction of the bearing, the two end parts having greater compression stiffness than the central part, and the expansion restriction of the side ends relative to the softer central part. It is desirable to have it act as a barrier or barrier.

その他の特長、変形例及び長所は図面と共に考
察すべき以下の詳細な記載の中で示しあるいは明
らかにする。
Other features, variations, and advantages will be indicated or become apparent in the following detailed description, which should be considered in conjunction with the drawings.

この技術分野で当業者にとつて公知であるよう
に、主として圧縮荷重に適応するエラストマーベ
ヤリングやその他のエラストマーの取付物の設計
において第1に考慮することは所謂形状係数であ
る。エラストマーの圧縮パツドの場合、変形の自
由に対する制限があればある程それは堅くなつて
来る。しばしば膨み領域または圧縮自由領域に依
存するこのパラメータは、圧縮荷重を受ける接着
ゴムパツドの堅さの調節に用いることができる。
所定の圧縮パツドの堅さはその形状係数の直接の
関数であるから、形状係数が大であればある程、
パツドの許容圧縮荷重は大である。形状係数は同
一パツドの荷重領域と膨み領域の比である。例え
ば、2つの剛性金属板の間に挾み且つそれに接着
したエラストマーのパツドから成るベヤリングや
その他の取付物を考え、そのパツドと金属板の
各々が同一の長さL及び同一幅Wを有し、またパ
ツドの厚みをtとすると、荷重領域LA及び膨み
領域BAは次のようになる。
As is known to those skilled in the art, a primary consideration in the design of elastomeric bearings and other elastomeric fittings that primarily accommodate compressive loads is the so-called form factor. In the case of an elastomeric compression pad, the more restrictions there are on freedom of deformation, the stiffer it becomes. This parameter, which often depends on the bulge area or compression free area, can be used to adjust the stiffness of the adhesive rubber pad under compressive loads.
Since the stiffness of a given compression pad is a direct function of its shape factor, the higher the shape factor, the
The permissible compressive load of the pad is large. The shape factor is the ratio of the load area and bulge area of the same pad. For example, consider a bearing or other attachment consisting of an elastomer pad sandwiched between and bonded to two rigid metal plates, each of which has the same length L and the same width W, and When the thickness of the pad is t, the load area LA and bulge area BA are as follows.

LA=L×W BA=2t(L+W) 従つて、形状係数SFは次のように表わせる、 SF=LW/2t(L+W) 荷重領域を減ずることなく膨み領域を減ずる
と、形状係数が増加し且つ許容圧縮荷重が増加す
る効果を有することが明らかである。また、もし
膨み領域を限定するか、または減じて形状係数を
増加させるなら、ベヤリング構造は、許容圧縮ひ
ずみの増加と同時にせん断剛性が影響されないか
僅かしか変らないという意味で、もつと異方性に
なるであろう。
LA=L×W BA=2t(L+W) Therefore, the shape factor SF can be expressed as follows, SF=LW/2t(L+W) If the bulge area is reduced without reducing the load area, the shape factor increases. It is clear that this has the effect of increasing the allowable compressive load. Also, if the shape factor is increased by limiting or reducing the bulge area, the bearing structure becomes more anisotropic in the sense that the shear stiffness is unaffected or changes only slightly at the same time as the allowable compressive strain increases. It will become sexual.

前述のようなベヤリングやその他の取付物で積
層構造にすることは、もしエラストマーパツドの
形状の全体的厚みが変らないなら、自由バルジ領
域の減少により形状係数従つて堅さが大いに増加
するという利益がある。併し同時に、エラストマ
ーの層間を区分けする金属板または挾み金の厚み
が積層パツド全体の厚みに比べて比較的小さいの
で、本質的に中間的挾み金の単独効果はエラスト
マー層の膨張の自由を減ずるようになる。この膨
張制限はせん断剛性に対し実質的影響がない。従
つて、本発明の重要な態様は、圧縮弾性率の増加
の目的に対し、積層ベヤリングやその他の取付物
での弾性層の膨張制限を大きくし、また同時にこ
れら同じ層の比較的小さいせん断剛性を得る積層
ベヤリングを提供することである。本発明の実施
例においては、各層が本質的に、比較的堅い弾性
材料で形成した2つの膨張制限部または障壁およ
び2つの膨張制限部の間に挾んだ柔軟な材料で形
成した中間部分から成るように、各弾性層を作成
することによつて達せられる。膨張制限部は中間
部分に接着することにより、比較的に堅い端面部
分と比較的柔軟な中間部分によつて特徴づけられ
た単一の弾性層を形成するようにする。
Laminated construction with bearings and other attachments, such as those mentioned above, means that if the overall thickness of the elastomeric pad profile remains unchanged, the shape factor and therefore stiffness will greatly increase due to the reduction in free bulge area. There is profit. At the same time, however, because the thickness of the metal plate or clasp that separates the layers of elastomer is relatively small compared to the overall thickness of the laminate pad, essentially the sole effect of the intermediate clasp is the freedom of expansion of the elastomer layer. will begin to decrease. This expansion limitation has no substantial effect on shear stiffness. Therefore, an important aspect of the present invention is to increase the expansion limit of elastic layers in laminated bearings and other attachments for the purpose of increasing compressive modulus, while simultaneously reducing the relatively small shear stiffness of these same layers. The objective is to provide a laminated bearing that obtains the following. In an embodiment of the invention, each layer consists essentially of two expansion limits or barriers formed of a relatively stiff elastic material and an intermediate portion formed of a flexible material sandwiched between the two expansion restrictions. This is achieved by making each elastic layer such that The expansion limiter is adhered to the intermediate portion to form a single elastic layer characterized by relatively stiff end portions and a relatively flexible intermediate portion.

