JPH10167862A - Carbon fiber reinforced carbon composite material - Google Patents

Carbon fiber reinforced carbon composite material

Info

Publication number
JPH10167862A
JPH10167862A JP35396396A JP35396396A JPH10167862A JP H10167862 A JPH10167862 A JP H10167862A JP 35396396 A JP35396396 A JP 35396396A JP 35396396 A JP35396396 A JP 35396396A JP H10167862 A JPH10167862 A JP H10167862A
Authority
JP
Japan
Prior art keywords
sic
coating
coating layer
fiber reinforced
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35396396A
Other languages
Japanese (ja)
Other versions
JP3818606B2 (en
Inventor
Toshiya Sedaka
俊哉 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP35396396A priority Critical patent/JP3818606B2/en
Publication of JPH10167862A publication Critical patent/JPH10167862A/en
Application granted granted Critical
Publication of JP3818606B2 publication Critical patent/JP3818606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon fiber reinforced carbon composite material excellent in stability and durability even in a sever space environment at high temp. and under low pressure and further having superior oxidation and erosion resistances. SOLUTION: Gaseous SiO is brought into contact with the surface of a substrate 5 of a carbon fiber reinforced carbon composite material and an SiC coating layer 1 is formed by a conversion method. The top of the layer 1 is coated with SiC by CVD technique and the SiC is highly crystallized by heat treatment. The top of the highly crystallized SiC 2 is coated with a glassy material 3 and an oxidation resistant layer 4 made of a mixture of SiC powder with SiC fibers and a glassy binder is formed on the top of the glassy material 3. By this multiple coating, erosion resistance as well as oxidation resistance is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温低圧下におい
ても優れた耐酸化性及び耐エロージョン性を有する炭素
繊維強化炭素複合材に関する。
The present invention relates to a carbon fiber reinforced carbon composite material having excellent oxidation resistance and erosion resistance even under high temperature and low pressure.

【0002】[0002]

【従来の技術】炭素繊維強化複合材(以下、「C/C
材」という。)は、卓越した比強度、比弾性率を有する
うえに優れた耐熱性及び化学的安定性を備えているた
め、航空宇宙用をはじめ多くの分野で構造材料として有
用されているが、この材料には易酸化性という炭素材固
有の材質的な欠点があり、これが汎用性を阻害する最大
のネックとなっている。このため、C/C材の表面に耐
酸化性の被覆を施して改質化する試みが従来からおこな
われており、例えばZrO2 、Al2 3 、SiC、S
3 4 等のセラミックス系物質によって被覆処理する
方法が提案されている。しかし、SiC被覆層を除いて
は、使用時の熱サイクルで被覆界面に層間剥離や亀裂が
生じ、酸化の進行を十分に阻止する機能が発揮されな
い。
2. Description of the Related Art Carbon fiber reinforced composite materials (hereinafter referred to as "C / C")
Material ". ) Is used as a structural material in many fields, including aerospace, because it has excellent specific strength, specific elastic modulus, and excellent heat resistance and chemical stability. Has a shortcoming inherent in carbon materials such as oxidizability, which is the biggest bottleneck in versatility. For this reason, attempts have been made to modify the surface of the C / C material by applying an oxidation-resistant coating thereon, for example, ZrO 2 , Al 2 O 3 , SiC, S
A method of coating with a ceramic material such as i 3 N 4 has been proposed. However, except for the SiC coating layer, delamination and cracks occur at the coating interface during a thermal cycle during use, and the function of sufficiently preventing the progress of oxidation is not exhibited.

【0003】従来、C/C基材の表面にSiCの被覆を
施す方法として、気相反応により生成するSiCを直接
沈着させるCVD法(化学的気相蒸着法)と、基材の炭
素を反応源に利用して珪素成分と反応させることにより
SiCに転化させるコンバージョン法が知られている。
ところが、前者のCVD法を適用して形成したSiC被
覆層は、基材との界面が明確に分離している関係で、熱
衝撃を与えると相互の熱膨張差によって層間剥離現象が
起こり易い。このため、高温域での十分な耐酸化性は望
めない。これに対し、後者のコンバージョン法による場
合には基材の表層部が連続組織としてSiC層を形成す
る傾斜機能材質となるため界面剥離を生じることはない
が、CVD法に比べて緻密性に劣るうえ、反応時、被覆
層に微小なクラックが発生する問題がある。
Conventionally, as a method of coating SiC on the surface of a C / C substrate, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited, and a carbon of the substrate are reacted. There is known a conversion method of converting SiC by reacting with a silicon component by using it as a source.
However, in the SiC coating layer formed by applying the former CVD method, the interface between the SiC coating layer and the base material is clearly separated, and when a thermal shock is applied, a delamination phenomenon easily occurs due to a difference in thermal expansion between the two. For this reason, sufficient oxidation resistance in a high temperature range cannot be expected. On the other hand, in the case of the latter conversion method, the surface layer portion of the base material becomes a functionally graded material forming a SiC layer as a continuous structure, so that there is no occurrence of interfacial delamination. In addition, there is a problem that minute cracks occur in the coating layer during the reaction.