堅い側端部分は膨張を防ぎ且つ中間部分と協働
して所定値の合成弾性率すなわち正味の弾性率を
現わし、また同時に中間部分は単一層のせん断剛
性を低い値に保つように作用する。弾性層を形成
するように比較的堅く且つ比較的柔軟なエラスト
マーのこのような使用法は、低い撚り剛性を保持
し、また圧縮荷重に対する剛性を増大する有効な
方法である。
The stiff end portions prevent expansion and cooperate with the middle portion to exhibit a predetermined value of the resultant or net modulus, and at the same time the middle portion acts to maintain the shear stiffness of the single layer at a low value. . This use of a relatively stiff and relatively flexible elastomer to form an elastic layer is an effective method of maintaining low twisting stiffness and increasing stiffness against compressive loads.

次に第1図及び第2図において、本発明によつ
て製造した円錐形積層ベヤリングは、2つの環状
金属の端面部材2,4を備え、これらは截頭円錐
形の内外表面6,8をそれぞれ備えている。第2
図で示すように、完成したベヤリングにおいて、
弾性材料10と非伸張性材料12の交互接着層が
端面部材2,4の間に配置されて、この部材の表
面6,8は弾性材料の層に接着されている。この
弾性材料は天然または合成のゴムのようなエラス
トマーであることが好ましいが、またステンレス
鋼のような適当な金属でもよい。第2図から明ら
かなように、層10,12は形状が截頭円錐形で
あつて2つの剛性金属の端面部材の表面6,8に
対し全体的に平行且つ同軸状に配置されている。
Referring now to FIGS. 1 and 2, a conical laminated bearing made in accordance with the invention comprises two annular metal end members 2, 4 having frustoconically shaped inner and outer surfaces 6, 8. Each is equipped with one. Second
As shown in the figure, in the completed bearing,
Alternating adhesive layers of elastic material 10 and non-stretchable material 12 are disposed between the end members 2, 4, the surfaces 6, 8 of which are adhered to the layers of elastic material. The elastic material is preferably an elastomer such as natural or synthetic rubber, but may also be a suitable metal such as stainless steel. As can be seen in FIG. 2, the layers 10, 12 are frustoconical in shape and are arranged generally parallel and coaxially to the surfaces 6, 8 of the two rigid metal end members.

この場合、層10,12は一様な厚みのもので
あるが、非伸張性の層12(これは普通挾み金と
呼ばれる)は弾性層より薄い。その上、弾性層は
その両端部が中央部よりも大きい堅さを有するよ
うに作成され、また従つてそれぞれの層の有効弾
性率は半径の増加と共に低下する。この弾性層の
配設は各々の弾性層10を第1図で示したように
並べた2つの異なる弾性材料から造り出すことに
よつて行なわれる。
In this case, layers 10, 12 are of uniform thickness, but the non-stretchable layer 12 (which is commonly referred to as a shim) is thinner than the elastic layer. Moreover, the elastic layer is made such that its ends have greater stiffness than the center, and therefore the effective modulus of each layer decreases with increasing radius. This arrangement of elastic layers is accomplished by making each elastic layer 10 from two different elastic materials arranged side by side as shown in FIG.