【0004】このような問題点を解決するものとして、
C/C基材面にSiO接触によるコンバージョン法で第
1のSiC被膜を形成し、さらにその表面をアモルファ
スSiCが析出するような条件でCVD法による第2の
SiC被覆層を形成する耐酸化処理法(特開平4-12078
号公報)、更にこれを改良して第2の被覆層を減圧加熱
下でハロゲン化有機珪素化合物を基材組織に間欠的に充
填して還元熱分解させるパルスCVI法を用いて形成す
る耐酸化処理法(特開平4-42878号公報)及び該第2被
覆層に発生するクラックをB2 3 −SiO2 ガラスで
封止する第3被覆層を形成する耐酸化処理法(特開平4
-243989 号公報)等が提案されている。かかるB2 3
−SiO2 ガラス被膜を形成する耐酸化性C/C材は、
過酷な高温酸化雰囲気に対しても十分安定な耐久性を発
揮する。
[0004] In order to solve such problems,
An oxidation-resistant treatment in which a first SiC coating is formed on a C / C substrate surface by a conversion method using SiO contact, and a second SiC coating layer is formed on the surface by a CVD method under such conditions that amorphous SiC is deposited. Method (Japanese Unexamined Patent Publication No.
Oxidation resistance formed by using a pulsed CVI method in which the second coating layer is intermittently filled with a halogenated organosilicon compound in a base material tissue under reduced pressure heating and reduced and thermally decomposed. treatment (JP-a-4-42878) and the second cracks occur in the coating layer B 2 O 3 -SiO 2 oxidation treatment to form a third coating layer is sealed with a glass (Patent 4
-243989). Such B 2 O 3
-The oxidation resistant C / C material forming the SiO 2 glass coating is:
Demonstrate sufficiently stable durability even in severe high temperature oxidizing atmosphere.

【0005】しかしながら、上記第3被覆層を形成する
耐酸化性C/C材であっても、宇宙環境において、宇宙
往還機のノーズキャップ等の裏面側を想定して実施され
る高温、低圧下での試験(低圧揮散試験)で詳細に検討
した結果、1回の緊急大気圏突入を想定した条件下では
第2被覆層が大きく酸化減耗し、上記のような特定環境
下では耐久性に劣るという問題があった。
[0005] However, even in the case of the oxidation-resistant C / C material forming the third coating layer, in a space environment, a high-temperature, low-pressure operation is performed under the assumption of the back side of a nose cap or the like of a spacecraft. As a result of a detailed study in the test (low-pressure volatilization test), the second coating layer is greatly oxidized and depleted under conditions assuming one emergency entry into the atmosphere, and is inferior in durability under the specific environment described above. There was a problem.

【0006】このような問題点を解決するものとして、
SiC被覆層上にガラス質としてNa2 SiO3 、無機
フィラーとしてSiC粉末と繊維状物質の混合物を使用
し、これを混合してスラリー状にしてSi被覆上に塗布
し、保護膜を形成する耐酸化処理法(米国特許番号4471
023 号公報)が提案されている。しかしながら、耐酸化
処理法で使用されるバインダーとしてのNa2 SiO3
は、蒸気圧が高いため1000℃付近までの耐酸化性に
は有効であるものの、1000℃を超える高温、低圧下
ではNa2 SiO3 ガラスが揮散しコーティング膜が剥
離してしまいSiCの保護膜として機能しないとう問題
がある。
[0006] To solve such problems,
Na 2 SiO 3 is used as a glass material on the SiC coating layer, and a mixture of SiC powder and a fibrous substance is used as an inorganic filler. The mixture is slurried and applied on the Si coating to form an acid-resistant material for forming a protective film. (US Patent No. 4471
023) has been proposed. However, Na 2 SiO 3 as a binder used in the oxidation-resistant treatment method
Is effective for oxidation resistance up to around 1000 ° C. because of its high vapor pressure. However, under high temperature and low pressure over 1000 ° C., Na 2 SiO 3 glass is volatilized, and the coating film is peeled off. There is a problem that does not work as.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、約1600℃までの高温領域、低圧下において優れ
た耐酸化性及び耐エロージョン性を有し、繰り返し使用
可能な炭素繊維強化炭素複合材を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a carbon fiber reinforced carbon composite having excellent oxidation resistance and erosion resistance in a high temperature range up to about 1600 ° C. and low pressure, and which can be used repeatedly. To provide materials.

【0008】[0008]

【課題を解決するための手段】かかる実情において、本
発明は鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、炭素繊維強化炭素複合材の基材面
に、傾斜機能を有する多結晶質のSiC被膜からなる第
1被覆層、微細多結晶質のSiC被膜又はこれを加熱処
理して得られる高結晶質のSiC被膜からなる第2被覆
層、ガラス被膜からなる第3被覆層及びガラス質と、S
iC及びMoSi2 の1種又は2種のセラミックスフィ
ラーとの混合物からなる第4被覆層が積層形成されてな
ることを特徴とする炭素繊維強化炭素複合材を提供する
ものである。
Under such circumstances, the present invention has been intensively studied, and as a result, the present invention has been completed.
That is, the present invention provides a first coating layer composed of a polycrystalline SiC coating having a gradient function, a fine polycrystalline SiC coating, or a heat treatment of the same, on a substrate surface of a carbon fiber reinforced carbon composite material. A second coating layer made of a highly crystalline SiC coating, a third coating layer made of a glass coating, and vitreous;
It is an object of the present invention to provide a carbon fiber reinforced carbon composite material characterized in that a fourth coating layer composed of a mixture of one or two kinds of ceramic fillers of iC and MoSi 2 is laminated.

【0009】[0009]

【発明の実施の形態】基材となるC/Cは、炭素繊維の
織布、フエルト、トウなどの強化繊維に炭化残留率の高
いマトリックス樹脂液を含浸または塗布して半硬化プリ
プレグを形成し、次いで積層成形したのち、硬化及び焼
成炭化処理する常用の方法で製造されたものが使用さ
れ、特に材料の限定はない。したがって、通常、強化材
の炭素繊維にはポリアクリロニトリル系、レーヨン系、
ピッチ系など各種のものが、またマトリックス樹脂とし
てフェノール系、フラン系その他炭化性の良好な液状熱
硬化性樹脂を用いたものが使用できる。また、必要に応
じてマトリックス樹脂を含浸、硬化及び炭化する処理を
反復して組織の緻密化を図ってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS C / C as a base material is formed by impregnating or applying a matrix resin solution having a high carbonization residual rate to a reinforcing fiber such as a woven fabric of carbon fiber, felt, and tow to form a semi-cured prepreg. Then, after lamination molding, a material produced by a conventional method of hardening and firing and carbonizing is used, and there is no particular limitation on the material. Therefore, the carbon fibers of the reinforcing material usually include polyacrylonitrile, rayon,
Various types such as a pitch type, and a type using a phenol type, a furan type, or a liquid thermosetting resin having a good carbonization property as a matrix resin can be used. Further, if necessary, the process of impregnating, hardening and carbonizing the matrix resin may be repeated to densify the tissue.

【0010】第1被覆層は、C/C基材の表層部が外面
に向かうに従って次第にSiCの組織化が進む傾斜機能
性状の多結晶質SiC被膜で、適切な膜厚は50〜10
0μmの範囲とすることが、良好な傾斜機能組織を形成
するとともに基材の強度低下を極力避けることから好ま
しい。
The first coating layer is a functionally graded polycrystalline SiC film in which the organization of SiC gradually progresses as the surface layer of the C / C base material moves toward the outer surface.
It is preferable that the thickness be in the range of 0 μm in order to form a good functionally graded structure and to minimize a decrease in the strength of the base material.

【0011】第2被覆層は、第1被覆層におけるSiC
組織の微細なクラックや空隙を充填封止するための微細
多結晶質又は高多結晶質のSiC被膜で、好適な膜厚は
10〜50μmの範囲である。10μmを下廻る膜厚で
は前記の充填封止効果が不十分となり、50μmを超え
る膜厚は不要となる。
The second coating layer is made of SiC in the first coating layer.
A fine polycrystalline or highly polycrystalline SiC film for filling and sealing fine cracks and voids in the structure, and the preferable film thickness is in the range of 10 to 50 μm. If the film thickness is less than 10 μm, the above-mentioned filling and sealing effect becomes insufficient, and a film thickness exceeding 50 μm becomes unnecessary.

【0012】第3被覆層は、第2被覆層の生じる微小な
亀裂を目詰めするために形成されるもので、ガラス被
膜、好ましくはSiO2 、Al2 3 又はZrO2 の単
体又は複合体であるガラス被膜で構成される。好適な膜
厚は5〜20μmの範囲で、これを下廻ると耐酸化性改
善効果が有効に達成されず、20μmを超える膜厚は不
要である。
The third coating layer is formed in order to plug small cracks generated in the second coating layer. The third coating layer is a glass coating, preferably a simple substance or a composite of SiO 2 , Al 2 O 3 or ZrO 2. And a glass coating of The preferred film thickness is in the range of 5 to 20 μm. Below this, the effect of improving the oxidation resistance is not effectively achieved, and a film thickness exceeding 20 μm is unnecessary.

【0013】第4被覆層は、ガラス質と、SiC及びM
oSi2 の1種又は2種のセラミックスフィラーとの混
合物からなる。好適な膜厚は100〜200μmであ
り、100μm未満では第2被覆層の保護膜としての機
能が満たされず、200μmを超えると加熱時に膜の剥
離が発生するので好ましくない。また、上記ガラス質と
しては、特に制限されないが、SiO2 、Al2 3
びZrO2 から選ばれる1種又は2種以上が好ましい。
The fourth coating layer is made of glass, SiC and M
It consists of a mixture of oSi 2 with one or two ceramic fillers. A preferred film thickness is 100 to 200 μm, and if it is less than 100 μm, the function of the second coating layer as a protective film is not satisfied, and if it exceeds 200 μm, the film is undesirably peeled off when heated. The glassy material is not particularly limited, but is preferably one or more selected from SiO 2 , Al 2 O 3 and ZrO 2 .