第1図を参照して、各弾性層10は端面部材の
1つ、すなわち部材4の上に並べることによつて
合成層が造られ、この合成層は2つの截頭円錐形
側端部10A,10Bと截頭円錐形中央部分10
Cから成り、側端部分10A,10Bは所定の堅
さを有する同一弾性材料で造られ、また中央部分
10Cは他の柔軟な弾性材料すなわち側端部分1
0A,10Bより堅さの小さい材料で造られてい
る。上記各部分は図示の通り互いに相接するよう
に設けられている。次いで挾み金12をこの合成
層の上に置き、この挾み金の上に第2合成層が設
けられる。この第2合成層はその側端部分10
A,10Bが第1の層の対応側端部分より狭い幅
を有すること以外は第1の層と同様である。ここ
で用いた「幅」という語は第1図で示すように層
12に平行に延びる寸法のことである。この第2
合成層弾性層の上に第2の挾み金を置き、次いで
その上に第3合成層を並べる。この第3合成層は
その側端部分10A,10Bが第2の層の側端部
分より狭いこと以外は第2の合成層と同様であ
る。弾性層及び非伸張層のこの交互形成の行程
は、各弾性層の側端部分10A,10Bがその前
の内側の層の対応部分より狭い幅をもつようにし
て反覆される。弾性層を所定数だけ並べた後、最
後の弾性層に別の端面部材を重ね合せ、次にこの
組上げたものを適当な温度と圧力のもとで一体に
成型し、弾性部分10A,10B,10Cが相互
に接着しまた隣接の挾み金12または端面部材2
または4とも接着するようにする。その結果、弾
性部分10A,10B,10Cの各群が一体に単
一弾性層10を形成し、これはその両端で大きい
堅さを有し、且つ端面部材4から始まつて外方に
端面部材2に続く相次ぐ弾性層が順次に、より広
い柔軟な中央部分と順次により狭い堅い側端部分
を有するものとなる。従つて、既に述べたよう
に、端面部材4から外方に向つて相次ぐ各弾性層
は順次により小さな弾性係数を有する。側端部分
10A,10Bの寸法を中央部分10Cに対して
適当に変化させることにより、積層構造の疲労寿
命を改善する目的で、シユミツトが行なつたよう
に、歪の分布を均一にすることが可能である。同
時に弾性層の比較的堅い側端部分は柔軟な中央部
分の膨張を制限するから許容圧縮荷重を向上させ
る効果をもつ。必要ならば、シユミツトによつて
開示されたベヤリングのように、層10もその厚
みが半径の増加と共に大きくなるようにするか、
または逆にその厚みが半径の増加と共に減するよ
うに造ることができる。
Referring to FIG. 1, each elastic layer 10 is placed over one of the end members, member 4, to create a composite layer which includes two frusto-conical side ends 10A. , 10B and the frustoconical central portion 10
C, the side end portions 10A, 10B are made of the same elastic material with a predetermined stiffness, and the central portion 10C is made of another flexible elastic material, namely the side end portion 1
It is made of a material that is less hard than 0A and 10B. The above-mentioned parts are provided so as to be in contact with each other as shown in the figure. A shim 12 is then placed on top of this composite layer, and a second composite layer is provided on top of this shim. This second composite layer has its side end portion 10
It is similar to the first layer except that A, 10B has a narrower width than the corresponding end portion of the first layer. As used herein, the term "width" refers to a dimension extending parallel to layer 12 as shown in FIG. This second
A second clamp is placed on top of the composite layer elastic layer, and then a third composite layer is placed over it. This third composite layer is similar to the second composite layer except that its side edge portions 10A, 10B are narrower than the side edge portions of the second layer. This process of alternating elastic and non-stretchable layers is repeated such that the side edge portions 10A, 10B of each elastic layer have a narrower width than the corresponding portions of the previous inner layer. After arranging a predetermined number of elastic layers, another end member is superimposed on the last elastic layer, and then this assembled product is integrally molded under appropriate temperature and pressure to form elastic parts 10A, 10B, 10C are bonded to each other and adjacent clamps 12 or end members 2
Or glue both 4 together. As a result, each group of elastic portions 10A, 10B, 10C together form a single elastic layer 10, which has greater stiffness at both ends and which, starting from end member 4, extends outwardly from end member 4. Successive elastic layers following 2 have successively wider flexible central portions and successively narrower stiffer side end portions. Thus, as already mentioned, each successive elastic layer outwardly from the end member 4 has a successively smaller elastic modulus. By appropriately changing the dimensions of the side end portions 10A and 10B with respect to the central portion 10C, it is possible to make the strain distribution uniform, as Schmidt did, in order to improve the fatigue life of the laminated structure. It is possible. At the same time, the relatively stiff side end portions of the elastic layer have the effect of limiting expansion of the flexible central portion, thereby increasing the allowable compressive load. If necessary, the thickness of the layer 10 also increases with increasing radius, as in the bearing disclosed by Schmidt;
Or, conversely, it can be constructed such that its thickness decreases with increasing radius.