【0014】上記の積層構成を備える耐酸化性C/C材
は、下記のようにして製造することができる。第1被覆
層は、SiO2 粉末とSiもしくはC粉末を混合して密
閉加熱系に収納し、系内にC/C基材をセットして加熱
処理する工程により形成される。加熱段階でSiO2
還元され、生成したSiOガスがC/C基材を構成する
炭素と反応して表層部をSiCに転化する。反応条件と
しては、SiO2 に対するSi又はCの配合量を重量比
で2:1、加熱温度を1800〜2000℃、系内を還
元又は中性雰囲気とするのが好ましく、これによって基
材のC層と被覆層のSiCが界面で連続的に変化する傾
斜機能を備える組織状態が形成される。これにより、第
2被膜層とC/C材間に生じる熱応力緩和層としての役
割を果たすことができる。
The oxidation resistant C / C material having the above-mentioned laminated structure can be manufactured as follows. The first coating layer is formed by a process in which SiO 2 powder and Si or C powder are mixed, housed in a closed heating system, and a C / C substrate is set in the system and heat-treated. In the heating step, SiO 2 is reduced, and the generated SiO gas reacts with the carbon constituting the C / C base material to convert the surface layer into SiC. As the reaction conditions, it is preferable that the blending amount of Si or C with respect to SiO 2 is 2: 1, the heating temperature is 1800 to 2000 ° C., and the inside of the system is reduced or neutral atmosphere. A textured state with a tilting function is formed in which the SiC of the layer and the coating layer change continuously at the interface. Thereby, it can serve as a thermal stress relieving layer generated between the second coating layer and the C / C material.

【0015】第2被覆層の形成は、ハロゲン化有機珪素
化合物及び水素の混合ガス又はハロゲン化珪素、炭化水
素及び水素との混合ガスを石英反応室内で加熱されてい
るC/C材にガス状態で接触させる操作を短周期で間欠
的に反復するパルスCVI工程によって行なわれる。該
ハロゲン化有機珪酸化合物としては、トリクロロメチル
シラン(CH3 SiCl3 )が挙げられる。全ガス量に
対するトリクロロメチルシランのモル濃度は5〜10%
とするのが好ましい。また、反応室内は常圧、反応温度
は1400〜1500℃が好ましい。この反応温度を適
宜制御することにより、析出するSiCの組成をSi:
C=1:1とする微細多結晶質のSiC被膜を得ること
ができる。さらに、また、この第2被膜を不活性雰囲気
に保持された加熱炉内に移して1600〜1900℃の
加熱処理を行うことでSiCの結晶内に存在する結晶欠
陥及び結晶不整を排除するとともに高結晶質のSiC被
膜を得ることができる。該第2被膜により、第1被膜の
表面は緻密でかつガス不浸透性の被膜層として形成され
る。
The second coating layer is formed by mixing a mixed gas of a halogenated organosilicon compound and hydrogen or a mixed gas of silicon halide, hydrocarbon and hydrogen into a C / C material heated in a quartz reaction chamber. Is carried out by a pulse CVI process in which the operation of contacting is performed intermittently in a short cycle. Examples of the halogenated organic silicate compound include trichloromethylsilane (CH 3 SiCl 3 ). The molar concentration of trichloromethylsilane with respect to the total gas amount is 5 to 10%.
It is preferred that The reaction chamber is preferably at normal pressure and the reaction temperature is preferably 1400 to 1500 ° C. By appropriately controlling the reaction temperature, the composition of the precipitated SiC is changed to Si:
A fine polycrystalline SiC film with C = 1: 1 can be obtained. Further, the second coating is transferred to a heating furnace maintained in an inert atmosphere and subjected to a heat treatment at 1600 to 1900 ° C., thereby eliminating crystal defects and crystal irregularities present in the SiC crystal and improving the quality. A crystalline SiC coating can be obtained. With the second coating, the surface of the first coating is formed as a dense and gas-impermeable coating layer.

【0016】第3被膜の形成は、例えばSiO2 、Al
2 3 、B2 3 及びZrO2 の単体又は複合体を形成
することが好ましく、これらは、Si、Al、B及びZ
rから選ばれる各原子の1種又は2種以上を含有する金
属アルコキシド、Siでは、例えばテトラエトキシシラ
ン(Si(OC2 5 4 )を加水分解して得られるガ
ラス前駆体を塗布後、100℃で乾燥、次いで500〜
1000℃で加熱処理する方法により行うことができ
る。第3被覆層の形成により、C/C材と被覆膜間の熱
応力をさらに緩和するとともに、第2被膜層に発生する
微妙な欠陥及び表面をコーティングし、欠陥からの酸素
の浸入を防ぎ、耐酸化性を向上させることができる。
The formation of the third coating is performed, for example, using SiO 2 , Al
It is preferable to form a simple substance or a composite substance of 2 O 3 , B 2 O 3 and ZrO 2 , which are composed of Si, Al, B and Zr.
For metal alkoxides containing one or more of each atom selected from r, Si, for example, after applying a glass precursor obtained by hydrolyzing tetraethoxysilane (Si (OC 2 H 5 ) 4 ), Dry at 100 ° C, then 500 ~
The heat treatment can be performed at 1000 ° C. The formation of the third coating layer further reduces the thermal stress between the C / C material and the coating film, and coats the delicate defects and surface generated in the second coating layer to prevent oxygen from entering the defects. And the oxidation resistance can be improved.