第2図で示したようなベヤリングを造る上記の
方法は、弾性材料が熱と圧力のもとで溶かして成
形することのできるエラストマーである場合に特
に適している。弾性材料がゴムの場合は接着工程
に硫化が含まれる。弾性層、挾み金及びベヤリン
グ部材2,4の積重ねの組立て及び接着手順につ
いてのその他の態様は積層エラストマーベヤリン
グの当業者にとつて公知であり、それは古くから
のもので本発明の部分をなすものではないから、
ここに詳述することをしない。併しながら、挾み
金やベヤリング部材は接着に適するように清浄に
する必要があり、且つそれら部材への弾性層の接
着は通常接着剤または接着セメントの使用を含む
ことを示せば充分である。また、挾み金と弾性層
部品の配設は適当なジグを用いて行なうか、また
は接着段階の成形行程で行なつてもよい。
The above method of making a bearing such as that shown in FIG. 2 is particularly suitable when the elastic material is an elastomer that can be melted and molded under heat and pressure. If the elastic material is rubber, the bonding process includes sulfurization. Other aspects of the assembly and gluing procedures for the stacking of elastic layers, shims and bearing members 2, 4 are known to those skilled in the art of laminated elastomeric bearings and are conventional and form part of the present invention. Because it is not a thing,
I will not elaborate here. However, it is sufficient to indicate that the clamping and bearing parts need to be cleaned to be suitable for bonding and that bonding of the elastic layer to these parts usually involves the use of adhesives or adhesive cements. . Further, the mounting of the clamps and the elastic layer components may be carried out using a suitable jig, or may be carried out during the molding process at the bonding stage.

第3図は円筒形積層ベヤリングの製造にどのよ
うにして本発明を適用したかを示す。この場合に
組立てた部品は内側及び外側のベヤリング部材2
2,24と中間の複数の円筒形挾み金26から成
り、この挾み金は側端部分28A,28Bと中央
部分28Cで構成された3部分の弾性層によつて
相互に隔離されている。挾み金は均一な厚みのも
のであるが、第1図及び第2図で示したように弾
性層は一様な厚みでもよいことが既に容易に理解
できるにも拘わらず、ここではそのようには示し
てない。弾性層の厚みは、直径の増加と共に減じ
てもよいことが明らかではあるが、第3図で示す
ように直径の増加と共に大きくなつている。それ
ぞれの層については、構成部分28A,28B,
28Cは同一厚みをもつてはいるが、側端部分2
8A,28Bは比較的堅い同一弾性材料で造ら
れ、また中央部分28Cは別の比較的柔軟な弾性
材料で造られていることが異なつている。併しな
がら、各弾性層の側端部分28A,28Bは他の
弾性層毎の側端部分と同一部材で造つてもよく、
すべての中央部分28Cも同一部材で造つてもよ
い。第1図で示したベヤリングと対照的に側端部
分28A,28Bは、その幅すなわちベヤリング
軸に平行に測つた寸法が同一である。図には示し
てないが、第3図の構造は熱と圧力のもとで圧縮
したものであるから、各弾性層の3部分は相互に
接着し、また隣接する挾み金及びベヤリング部材
にも接着して均一な積層ベヤリング構造を形成す
る。勿論この場合、障壁すなわち側端部分28
A,28Bは主として膨張制限部として働き、ま
た各弾性層の弾性係数は他のすべてのものと同じ
である。併しながら必要ならば第1図及び第2図
に関して述べた通り、それぞれの弾性層の正味の
弾性係数が半径の増加と共に減少又は増加するよ
うに、障壁部の幅を半径の増加と共に減少または
増加させてもよい。弾性層の厚み及び/或は弾性
係数がステツプ関数に従つて変化するようにベヤ
リングを造ることも考慮されている。すなわち、
例えば15の弾性層から成る円筒形または円錐形ベ
ヤリングにおいて、中心軸に最も近い方から始ま
る最初の3層は、次の3層とは異る正味の弾性係
数及び/或は厚みを有し、次の3層の群の各々は
また弾性係数及び/或は厚みが他のものと異なる
ものである。
FIG. 3 shows how the invention is applied to the manufacture of cylindrical laminated bearings. In this case, the assembled parts are the inner and outer bearing members 2
2, 24 and a plurality of intermediate cylindrical clamps 26, which are separated from each other by a three-part elastic layer consisting of side portions 28A, 28B and a central portion 28C. . Although the clamp is of uniform thickness, we will not discuss it here, although it is already easy to understand that the elastic layer may have a uniform thickness as shown in Figures 1 and 2. It is not shown. The thickness of the elastic layer increases with increasing diameter, as shown in FIG. 3, although it is clear that it may decrease with increasing diameter. For each layer, component parts 28A, 28B,
28C has the same thickness, but the side end portion 2
8A, 28B are constructed of the same relatively stiff resilient material, and differ in that the central portion 28C is constructed of a different, relatively soft resilient material. However, the side end portions 28A, 28B of each elastic layer may be made of the same material as the side end portions of other elastic layers,
All central portions 28C may also be made of the same material. In contrast to the bearing shown in FIG. 1, the side end portions 28A, 28B are identical in width, ie, dimension measured parallel to the bearing axis. Although not shown in the figure, since the structure of Figure 3 is compressed under heat and pressure, the three sections of each elastic layer adhere to each other and to the adjacent shims and bearing members. are also bonded to form a uniform laminated bearing structure. Of course, in this case the barrier or side end portion 28
A, 28B serve primarily as expansion limiters, and the elastic modulus of each elastic layer is the same as all others. However, if necessary, the width of the barrier section can be reduced or increased with increasing radius, such that the net elastic modulus of each elastic layer decreases or increases with increasing radius, as described with respect to FIGS. 1 and 2. May be increased. It is also contemplated to construct the bearing in such a way that the thickness and/or elastic modulus of the elastic layer varies according to a step function. That is,
For example, in a cylindrical or conical bearing consisting of 15 elastic layers, the first three layers starting closest to the central axis have a different net elastic modulus and/or thickness than the next three layers; Each of the next three layer groups also differs from the others in modulus of elasticity and/or thickness.

本発明はこれまで図示説明したもののほかにも
実施が可能である。すなわち、例えば比較的堅い
弾性部材で造つた膨張制限部または障壁の使用を
ベヤリングの片側に限定したベヤリングを製造す
ることは可能である。換言すれば第1図の実施例
について、弾性部分10Bを除き且つ部分10C
の長さを伸ばすことによつてベヤリングを造るこ
とが可能である。また、ある種の弾性層において
膨張制限部または障壁の使用を全くなくすること
も考慮された。すなわち、例えば本発明により、
堅い部材の膨張制限部の使用をベヤリングの外側
に最も近い所定数の弾性層に限定した円錐形ベヤ
リングが製作された。特定の用途として、膨張制
限部または障壁を外側の7つの層のみに使用した
15の弾性層から成る、第1図及び第2図に示した
と同様な円錐形ベヤリングが製作されている。
The present invention can be implemented in other ways than those shown and described above. That is, it is possible to manufacture a bearing in which the use of an expansion limiter or barrier, for example made of a relatively stiff elastic member, is limited to one side of the bearing. In other words, regarding the embodiment of FIG. 1, the elastic portion 10B is removed and the portion 10C is
It is possible to build a bearing by increasing the length of. It has also been considered to eliminate the use of expansion limits or barriers altogether in certain elastic layers. That is, for example, according to the present invention,
Conical bearings have been constructed that limit the use of rigid member expansion limitations to a predetermined number of elastic layers closest to the outside of the bearing. In certain applications, expansion limits or barriers were used in only the outer seven layers.
A conical bearing similar to that shown in FIGS. 1 and 2 has been fabricated, consisting of 15 elastic layers.

本発明の変型として更に可能なものは、両端部
分よりも堅い部材で中央部を造るように弾性層の
配置を逆にしたものから成る。この特定の配置
は、運動が比較的遅い場合には堅い部材の部分が
荷重を受け、運動が速い場合は柔軟な部材の部分
が荷重を受けるような、ある種のベヤリング構造
に適している。このような配置を使用し得る他の
例は、弾性材料と非伸張性材料の交互した円板の
配列層に接着した円板形の上下の端面保持部材か
ら成る円形積層ベヤリングパツドがあり、このベ
ヤリングパツドは交互の層に対し垂直に加わる圧
縮荷重を支持するように、またその中心軸のまわ
りの撚り運動に耐える要求にも適するように取付
けられたものである。このような場合、弾性層は
撚り荷重のもとでより大きな振れと、従つてより
大きな歪をその周縁で受ける。従つて、本発明に
従つて、各弾性層は少なくとも2部分すなわち比
較的堅い円形の中央部分及び比較的柔軟な環状の
外側部分として造ることになる。勿論各弾性層
は、中央部分を同心円状に取巻くいくつかの環状
部分によつて造り、環状部分を半径の増加と共に
順次柔軟になるようにすることができる。この場
合、本発明の他の実施例のように、合成弾性層の
外端部分は内側部分より大きい環境抵抗をもつよ
うに造つてもよい。勿論、テーパ状平坦ベヤリン
グを得るように中央部分28Cの相対的長さは順
次小さくしてもよい。
A further possible variant of the invention consists in reversing the arrangement of the elastic layers so that the central part is made of a stiffer member than the end parts. This particular arrangement is suitable for certain bearing structures where the stiff member portion is loaded when the movement is relatively slow, and the flexible member portion is loaded when the movement is fast. Another example where such an arrangement may be used is a circular laminate bearing pad consisting of upper and lower disc-shaped end retention members bonded to an array of alternating discs of elastic and non-stretchable material; is mounted to support compressive loads applied perpendicular to the alternating layers and also to meet the requirements of withstanding twisting movements about its central axis. In such cases, the elastic layer experiences greater deflection and therefore greater strain at its periphery under twisting loads. Accordingly, in accordance with the present invention, each elastic layer is constructed as at least two parts: a relatively stiff circular central part and a relatively flexible annular outer part. Of course, each elastic layer can be made up of several annular sections concentrically surrounding a central section, with the annular sections becoming progressively more flexible with increasing radius. In this case, as in other embodiments of the invention, the outer end portion of the synthetic elastic layer may be made to have greater environmental resistance than the inner portion. Of course, the relative length of central portion 28C may be progressively smaller to obtain a tapered flat bearing.