【0017】第4被覆層は、例えばSi、Al及びZr
の各原子から選ばれる1種又は2種を含有するガラス前
駆体と、SiC及びMoSi2 の1種又は2種のセラミ
ックスフィラーを混合してスラリーとし、これを炭素材
に塗布し、次いで乾燥加熱処理することにより製造され
る。
The fourth coating layer is made of, for example, Si, Al and Zr.
A glass precursor containing one or two selected from the following atoms and one or two ceramic fillers of SiC and MoSi 2 are mixed to form a slurry, which is applied to a carbon material, and then dried and heated. Manufactured by processing.

【0018】上記ガラス前駆体としては、特に制限され
ず、金属アルコキシドを加水分解する方法で調製したも
の及び市販のゾル等が挙げられる。
The above-mentioned glass precursor is not particularly restricted but includes those prepared by a method of hydrolyzing a metal alkoxide and commercially available sols.

【0019】第4被覆層において、上記セラミックスフ
ィラーの形態としては、特に制限されず、粉末状、繊維
状のいずれでもよいが、特に粉末状と繊維状の混合物を
用いることが好ましい。該混合物の場合、繊維状物質と
粉末状物質の配合比は、0〜1/1が好ましい。
In the fourth coating layer, the form of the ceramic filler is not particularly limited, and may be powdery or fibrous, but it is particularly preferable to use a mixture of powdery and fibrous. In the case of the mixture, the compounding ratio of the fibrous substance and the powdery substance is preferably from 0 to 1/1.

【0020】また、ガラス質前駆体とセラミックスフィ
ラーを混合する際、ガラス質とセラミックスフィラーの
配合比として、重量比で1/10〜1/1とするのが好ま
しく、特に3/5〜1/1が好ましい。
When the vitreous precursor and the ceramic filler are mixed, the mixing ratio of the vitreous and the ceramic filler is preferably 1/10 to 1/1, more preferably 3/5 to 1/1, by weight. 1 is preferred.

【0021】スラリーを炭素材に塗布する方法として
は、特に制限されず、刷毛塗り方法及びスプレーによる
吹き付け方法等が挙げられ、これらは、炭素材の形状に
応じて適宜選定すればよい。スラリー塗布後、乾燥加熱
処理を行えばよく、乾燥加熱温度としては、特に制限さ
れず、例えば200℃程度の温度で行えばよい。
The method for applying the slurry to the carbon material is not particularly limited, and includes a brush coating method and a spraying method using a spray, and these may be appropriately selected according to the shape of the carbon material. After the slurry is applied, a drying and heating treatment may be performed. The drying and heating temperature is not particularly limited, and may be, for example, a temperature of about 200 ° C.

【0022】このようにして得られた本発明のC/C材
の構造の概略図を図1に示す。図1に示すように、該C
/C材10は、第1被覆層1、第2被覆層2、第3被覆
層3及び第4被覆層4の積層構造をとる。
FIG. 1 shows a schematic view of the structure of the C / C material of the present invention obtained in this manner. As shown in FIG.
The / C material 10 has a laminated structure of a first coating layer 1, a second coating layer 2, a third coating layer 3, and a fourth coating layer 4.

【0023】本発明のC/C材は、1600℃程度まで
の高温領域下において、耐久性を有し、繰り返しの使用
ができるため、例えば航空宇宙材料、タービンブレード
及び原子炉用部材の用途に適用できる。特に、宇宙環境
における高温、低圧下で繰り返し使用される宇宙往還機
の部材として好適である。
The C / C material of the present invention is durable and can be used repeatedly in a high temperature range of up to about 1600 ° C., and is used for, for example, aerospace materials, turbine blades, and members for nuclear reactors. Applicable. In particular, it is suitable as a member of a spacecraft that is repeatedly used under high temperature and low pressure in a space environment.

【0024】[0024]

【実施例】次に、実施例により本発明をさらに具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention.

【0025】実施例1 (1)C/C複合基材の作製 ポリアクリルニトリル系高強度高弾性タイプの平織炭素
繊維布にフェノール樹脂初期縮合物(大日本インキ社
製)をマトリックスとして十分に塗布し、48時間風乾
してプリプレグシートを作成した。このプリプレグシー
トを積層してモールドに入れ、加熱温度100℃・適用
圧力20kg/cm2 の条件で複合成形した。この成形体を
250℃の温度に加熱して完全に硬化した後、窒素雰囲
気に保持された焼成炉内に移し、5℃/hrの昇温速度で
2000℃まで上昇し5時間保持して焼成炭化した。こ
のようにして、炭素繊維の体積含有率(Vf) 65%、見
かけ比重1.65g/ccのC/C複合基材を作成した。
Example 1 (1) Preparation of C / C Composite Substrate A polyacrylonitrile-based high-strength, high-elasticity type plain woven carbon fiber cloth was sufficiently coated with a phenol resin precondensate (manufactured by Dainippon Ink) as a matrix. Then, it was air-dried for 48 hours to prepare a prepreg sheet. The prepreg sheets were laminated and placed in a mold, and composite-molded under the conditions of a heating temperature of 100 ° C. and an applied pressure of 20 kg / cm 2 . After heating this molded body to a temperature of 250 ° C. to completely cure it, it is transferred into a firing furnace maintained in a nitrogen atmosphere, heated to 2000 ° C. at a rate of 5 ° C./hr, and held for 5 hours for firing. Carbonized. Thus, a C / C composite base material having a carbon fiber volume content (Vf) of 65% and an apparent specific gravity of 1.65 g / cc was prepared.

【0026】(2)第1被覆工程 SiO2 粉末とSi粉末を2:1(重量比)の配合比率
になるように混合し、混合粉末を黒鉛坩堝に入れて上部
にC/C材をセットした。この黒鉛坩堝を電気炉内に移
し、内部をアルゴンガスで十分に置換した後、50℃/
hrの速度で1850℃まで昇温させ、1時間保持してC
/C基材の表層部に傾斜機能を有する多結晶質SiC被
覆層を形成した。形成されたSiC被覆層の厚さは約5
0μmであったが、この表面には幅数μmの微細な亀裂
が発生しているのが確認された。
(2) First coating step The SiO 2 powder and the Si powder are mixed in a mixing ratio of 2: 1 (weight ratio), the mixed powder is put into a graphite crucible, and a C / C material is set on the upper part. did. The graphite crucible was transferred into an electric furnace, and the inside was sufficiently replaced with argon gas.
The temperature is raised to 1850 ° C at the rate of hr
A polycrystalline SiC coating layer having a tilt function was formed on the surface layer of the / C base material. The thickness of the formed SiC coating layer is about 5
Although it was 0 μm, it was confirmed that fine cracks having a width of several μm were generated on this surface.

【0027】(3)第2被覆工程 第1被覆膜を形成したC/C材をCVD装置の反応管内
に設置し、管内をアルゴンガスで十分に置換した後、高
周波誘導加熱によりC/C材の温度を1500℃に上昇
した。ついで、トリクロロメチルシラン(CH3 SiC
3 )と水素ガスを混合し、CH3 SiCl3 のモル濃
度を7.5%として導入し、多結晶のSiCを沈着させ
た。形成されたSiC被覆層の厚さは150μmであ
り、微細な亀裂は存在するが、第1被覆工程後と比較す
ると亀裂の幅・数共に減少していた。次いで、これを不
活性雰囲気下、1800℃で熱処理を行うことでSiC
膜の高結晶化を図り、更に、SiC膜内に存在する熱応
力を緩和した。
(3) Second Coating Step The C / C material on which the first coating film is formed is placed in a reaction tube of a CVD apparatus, and the inside of the tube is sufficiently replaced with argon gas. The temperature of the material was increased to 1500 ° C. Then, trichloromethylsilane (CH 3 SiC
l 3 ) was mixed with hydrogen gas and introduced with a molar concentration of CH 3 SiCl 3 of 7.5% to deposit polycrystalline SiC. The thickness of the formed SiC coating layer was 150 μm, and although fine cracks were present, both the width and the number of cracks were smaller than those after the first coating step. Next, this is subjected to a heat treatment at 1800 ° C. in an inert atmosphere to obtain SiC.
The film was highly crystallized, and the thermal stress existing in the SiC film was reduced.

【0028】(4)第3被覆工程 Si(OC2 5 ) 4 とエタノールをモル比2:1にな
る量比で配合し、70℃の温度で還流撹拌を行った混合
溶液中に、前記Si(OC2 5 ) 4 1モルに対し25
モル量の水と、0.2モル量のNH4OHの混合水溶液
を滴加した。混合水溶液のpHは12. 0であった。引
き続き撹拌を継続し、約0. 2μmの球状SiO2 微粒
子が均一に分散するサスペンジョンを合成した。このサ
スペンジョンに第2被覆工程を施したC/C複合材を浸
漬し、15分間減圧含浸を行った。次いで、風乾後、前
記サスペンジョンを同様に塗布、風乾を3回繰り返した
後100℃の温度で乾燥を行い、SiO2 微粒子からな
る中間層を形成した。次に前記SiO2 微粒子からなる
中間層を形成したC/C複合材をB (OC4 9 )3
液中に投入し15分間減圧含浸を行った。一昼夜風乾す
ることにより空気中の水分で加水分解を行った。次いで
風乾後、100℃の温度で乾燥を行い、更に500℃の
温度で15分間加熱処理を行いB2 3 を形成した。次
にSi(OC2 5 ) 4 とエタノールをモル比1:4.
5になる量比で配合し、室温で還流撹拌を行った混合溶
液中に、前記Si(OC2 5 ) 4 1モルに対し2.5
モル量の水と0.03モル量のHClの混合水溶液を滴
加した。混合水溶液のpHは3.0であった。引き続き
撹拌を継続し、SiO2 ガラス前駆体を合成した。この
ガラス前駆体溶液に前記SiO2 微粒子/B2 3 ガラ
スからなる中間層を形成したC/C複合材を投入し、1
5分間減圧含浸を行った。次いで風乾後、100℃で乾
燥を行った。最後に上記のような被覆工程を施したC/
C複合基材を再度B (OC4 9 ) 3 溶液中に投入し、
15分間減圧含浸を行った。一昼夜風乾することにより
空気中の水分で加熱分解を行った。次いで風乾後、10
0℃の温度で乾燥を行い、更にアルゴン雰囲気下、80
0℃で60分間加熱処理することによりB2 3 −Si
2 ガラスを形成した。
(4) Third Coating Step Si (OC 2 H 5 ) 4 and ethanol were mixed in a molar ratio of 2: 1 and the mixture was refluxed and stirred at a temperature of 70 ° C. 25 moles per mole of Si (OC 2 H 5 ) 4
A mixed aqueous solution of a molar amount of water and a 0.2 molar amount of NH 4 OH was added dropwise. The pH of the mixed aqueous solution was 12.0. Subsequently, stirring was continued to synthesize a suspension in which spherical SiO 2 fine particles of about 0.2 μm were uniformly dispersed. The C / C composite material subjected to the second coating step was immersed in the suspension and impregnated under reduced pressure for 15 minutes. Next, after air-drying, the above-mentioned suspension was applied in the same manner, and air-drying was repeated three times, and then dried at a temperature of 100 ° C. to form an intermediate layer composed of SiO 2 fine particles. Next, the C / C composite material having the intermediate layer formed of the SiO 2 fine particles was charged into a B (OC 4 H 9 ) 3 solution and impregnated under reduced pressure for 15 minutes. It was air-dried all day and night to hydrolyze with moisture in the air. Then, after air drying, drying was performed at a temperature of 100 ° C., and a heat treatment was further performed at a temperature of 500 ° C. for 15 minutes to form B 2 O 3 . Then, a molar ratio of Si (OC 2 H 5 ) 4 and ethanol of 1: 4.
5 in a mixed solution which was stirred under reflux at room temperature, and added to the mixed solution in an amount of 2.5 mol per mol of Si (OC 2 H 5 ) 4.
A mixed aqueous solution of a molar amount of water and a 0.03 molar amount of HCl was added dropwise. The pH of the mixed aqueous solution was 3.0. Subsequently, stirring was continued to synthesize a SiO 2 glass precursor. The C / C composite material on which the intermediate layer composed of the SiO 2 fine particles / B 2 O 3 glass was formed was charged into this glass precursor solution, and 1
Vacuum impregnation was performed for 5 minutes. Next, after air drying, drying was performed at 100 ° C. Finally, the C /
The C composite base material is again put into the B (OC 4 H 9 ) 3 solution,
Vacuum impregnation was performed for 15 minutes. It was air-dried all day and night to decompose by heating with moisture in the air. Then, after air drying, 10
Dry at a temperature of 0 ° C., and further,
By heating at 0 ° C. for 60 minutes, B 2 O 3 —Si
An O 2 glass was formed.