既に述べたように、本発明は多くの利益が得ら
れるが、その主要な利点は、できるだけ小形の2
つの異なる弾性部材を使用して、選択的に圧縮型
及び撚り型特性のベヤリングを構成しうることで
ある。併しながら同時に、弾性層が2つ以上の異
なつた弾性部材を含むように組立てることが可能
である。例えば、第1図及び第2図で示すような
円錐形ベヤリングを必要とする特殊用途に対して
は、側端部分の10Bが10Aより堅い部材で造
られて接着された側端部分が中間部分10Cより
堅いことが望ましいかも知れない。更に本発明の
重要な利点は、比較的堅い側端部分を使用したこ
とが、ベヤリングが反復した撚り及び圧縮荷重を
受ける時弾性層の露出端面で起り勝ちな、押出し
及び剥離侵食の結果として生ずるベヤリング故障
を軽減するに役立つことである。更にその他の利
点及び変形については当業者にとつては明らかな
ことであろう。
As already mentioned, the present invention has many benefits, but its main advantage is that it can be made as small as possible.
Two different elastic members can be used to selectively construct bearings of compression type and twist type characteristics. At the same time, however, it is possible to assemble the elastic layer to include two or more different elastic members. For example, for special applications requiring conical bearings as shown in Figures 1 and 2, the side end portion 10B is made of a harder material than 10A, and the side end portion 10A is glued to the intermediate portion. Stiffer than 10C may be desirable. A further important advantage of the present invention is that the use of relatively stiff side end portions eliminates the extrusion and delamination erosion that is likely to occur on the exposed end faces of the elastic layer when the bearing is subjected to repeated twisting and compressive loads. This is to help reduce bearing failure. Additional advantages and modifications will readily appear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弾性材料を関連金属部分に対して成型
及び接着する前の部品状態として、本発明によつ
て造られた円錐形ベヤリング構造の部品の縦断面
図、第2図は成型及び接着後の状態としての円錐
形ベヤリング構造を示す図、第3図は本発明によ
つて造られた円筒形ベヤリングの部品を示す第1
図と同様な縦断面図である。 図中、2,4……端面部材、10A,10B,
10C……弾性層、12……非伸張性層、22,
24……ベヤリング部材。
FIG. 1 is a longitudinal cross-sectional view of a part of a conical bearing structure made in accordance with the present invention, in the state of the part before the elastic material is molded and bonded to the associated metal parts, and FIG. 2 is after molding and bonding. FIG. 3 shows the conical bearing structure as shown in FIG.
It is a longitudinal cross-sectional view similar to the figure. In the figure, 2, 4...end face member, 10A, 10B,
10C...Elastic layer, 12...Non-stretchable layer, 22,
24...Bearing member.

Claims (1)

【特許請求の範囲】 1 圧縮荷重を支持する積層ベヤリングにおい
て、共通の中心の回りに一般的に円心状に配置さ
れた多数の弾性層及び非伸張性層から成り立ち、
前記弾性層の少なくとも幾つかは、それぞれ、前
記ベヤリングの反対端部において、少なくとも第
一側端部部分及び第二側端部部分並びに前記第一
及び第二側端部部分の間の第三部分から成り立つ
ており、前記第一及び第二側端部部分は、前記第
三部分の弾性係数と相違する弾性係数を有してお
り、また、前記第三部分の少なくとも幾つかは、
前記共通の中心からの距離の関数として相違する
幅を有しており、これにより、前記少なくとも幾
つかの層の有効弾性係数が、前記少なくとも幾つ
かの層と、前記共通の中心との間の距離の関数と
して相違するようにしたことを特徴とする積層ベ
ヤリング。 2 順次の層が、前記共通の中心の回りに順次増
加する半径の上に配置され且つ弾性層の少なくと
も2個の厚みが相互に異なつている特許請求の範
囲第1項記載の積層ベヤリング。 3 各弾性層の厚みが、実質的に等しい特許請求
の範囲第1項記載の積層ベアリング。 4 第一及び第二の側端部分が同一の弾性係数を
有している特許請求の範囲第1項記載の積層ベヤ
リング。 5 弾性層の少なくとも1個が、第三部分よりも
より大きな弾性係数の第一及び第二側端部分を有
している特許請求の範囲第1項記載の積層ベヤリ
ング。 6 弾性層の少なくとも1個が、第三部分よりも
より小さな弾性係数の第一及び第二側端部分を有
している特許請求の範囲第1項記載の積層ベアリ
ング。 7 積層ベヤリングのすべての弾性層が、第一側
端部分、第二側端部分及び第三部分を有している
特許請求の範囲第1項記載の積層ベヤリング。 8 少なくとも1個の弾性層の第一及び第二側端
部分が、積層ベヤリングの横方向において、少な
くとも1個の他の弾性層の第一及び第二側端部分
よりも、より大きな寸法を有している特許請求の
範囲第1項記載の積層ベアリング。 9 第一及び第二側端部分が、第一の材料から成
り立つており、また、第三部分が第二の材料から
成り立つており、少なくとも幾つかの第三部分
が、共通の中心からの距離の関数として異なつた
幅を有している特許請求の範囲第1項記載の積層
ベアリング。
Claims: 1. A laminated bearing for supporting compressive loads, consisting of a number of elastic and inextensible layers generally arranged concentrically around a common center;
At least some of the elastic layers have at least a first side end portion and a second side end portion and a third portion between the first and second side end portions, respectively, at opposite ends of the bearing. the first and second side end portions have a modulus of elasticity different from the modulus of elasticity of the third portion, and at least some of the third portion comprises:
having different widths as a function of distance from the common center, such that the effective elastic modulus of the at least some layers is greater than or equal to the width between the at least some layers and the common center. A laminated bearing characterized in that it differs as a function of distance. 2. A laminated bearing according to claim 1, wherein the successive layers are arranged on successively increasing radii around the common center and the thicknesses of at least two of the elastic layers differ from each other. 3. The laminated bearing according to claim 1, wherein each elastic layer has substantially the same thickness. 4. The laminated bearing according to claim 1, wherein the first and second side end portions have the same elastic modulus. 5. The laminated bearing of claim 1, wherein at least one of the elastic layers has first and second side end portions with a greater elastic modulus than the third portion. 6. The laminated bearing of claim 1, wherein at least one of the elastic layers has first and second side end portions having a smaller elastic modulus than the third portion. 7. The laminated bearing according to claim 1, wherein all the elastic layers of the laminated bearing have a first side end portion, a second side end portion and a third side portion. 8 the first and second side edge portions of the at least one elastic layer have larger dimensions in the lateral direction of the laminated bearing than the first and second side edge portions of the at least one other elastic layer; A laminated bearing according to claim 1. 9 The first and second side end portions are comprised of a first material and the third portion is comprised of a second material, and at least some of the third portions are at a distance from a common center. 2. Laminated bearing according to claim 1, having different widths as a function of .
JP7103278A 1977-06-15 1978-06-14 Piled layers bearing Granted JPS548247A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80681177A 1977-06-15 1977-06-15

Publications (2)

Publication Number Publication Date
JPS548247A JPS548247A (en) 1979-01-22
JPS6256370B2 true JPS6256370B2 (en) 1987-11-25

Family

ID=25194898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103278A Granted JPS548247A (en) 1977-06-15 1978-06-14 Piled layers bearing

Country Status (8)

Country Link
JP (1) JPS548247A (en)
BR (1) BR7803816A (en)
CA (1) CA1095573A (en)
DE (1) DE2819306A1 (en)
FR (1) FR2394707A1 (en)
GB (1) GB1573470A (en)
IL (1) IL54495A (en)
IT (1) IT1103290B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003251B (en) * 1977-08-01 1982-08-25 Lord Corp Laminated bearing with plural modulus layer
AT354862B (en) * 1977-09-22 1980-02-11 Joern Raoul Dipl Ing ELASTIC MOTOR MOUNT, IN PARTICULAR FOR MOTOR VEHICLES
US4291925A (en) * 1979-07-26 1981-09-29 Barry Wright Corporation Laminated bearings with dual stock layers
US4286827A (en) * 1979-10-11 1981-09-01 Barry Wright Corporation Cylindrical elastomeric bearing
FR2511105B1 (en) * 1981-08-07 1986-09-19 Peugeot ELASTIC HOLDER, PARTICULARLY FOR THE SUSPENSION OF A VEHICLE ENGINE
FR2566735B1 (en) * 1984-06-27 1986-12-26 Technip Geoproduction ARTICULATION DEVICE BETWEEN A MARINE INSTALLATION AND A MOORING ARM OF A FLOATING INSTALLATION
US4765758A (en) * 1985-01-07 1988-08-23 Barry Wright Corporation Laminated bearing
JPS62297551A (en) * 1986-06-16 1987-12-24 Hitachi Ltd Axle spring for rolling stock
GB9016633D0 (en) * 1990-07-28 1990-09-12 Dunlop Ltd Manufacture of a heavy duty elastomeric bearing
JP2004316782A (en) * 2003-04-16 2004-11-11 Toyo Tire & Rubber Co Ltd Rubber vibration isolator for motor
DE102005028565A1 (en) * 2005-06-21 2007-01-04 Contitech Luftfedersysteme Gmbh Highly elastic layered spring
US20090039574A1 (en) * 2007-08-10 2009-02-12 Paul William Cook Spring assembly
US11732747B2 (en) * 2022-01-05 2023-08-22 Textron Innovations Inc. Journal bearings