【0029】(5)第4被覆工程 平均粒径0.4μmのSiC粉末と長さ20〜30μ
m、アスペクト比10〜30のSiC繊維状物を重量比
で1:1の配合比で混合し、次いで、該混合物とSiO
2 ゾルを重量比1:1の配合比で混合してスラリーを調
製した。このスラリーを第3被覆膜まで形成した炭素複
合材へ塗布し、200℃の温度で乾燥を行いコーティン
グ膜を形成した。塗布による第4被覆膜の膜厚は約15
0μmであった。更に、Na2 O−SiO2 と水を重量
比1:1の配合で混合し、珪酸ナトリウム水溶液を調製
し、最外殻コーティング層としてこの水溶液を塗布し
た。塗布後300℃の温度で乾燥を行い、Na2 O−S
iO2 ガラス層を形成した。得られた炭素繊維強化炭素
複合体は、次に示す低圧揮散試験により、耐エロージョ
ン性を評価した。結果を表1に示す。
(5) Fourth coating step SiC powder having an average particle diameter of 0.4 μm and a length of 20 to 30 μm
m, SiC fibrous materials having an aspect ratio of 10 to 30 are mixed at a mixing ratio of 1: 1 by weight, and then the mixture is mixed with SiO 2
The two sols were mixed at a weight ratio of 1: 1 to prepare a slurry. This slurry was applied to the carbon composite material formed up to the third coating film and dried at a temperature of 200 ° C. to form a coating film. The thickness of the fourth coating film by coating is about 15
It was 0 μm. Further, Na 2 O—SiO 2 and water were mixed at a weight ratio of 1: 1 to prepare a sodium silicate aqueous solution, and this aqueous solution was applied as an outermost coating layer. After the coating, the coating is dried at a temperature of 300 ° C., and Na 2 O—S
An iO 2 glass layer was formed. The erosion resistance of the obtained carbon fiber reinforced carbon composite was evaluated by a low pressure volatilization test shown below. Table 1 shows the results.

【0030】 (低圧揮散試験) 装 置 :低圧揮散試験装置 試料表面温度:1550℃(クセノンランプの集光照射による) 照射時間 :1100秒 反応室内圧力:1又は1000Pa 評 価 :耐酸化膜の膜厚減少量(mg)及び外観観察(Low pressure volatilization test) Apparatus: Low pressure volatilization test device Sample surface temperature: 1550 ° C. (by condensing irradiation of xenon lamp) Irradiation time: 1100 sec Pressure in reaction chamber: 1 or 1000 Pa Evaluation: Oxidation-resistant film Observation of thickness reduction (mg) and appearance

【0031】実施例2及び3 第4被覆工程で使用のSiO2 ゾルの代わりに、Al2
3 −SiO2 ゾル(実施例2)又はZrO2 −SiO
2 ゾル(実施例3)を用いた以外は実施例1と同様の方
法で行った。結果を表1に示す。
Examples 2 and 3 Instead of the SiO 2 sol used in the fourth coating step, Al 2
O 3 —SiO 2 sol (Example 2) or ZrO 2 —SiO
The procedure was performed in the same manner as in Example 1 except that 2 sol (Example 3) was used. Table 1 shows the results.