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE516580C (en) * 1928-10-10 1931-01-24 Emil Zorn Akt Ges Spacer plate made of flexible building materials between pressure-generating and pressure-absorbing components
US2560627A (en) * 1946-01-17 1951-07-17 Gomma Antivibranti Applic Combination metal and rubber structure
US2752766A (en) * 1952-04-04 1956-07-03 Wildhaber Ernest Laminated mounting and connection, especially for universal joints
US2900182A (en) * 1955-04-27 1959-08-18 William L Hinks Static load bearings
BE588408A (en) * 1959-03-13 1960-09-08 Glaenzer Spicer Sa Universal flexible coupling for transmissions
US3083065A (en) * 1959-08-10 1963-03-26 William L Hinks Static load bearing having preformed lateral support features
DE1475023A1 (en) * 1964-12-15 1969-03-27 Hinks William L Layer bearing made of alternating metal and elastomer layers
DE1264876B (en) * 1966-09-23 1968-03-28 Atlas Mak Maschb G M B H Pressure-push rubber layer spring, especially bridge spring for bogie rail vehicles
US3377110A (en) * 1966-09-26 1968-04-09 Caterpillar Tractor Co Track pin assembly and bushing
FR1588573A (en) * 1968-03-29 1970-04-17
US3606295A (en) * 1968-11-12 1971-09-20 Unilan Ag Shock absorber
US3679197A (en) * 1971-05-27 1972-07-25 Lord Corp Compressive load carrying bearings
US3941433A (en) * 1975-05-05 1976-03-02 Thiokol Corporation Flexible bearing having low torque resistance
US4040690A (en) * 1975-11-17 1977-08-09 Lord Corporation Laminated bearing
FR2370900A1 (en) * 1976-11-10 1978-06-09 Europ Propulsion FLEXIBLE STOPPER PART

Also Published As

Publication number Publication date
IT1103290B (en) 1985-10-14
IL54495A (en) 1980-02-29
GB1573470A (en) 1980-08-20
JPS548247A (en) 1979-01-22
FR2394707A1 (en) 1979-01-12
BR7803816A (en) 1979-01-16
DE2819306A1 (en) 1979-01-04
CA1095573A (en) 1981-02-10
FR2394707B1 (en) 1983-06-10
IL54495A0 (en) 1978-07-31
IT7849454A0 (en) 1978-05-19
DE2819306C2 (en) 1987-06-25

Similar Documents

Publication Publication Date Title
JPS5855377B2 (en) multilayer support
JPS6256370B2 (en)
US4435097A (en) Laminated bearing structures
US2273869A (en) Resilient support
US4349184A (en) Laminated bearings having elastomer layers of varying dimensions
US3941433A (en) Flexible bearing having low torque resistance
JPS6216334B2 (en)
US3429622A (en) Flexible bearings and process for their manufacture
US4958812A (en) Suspension spring system
US4627885A (en) Method of producing a compression loaded torsional coupling device
EP0187265B1 (en) Laminated compound support element
US4291925A (en) Laminated bearings with dual stock layers
US4256354A (en) Laminated bearing structures
US5811911A (en) Piezoelectric actuator
US20150377312A1 (en) Partitioned elastomeric journal bearing assemblies, systems and methods
US3235941A (en) Method of making tubular joints
JP2502388B2 (en) Mold and manufacturing method thereof
JP2001140977A (en) Base isolation support body
JPH0229890B2 (en)
JPH0737815B2 (en) Shaft coupling member
JP4061818B2 (en) Seismic isolation device
JPS5947540A (en) Elastic assembly
US4194372A (en) Flexible drive coupling
JPS58166152A (en) Vibration-isolation bearing and its manufacture
JPS6131331B2 (en)