【0032】比較例1 第4被覆工程を省略した以外は実施例1と同様の方法で
行った。結果を表1に示す。
Comparative Example 1 The same procedure as in Example 1 was performed except that the fourth coating step was omitted. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より、比較例1では高温、低圧下にお
いて第3被覆層のガラス質が全て揮散し、SiC膜が露
出してしまい、高温、高圧下ではC/C材基材までも酸
化されてしまう。実施例1〜3では、高温、低圧下にお
いてガラス質の揮散量が多いものの下地のSiC膜が露
出することなく、優れたコーティング性を示す。
As shown in Table 1, in Comparative Example 1, the vitreous material of the third coating layer volatilizes under high temperature and low pressure, exposing the SiC film, and oxidizing even the C / C material base under high temperature and high pressure. Will be done. In Examples 1 to 3, although the amount of vitreous volatilization is large under high temperature and low pressure, excellent coating properties are exhibited without exposing the underlying SiC film.

【0035】[0035]

【発明の効果】本発明によれば、約1600℃までの高
温領域、高低圧条件下において、優れた耐酸化性及び耐
エロージョン性を示すとともに、特に、第4被覆工程が
簡便な方法により得られることから、コーティング膜が
消耗した場合や傷が入った場合の補修法として有効であ
る。
According to the present invention, excellent oxidation resistance and erosion resistance can be obtained in a high temperature range up to about 1600 ° C. and high and low pressure conditions, and particularly, the fourth coating step can be obtained by a simple method. Therefore, it is effective as a repair method when the coating film is worn out or scratched.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭素繊維強化炭素複合材の断面図であ
る。
FIG. 1 is a sectional view of a carbon fiber reinforced carbon composite material of the present invention.

【符号の説明】[Explanation of symbols]

1 第1被覆層 2 第2被覆層 3 第3被覆層 4 第4被覆層 5 基材 10 炭素繊維強化炭素複合材 DESCRIPTION OF SYMBOLS 1 1st coating layer 2 2nd coating layer 3 3rd coating layer 4 4th coating layer 5 base material 10 carbon fiber reinforced carbon composite material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素複合材の基材面に、傾
斜機能を有する多結晶質のSiC被膜からなる第1被覆
層、微細多結晶質のSiC被膜又はこれを加熱処理して
得られる高結晶質のSiC被膜からなる第2被覆層、ガ
ラス被膜からなる第3被覆層及びガラス質と、SiC及
びMoSi2 の1種又は2種のセラミックスフィラーと
の混合物からなる第4被覆層が積層形成されてなること
を特徴とする炭素繊維強化炭素複合材。
1. A first coating layer made of a polycrystalline SiC coating having a gradient function, a fine polycrystalline SiC coating or a heat treatment of the same on a substrate surface of a carbon fiber reinforced carbon composite material. A second coating layer made of a highly crystalline SiC coating, a third coating layer made of a glass coating, and a fourth coating layer made of a mixture of vitreous and one or two ceramic fillers of SiC and MoSi 2 are laminated. A carbon fiber reinforced carbon composite material characterized by being formed.
JP35396396A 1996-12-17 1996-12-17 Carbon fiber reinforced carbon composite Expired - Fee Related JP3818606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35396396A JP3818606B2 (en) 1996-12-17 1996-12-17 Carbon fiber reinforced carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35396396A JP3818606B2 (en) 1996-12-17 1996-12-17 Carbon fiber reinforced carbon composite

Publications (2)

Publication Number Publication Date
JPH10167862A true JPH10167862A (en) 1998-06-23
JP3818606B2 JP3818606B2 (en) 2006-09-06

Family

ID=18434400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35396396A Expired - Fee Related JP3818606B2 (en) 1996-12-17 1996-12-17 Carbon fiber reinforced carbon composite

Country Status (1)

Country Link
JP (1) JP3818606B2 (en)

Also Published As

Publication number Publication date
JP3818606B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JP3749268B2 (en) C / C composite oxidation resistant coating layer
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH10167862A (en) Carbon fiber reinforced carbon composite material
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH0794354B2 (en) Oxidation resistant C / C material and manufacturing method thereof
JPH1059789A (en) Antioxidant treatment of carbon fiber reinforced carbon material
JP3682094B2 (en) Method for producing carbon fiber reinforced carbon composite
JP4218853B2 (en) Carbonaceous crucible for pulling single crystal and method for producing the same
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JPH10167860A (en) Oxidation-resistant carbon material and its production
JPH04325481A (en) Oxidation resisting treatment of carbon fiber reinforced carbon composite material
JPH10167861A (en) Antioxidation treatment of carbon material reinforced carbon fiber
JPH0794353B2 (en) Oxidation resistance treatment method for carbon fiber reinforced carbon material
JPH09255443A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon composite material
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH06144967A (en) Production of oxidation resistant c/c composite material
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH0570228A (en) Production of oxidation-resistant c/c composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060316

A521 Written amendment

Effective date: 20060510

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060607

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees