JPH10165181A - Heat-resistant dehydrogenase gene of isocitric acid - Google Patents

Heat-resistant dehydrogenase gene of isocitric acid

Info

Publication number
JPH10165181A
JPH10165181A JP8328400A JP32840096A JPH10165181A JP H10165181 A JPH10165181 A JP H10165181A JP 8328400 A JP8328400 A JP 8328400A JP 32840096 A JP32840096 A JP 32840096A JP H10165181 A JPH10165181 A JP H10165181A
Authority
JP
Japan
Prior art keywords
dna
gly
ala
ile
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8328400A
Other languages
Japanese (ja)
Inventor
Kentaro Miyazaki
健太郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8328400A priority Critical patent/JPH10165181A/en
Publication of JPH10165181A publication Critical patent/JPH10165181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new gene comprising a DNA coding a heat- resistant isocitric acid dehydrogenase having a specific amino acid sequence and capable of inexpensively and readily producing the dehydrogenase enzyme useful as a reagent, etc., for measuring D-isocitric acid in high amount of production. SOLUTION: This new DNA codes heat-resistant isocitric acid dehydrogenase comprising an amino acid sequence represented by the formula or an amino acid sequence obtained by adding, loosing or replacing one or plural amino acids in this amino acid sequence and having an amino acid sequence bringing about isocitric acid dehydrogenase activity, and the DNA can inexpensively produce a heat-resistant isocitric acid dehydrogenase derived from Thermus aquaticus and catalyzing a reaction converting isocitric acid to α-ketoglutaric acid and useful as a reagent, etc., for measuring D-isocitric acid in high productivity. The DNA is obtained by screening chromosomal DNA library of Thermus aquaticus YT1 (ATCC 25104).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サーマス アクア
ティカス(Thermus aquaticus)由来
の耐熱性イソクエン酸脱水素酵素をコードするDNA、
該DNAを含有する組換えベクター、該組換えベクター
で形質転換した形質転換体、および該形質転換体を用い
たイソクエン酸脱水素酵素の製造法に関する。
[0001] The present invention relates to a DNA encoding a thermostable isocitrate dehydrogenase derived from Thermus aquaticus,
The present invention relates to a recombinant vector containing the DNA, a transformant transformed with the recombinant vector, and a method for producing isocitrate dehydrogenase using the transformant.

【0002】[0002]

【従来の技術】イソクエン酸脱水素酵素は、基質イソク
エン酸を補酵素NADPと必須金属Mg2+を伴って酸化
的脱炭酸によりα−ケトグルタル酸を生成する反応を触
媒する酵素であり、D−イソクエン酸の測定用試薬とし
て有用である。しかしながら、これまで知られているイ
ソクエン酸脱水素酵素は、一般に熱に対して失活しやす
く、上記測定系における酵素試薬として利用する際の安
定性に欠け、また製造法が煩雑であり、高い生産量を安
価にあげることができない等の問題があった。
BACKGROUND ART Isocitrate dehydrogenase is an enzyme that catalyzes a reaction of producing α-ketoglutarate by oxidative decarboxylation of a substrate isocitrate with a coenzyme NADP and an essential metal Mg 2+. It is useful as a reagent for measuring isocitrate. However, the isocitrate dehydrogenase known so far is generally easily deactivated by heat, lacks stability when used as an enzyme reagent in the above-mentioned measurement system, and has a complicated production method, and is high. There was a problem that the production amount could not be reduced at a low price.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の課題
は、高温でも失活しない耐熱性イソクエン酸脱水素酵素
を簡便に、しかも高生産量で生産すべく、その生産の元
となる耐熱性イソクエン酸脱水素酵素をコードするDN
A、該DNAを含む組換えベクター、該組換えベクター
で形質転換した形質転換体を用いた耐熱性イソクエン酸
脱水素酵素の製造法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat-resistant isocitrate dehydrogenase which does not inactivate even at a high temperature, and which is a source of the heat-resistant isocitrate dehydrogenase in order to easily produce the enzyme in a high production amount. DN encoding isocitrate dehydrogenase
A: To provide a recombinant vector containing the DNA, and a method for producing a thermostable isocitrate dehydrogenase using a transformant transformed with the recombinant vector.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、高度好熱菌サーマ
ス アクアティカスより耐熱性イソクエン酸脱水素酵素
遺伝子を単離・構造決定するとともに、更に、遺伝子工
学的手法を用いて耐熱性イソクエン酸脱水素酵素を効率
よく生産できることに成功し、本発明を完成するに到っ
た。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors isolated and determined the structure of a thermostable isocitrate dehydrogenase gene from the thermophile Thermos aquaticus. In addition, the inventors have succeeded in efficiently producing thermostable isocitrate dehydrogenase using genetic engineering techniques, and have completed the present invention.

【0005】即ち、本発明は、配列番号1で表されるア
ミノ酸配列、又は該アミノ酸配列において1もしくは複
数のアミノ酸が付加、欠失もしくは置換されたものであ
って、且つイソクエン酸脱水素酵素活性をもたらすアミ
ノ酸配列をコードする耐熱性イソクエン酸脱水素酵素を
コードするDNAである。本発明はまた、該DNAを含
有する組換えベクター、該組換えベクターで形質転換し
た形質転換体、および該形質転換体を培地に培養して耐
熱性イソクエン酸脱水素酵素を採取することを特徴とす
る耐熱性イソクエン酸脱水素酵素の製造法である。以
下、本発明を詳細に説明する。
That is, the present invention relates to an amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one or more amino acids have been added, deleted or substituted, and has an isocitrate dehydrogenase activity. Is a DNA encoding a thermostable isocitrate dehydrogenase encoding an amino acid sequence that results in The present invention is further characterized in that a recombinant vector containing the DNA, a transformant transformed with the recombinant vector, and culturing the transformant in a medium to collect thermostable isocitrate dehydrogenase. Is a method for producing a thermostable isocitrate dehydrogenase. Hereinafter, the present invention will be described in detail.

【0006】[0006]

【発明の実施の形態】本発明の耐熱性イソクエン酸脱水
素酵素をコードするDNAは、例えば耐熱性イソクエン
酸脱水素酵素を生産する耐熱性イソクエン酸脱水素酵素
遺伝子の供与体である微生物より得られる。かかる微生
物としてはサーマス アクアティカスに属する微生物、
具体的にはサーマス アクアティカスYT1(ATCC 251
04) が使用できる。
DETAILED DESCRIPTION OF THE INVENTION The DNA encoding the thermostable isocitrate dehydrogenase of the present invention is obtained, for example, from a microorganism which is a donor of the thermostable isocitrate dehydrogenase gene that produces the thermostable isocitrate dehydrogenase. Can be Such microorganisms include those belonging to Thermus Aquaticus,
Specifically, Thermus Aquaticus YT1 (ATCC 251
04) can be used.

【0007】本発明の耐熱性イソクエン酸脱水素酵素を
コードするDNAは、以下の工程を経て取得できる。 (i) 耐熱性イソクエン酸脱水素酵素を生産する耐熱性
イソクエン酸脱水素酵素遺伝子の供与体である微生物か
らDNAを分離・精製し、該DNAを制限酵素を用いて
切断したものと、リニヤーなベクターとを両DNAの接
着末端部においてDNAリガーゼなどによって結合閉環
させて組換えDNAベクターを得、(ii) 該組換えDN
Aベクターを複製可能な宿主微生物に移入し、耐熱性イ
ソクエン酸脱水素酵素由来の部分アミノ酸配列を基に作
成された合成DNAプローブなどによりコロニーハイブ
リダイゼーションを行って、該組換えDNAベクターを
保持する微生物を単離し、そして、(iii)該微生物培養
菌体から該組換えDNAベクターを分離・精製し、これ
より制限酵素にて目的するDNAを切り出す。
The DNA encoding the thermostable isocitrate dehydrogenase of the present invention can be obtained through the following steps. (i) DNA that is isolated and purified from a microorganism that is a donor of a thermostable isocitrate dehydrogenase gene that produces a thermostable isocitrate dehydrogenase, and that is obtained by cutting the DNA with a restriction enzyme, The DNA is ligated and closed at the cohesive ends of both DNAs with DNA ligase or the like to obtain a recombinant DNA vector.
The A vector is transferred to a replicable host microorganism, and colony hybridization is performed using a synthetic DNA probe prepared based on a partial amino acid sequence derived from a thermostable isocitrate dehydrogenase to retain the recombinant DNA vector. The microorganism is isolated, and (iii) the recombinant DNA vector is separated and purified from the cultured microorganism cells, and the target DNA is cut out with a restriction enzyme.

【0008】以下に、上記取得方法を詳細に説明する。
まず、供与微生物である上述した細菌を例えば液体培地
で約1〜2日間通気撹拌培養し、得られる培養物を遠心
分離して集菌し、次いでこれを溶菌させることにより耐
熱性イソクエン酸脱水素酵素遺伝子の含有溶菌物を調製
することができる。溶菌方法としては、例えばリゾチー
ムなどの細胞壁溶解酵素により処理を施し、必要により
プロテアーゼなどの他の酵素やラウリル硫酸ナトリウム
などの界面活性剤が併用して、さらに細胞壁の物理的破
壊方法である凍結融解やフレンチプレス処理を上述の溶
菌法と組合わせて行ってもよい。
[0008] The above acquisition method will be described in detail below.
First, the above-mentioned bacteria, which are donor microorganisms, are aerated and stirred in a liquid medium, for example, for about 1 to 2 days, and the resulting culture is collected by centrifugation, and then lysed to obtain heat-resistant isocitrate dehydrogenation. A lysate containing the enzyme gene can be prepared. As a lysis method, for example, treatment with a cell wall lysing enzyme such as lysozyme, and other enzymes such as a protease and a surfactant such as sodium lauryl sulfate are used in combination as necessary, and further, freeze-thawing which is a method of physically destroying the cell wall. Alternatively, a French press treatment may be performed in combination with the lysis method described above.

【0009】このようにして得られた溶菌物からDNA
を分離・精製するには常法に従って、例えばフェノール
抽出による除蛋白処理、プロテアーゼ処理、リボヌクレ
アーゼ処理、アルコール沈殿遠心分離などの方法を適宜
組合わせることにより行うことができる。
From the lysate thus obtained, DNA
Can be separated and purified by a conventional method, for example, by appropriately combining methods such as protein removal treatment by phenol extraction, protease treatment, ribonuclease treatment, and alcohol precipitation centrifugation.

【0010】分離・精製された微生物のDNAを切断す
る方法は、例えば超音波処理、制限酵素処理などにより
行うことができるが、得られるDNA断片とベクターと
の結合を容易ならしめるため制限酵素処理により行うこ
とがことが好ましい。制限酵素としてはとりわけ特定ヌ
クレオチド配列に作用する、例えばHindIII、B
amHI、SacIなどのII型制限酵素が適してい
る。
[0010] The method of cutting the DNA of the separated and purified microorganism can be carried out by, for example, ultrasonic treatment or treatment with a restriction enzyme. However, in order to facilitate the binding of the obtained DNA fragment to a vector, treatment with the restriction enzyme is carried out. It is preferable to carry out. Restriction enzymes which act, inter alia, on specific nucleotide sequences, such as HindIII, B
Type II restriction enzymes such as amHI and SacI are suitable.

【0011】ベクターとしては、宿主微生物で自律的に
増殖しうるファージまたはプラスミドから遺伝子組換え
用として構築されたものが適している。ファージとして
は、例えばエシェリシア コリー(Escherich
ia coli)を宿主微生物とする場合にはM13m
p18、λgt10、λgt11などが使用できる。ま
たプラスミドとしては、例えばエシェリシア コリーを
宿主微生物とする場合にはpBR322、pACYC1
84、pUC118、pBluescriptなどが使
用できる。このようなベクターを先に述べた耐熱性イソ
クエン酸脱水素酵素遺伝子供与体である微生物DNAの
切断に使用した制限酵素と同じ制限酵素で切断して、ベ
クター断片を得ることが望ましい。
As the vector, a vector constructed for gene recombination from a phage or a plasmid capable of autonomous propagation in a host microorganism is suitable. Examples of phage include Escherichia coli (Escherichia coli).
ia coli) as the host microorganism, M13m
p18, λgt10, λgt11 and the like can be used. As the plasmid, for example, when Escherichia coli is used as a host microorganism, pBR322, pACYC1
84, pUC118, pBluescript, and the like. It is desirable to obtain a vector fragment by cleaving such a vector with the same restriction enzyme used for cutting the microorganism DNA which is the thermostable isocitrate dehydrogenase gene donor described above.

【0012】微生物DNA断片とベクター断片とを結合
させる方法は、公知のDNAリガーゼを用いる方法であ
ればよく、例えば微生物DNA断片の接着末端とベクタ
ー断片の接着末端とのアニーリングの後、適当なDNA
リガーゼの使用により微生物DNA断片とベクター断片
との組換えDNAを作成する。必要ならばアニーリング
の後、宿主微生物に移して、生体内のDNAリガーゼを
利用し、組換えDNAを作成することもできる。
The method of linking the microbial DNA fragment and the vector fragment may be any method using a known DNA ligase. For example, after annealing the cohesive end of the microbial DNA fragment and the cohesive end of the vector fragment, an appropriate DNA
A recombinant DNA of a microbial DNA fragment and a vector fragment is prepared by using ligase. If necessary, after annealing, the DNA can be transferred to a host microorganism, and a recombinant DNA can be prepared using in-vivo DNA ligase.

【0013】宿主微生物としては、組換えDNAが安定
かつ自律的に増殖可能であればよく、例えばエシェリシ
ア コリーXL1−BlueMRF’、エシェリシア
コリーJM109、エシェリシア コリーHB101な
どが利用できる。
As the host microorganism, any recombinant DNA can be stably and autonomously proliferated. For example, Escherichia coli XL1-Blue MRF ', Escherichia
Cory JM109, Escherichia Cory HB101 etc. can be used.

【0014】宿主微生物に組換えDNAを移入する方法
としては、例えば宿主微生物がエシェリシア属に属する
微生物の場合には、市販のコンピテントセルを用いて組
換えDNAの移入を行い、さらにマイクロインジェクシ
ョン法を用いてもよい。
As a method for transferring the recombinant DNA to the host microorganism, for example, when the host microorganism is a microorganism belonging to the genus Escherichia, the recombinant DNA is transferred using a commercially available competent cell, and then the microinjection method is performed. May be used.

【0015】宿主微生物への目的組換えDNA移入の有
無についての選択は、目的組換えDNAを保持するベク
ターの薬剤体制マーカーと耐熱性イソクエン酸脱水素酵
素とを同時に発現しうる微生物を検索する方法、あるい
は選択培地に生育したコロニーについて、アミノ酸配列
をもとに合成したDNAプローブとハイブリダイゼーシ
ョンを行い検索する方法などが挙げられる。
Selection of the presence or absence of transfer of the target recombinant DNA to the host microorganism is performed by a method for searching for a microorganism capable of simultaneously expressing the drug system marker of the vector carrying the target recombinant DNA and thermostable isocitrate dehydrogenase. Alternatively, there is a method in which colonies grown on a selective medium are searched by performing hybridization with a DNA probe synthesized based on the amino acid sequence.

【0016】上述の方法により得られた耐熱性イソクエ
ン酸脱水素酵素遺伝子の塩基配列は、サイエンス(Sc
ience)、214、1205−1210(198
1)に記載されているジデオキシ法で解読し(配列番号
2)、また耐熱性イソクエン酸脱水素酵素の全アミノ酸
配列は塩基配列より推定する(配列番号1)。一方、配
列番号1で表されるアミノ酸配列において1もしくは複
数のアミノ酸が付加、欠失もしくは置換された配列をコ
ードするDNAを得るには、多くの方法を用いることが
できる。例えば、点変異又は欠失変異を生じさせるため
に遺伝子を変異源処理する方法;遺伝子を選択的に開裂
し、次に選択されたヌクレオチドを除去又は付加し、そ
して遺伝子を連結する方法;オリゴヌクレオチド変異誘
発法等が挙げられる。このようにして一度選択された耐
熱性イソクエン酸脱水素酵素遺伝子を保有する組換えD
NAは、形質転換微生物から取り出され、他の宿主微生
物に移入することも容易に実施できる。また、耐熱性イ
ソクエン酸脱水素酵素遺伝子を保有する組換えDNAか
ら制限酵素などにより切断して、耐熱性イソクエン酸脱
水素酵素遺伝子DNAを切り出し、これを同様な方法に
より切断して得られるベクター断片とを結合させて、宿
主微生物に移入することも容易に実施できる。
The nucleotide sequence of the thermostable isocitrate dehydrogenase gene obtained by the above-described method is the same as that of Science (Sc.
issue), 214, 1205-1210 (198)
It is decoded by the dideoxy method described in 1) (SEQ ID NO: 2), and the entire amino acid sequence of the thermostable isocitrate dehydrogenase is deduced from the base sequence (SEQ ID NO: 1). On the other hand, many methods can be used to obtain a DNA encoding a sequence in which one or more amino acids have been added, deleted or substituted in the amino acid sequence represented by SEQ ID NO: 1. For example, a method of mutagenizing a gene to produce a point or deletion mutation; a method of selectively cleaving a gene, then removing or adding selected nucleotides, and ligating the gene; Mutagenesis and the like can be mentioned. The recombinant D containing the thermostable isocitrate dehydrogenase gene once selected in this way
NA can be easily removed from transformed microorganisms and transferred to other host microorganisms. Further, a vector fragment obtained by cutting a heat-resistant isocitrate dehydrogenase gene DNA from a recombinant DNA having a heat-resistant isocitrate dehydrogenase gene by a restriction enzyme or the like, and cutting the same by a similar method. And transfer to a host microorganism can be easily carried out.

【0017】形質転換体である宿主微生物の培養形態は
宿主の栄養生理的性質を考慮して培養条件を選択すれば
よく、通常多くの場合は液体培養で行うが、工業的には
通気撹拌培養を行うのが有利である。培地の栄養源とし
ては、微生物の培養に通常用いられるものが広く使用さ
れうる。炭素源としては、資化可能な炭素化合物であれ
ばよく、例えばグルコース、スクロース、ラクトース、
糖蜜、ピルビン酸などが使用される。窒素源としては、
利用可能な窒素化合物であればよく、例えばペプトン、
肉エキス、酵母エキスなどが使用される。その他、リン
酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カ
リウム、鉄、マンガン、亜鉛などの塩類、特定のアミノ
酸、特定のビタミンなどが必要に応じて使用される。
The culture form of the host microorganism, which is a transformant, may be selected by taking into consideration the nutritional and physiological properties of the host. Usually, liquid culture is used in many cases. It is advantageous to perform As the nutrient source of the medium, those commonly used for culturing microorganisms can be widely used. The carbon source may be any assimilable carbon compound, such as glucose, sucrose, lactose,
Molasses, pyruvic acid and the like are used. As a nitrogen source,
Any available nitrogen compound, such as peptone,
Meat extract, yeast extract and the like are used. In addition, salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, specific vitamins, and the like are used as necessary.

【0018】培養温度は菌が生育し、耐熱性イソクエン
酸脱水素酵素を生産する範囲で適宜変更しうるが、エシ
ェリシア コリーの場合、好ましくは、20〜42℃程
度である。培養時間は条件によって多少異なるが、耐熱
性イソクエン酸脱水素酵素が最高収量に達する時間を見
計らって適当な時期に培養を終了すればよく、通常は、
12〜36時間程度である。培地pHは菌が発育し、耐熱
性イソクエン酸脱水素酵素を生産する範囲で適宜変更し
うるが、特に好ましくはpH6.0〜8.0程度であ
る。
The cultivation temperature can be appropriately changed within a range in which the bacteria grow and produce thermostable isocitrate dehydrogenase. In the case of Escherichia coli, the temperature is preferably about 20 to 42 ° C. The cultivation time varies somewhat depending on the conditions, but the culture may be terminated at an appropriate time in consideration of the time when the thermostable isocitrate dehydrogenase reaches the maximum yield.
It is about 12 to 36 hours. The pH of the medium can be appropriately changed within a range in which the bacteria grow and produce a thermostable isocitrate dehydrogenase, but the pH is particularly preferably about 6.0 to 8.0.

【0019】培養物中の耐熱性イソクエン酸脱水素酵素
は、培養物をろ過または遠心分離などの手段により、菌
体を採取し、次いでこの菌体を機械的方法またはリゾチ
ームなどの酵素法で破壊し、また必要に応じてエチレン
ジアミン四酢酸(EDTA)などのキレート剤および/
または界面活性剤を添加して耐熱性イソクエン酸脱水素
酵素を可溶化し、水溶液として分離採取する。
The thermostable isocitrate dehydrogenase in the culture is obtained by collecting the cells by means such as filtration or centrifugation of the culture and then destroying the cells by a mechanical method or an enzymatic method such as lysozyme. And, if necessary, a chelating agent such as ethylenediaminetetraacetic acid (EDTA) and / or
Alternatively, a surfactant is added to solubilize the thermostable isocitrate dehydrogenase, and separated and collected as an aqueous solution.

【0020】このようにして得られた耐熱性イソクエン
酸脱水素酵素を、例えば減圧濃縮、膜濃縮、さらに硫酸
アンモニウム、硫酸ナトリウムなどの塩析処理、あるい
は親水性有機溶媒、例えばメタノール、エタノール、ア
セトンなどによる分別沈殿法により沈殿せしめればよ
い。以下、実施例により本発明を詳細に説明するが、本
発明はこれらに限定されるものではない。
The heat-resistant isocitrate dehydrogenase thus obtained is concentrated, for example, under reduced pressure, membrane concentrated, and further subjected to salting out treatment with ammonium sulfate, sodium sulfate, or the like, or a hydrophilic organic solvent such as methanol, ethanol, acetone or the like. May be precipitated by a fractional precipitation method according to the method described above. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0021】[0021]

【実施例】【Example】

〔実施例1〕(染色体DNAの分離) サーマス アクアティカスYT1(ATCC 25104) の染色
体DNAを次の方法で分離した。同菌株を200mlの
0.5%ポリペプトン、0.3%酵母エキス、0.2%
塩化ナトリウム(pH7.5)よりなる液体培地で70
℃一晩振とう培養後、遠心(4000rpm、10分)
により集菌した。0.15M塩化ナトリウム、0.1M
EDTAにより菌体を一度洗浄し、再度遠心(400
0rpm、10分)により集菌した。菌体の一部(0.
6g)を12mlのトリス・塩酸(pH9.0)、1%
ラウリル硫酸ナトリウム、0.1M塩化ナトリウムを含
む溶液に懸濁し、凍結・融解を2度繰り返し、溶菌させ
た。この溶液にプロテイナーゼKを1mg加え、50℃
で3時間放置した。その後、等量のフェノールを加え、
ゆっくり撹拌し、遠心(4000rpm、10分)によ
り水層と油層を分離し、水層を回収した。この操作をさ
らに2度繰り返し、最終的に採取した水層に2倍量のエ
タノールを静かに加えた。析出してきたDNAをガラス
棒により巻取り、70%エタノールにより洗浄後、2m
lの10mMトリス・塩酸、1mMEDTAに溶解し
た。エシェリシア コリーXL1−BlueMRF’は
ストラタジーン社より購入し、ハナハンの方法によりコ
ンピテントセルを作成し、ライブラリー作成の宿主とし
て用いた。
[Example 1] (Separation of chromosomal DNA) The chromosomal DNA of Thermus Aquaticus YT1 (ATCC 25104) was isolated by the following method. The strain was transformed into 200 ml of 0.5% polypeptone, 0.3% yeast extract, 0.2%
70 in a liquid medium consisting of sodium chloride (pH 7.5)
After shaking culture at ℃ overnight, centrifuge (4000 rpm, 10 minutes)
And collected. 0.15M sodium chloride, 0.1M
The cells are washed once with EDTA and centrifuged again (400
(0 rpm, 10 minutes). Some of the cells (0.
6 g) in 12 ml of Tris-hydrochloric acid (pH 9.0), 1%
The cells were suspended in a solution containing sodium lauryl sulfate and 0.1 M sodium chloride, freeze-thawed twice, and lysed. 1 mg of proteinase K was added to this solution,
For 3 hours. Then add an equal amount of phenol,
The mixture was stirred slowly, and the aqueous layer and the oil layer were separated by centrifugation (4000 rpm, 10 minutes), and the aqueous layer was collected. This operation was repeated twice more, and twice the amount of ethanol was gently added to the finally collected aqueous layer. The precipitated DNA is wound up with a glass rod and washed with 70% ethanol, and then 2 m
1 mM of 10 mM Tris-hydrochloric acid and 1 mM EDTA. Escherichia coli XL1-Blue MRF 'was purchased from Stratagene, and competent cells were prepared by the method of Hanahan and used as a host for library preparation.

【0022】〔実施例2〕(耐熱性イソクエン酸脱水素
酵素をコードする遺伝子を含有するDNA断片および該
DNA断片を有する組換えベクターの調製) 実施例1で得たDNA1μgを制限酵素BamHIによ
り37℃、2時間反応させ完全分解した後、制限酵素B
amHIにより完全分解したベクター、pBluesc
riptIISK(+)(ストラタジーン社製)1μg
とT4DNAリガーゼで16℃一晩反応させ、ベクター
と連結した。連結したDNAの一部を、エシェリシア
コリーXL1−BlueMRF’のコンピテントセルに
導入し、約4000個の形質転換体のコロニーを得た。
一方、サーマス アクアティカスの菌体より直接精製さ
れた該耐熱性イソクエン酸脱水素酵素のN末端アミノ酸
配列を決定し、この配列に基づく縮退合成DNAプロー
ブ(5’−ATCCAGATCCC[CG]CAGGA
GGG[CG]GAGAAGATCAC[CG]ATC
CAGGAGGG−3’、[]で囲まれた箇所は縮退部
分)を作成した。先述の出現コロニーのレプリカを公知
の方法によりニトロセルロース膜に写し取り、公知の方
法により溶菌させDNAを膜上に固定し、アマシャム社
製の合成DNAプローブラベリングキットによりラベル
された先のプローブを用いてコロニーハイブリダイゼー
ションを行った。この結果、2つのポジティブクローン
が得られ、両クローンとも同じ約3.0kbのBamH
I挿入断片をもっていた。このプラスミドの一つをpT
ac31−1とした。
Example 2 (Preparation of DNA Fragment Containing Gene Encoding Thermostable Isocitrate Dehydrogenase and Recombinant Vector Having the DNA Fragment) 1 μg of the DNA obtained in Example 1 was digested with the restriction enzyme BamHI at 37 ° C. C. for 2 hours to completely decompose, then use restriction enzyme B
pBluesc, a vector completely digested with amHI
1 μg of riptIISK (+) (Stratagene)
And T4 DNA ligase at 16 ° C. overnight, and ligated to the vector. A portion of the ligated DNA is
The cells were introduced into competent cells of Collie XL1-Blue MRF 'to obtain about 4000 transformant colonies.
On the other hand, the N-terminal amino acid sequence of the thermostable isocitrate dehydrogenase directly purified from the cells of Thermus aquaticus was determined, and a degenerate synthetic DNA probe (5′-ATCCAGATCCC [CG] CAGGA) based on this sequence was determined.
GGG [CG] GAGAAGATCAC [CG] ATC
CAGGAGGG-3 ′, a portion surrounded by [] indicates a degenerated portion). A replica of the above-mentioned emerged colony was copied to a nitrocellulose membrane by a known method, lysed by a known method, DNA was fixed on the membrane, and a probe labeled with a synthetic DNA probe labeling kit manufactured by Amersham was used. To perform colony hybridization. As a result, two positive clones were obtained, and both clones had the same BamH of about 3.0 kb.
It had an I insert. One of these plasmids is called pT
It was ac31-1.

【0023】〔実施例3〕(塩基配列の決定) pTac31−1の3.0kbのBamHI挿入断片に
ついて、ファルマシア製AutoReadシーケンシン
グキットを用いて塩基配列の決定を行った。決定した塩
基配列を配列番号1に、またこれより推定されるアミノ
酸配列を配列番号2に示した。
[Example 3] (Determination of base sequence) The base sequence of the 3.0 kb BamHI inserted fragment of pTac31-1 was determined using an AutoRead sequencing kit manufactured by Pharmacia. The determined nucleotide sequence is shown in SEQ ID NO: 1, and the deduced amino acid sequence is shown in SEQ ID NO: 2.

【0024】〔実施例4〕(発現プラスミドの構築) pTac31−1の耐熱性イソクエン酸脱水素酵素遺伝
子の開始コドン近傍にNdeI制限酵素部位を部位指定
突然変異により導入し、得られたプラスミドより制限酵
素NdeI、XhoIを用いてコード領域を切り出し、
別に用意した発現ベクターptKSNd(−)に連結し
た。ptKSNd(−)は、ストラタジーン社製のベク
ターpBluescriptIIKS(−)のlacプ
ロモーターをtacプロモーターに改変し、また、la
cZ遺伝子の開始コドンに重なるようにNdeI制限酵
素部位を導入したものである。こうして耐熱性イソクエ
ン酸脱水素酵素の高発現プラスミドpEXAC1を作成
した。このpEXAC1を用いて大腸菌 (Escherichia
coli) を形質転換した。得られた形質転換株は平成8 年
11月28日付けで工業技術院生命工学工業技術研究所にFE
RM P−15962 として寄託されている。
Example 4 (Construction of Expression Plasmid) An NdeI restriction enzyme site was introduced near the start codon of the thermostable isocitrate dehydrogenase gene of pTac31-1 by site-directed mutagenesis, and restriction was carried out from the obtained plasmid. The coding region is cut out using enzymes NdeI and XhoI,
It was ligated to the separately prepared expression vector ptKSNd (-). ptKSNd (-) is obtained by modifying the lac promoter of the vector pBluescriptIIKS (-) manufactured by Stratagene to a tac promoter,
This is one in which an NdeI restriction enzyme site has been introduced so as to overlap the start codon of the cZ gene. Thus, a high expression plasmid pEXAC1 of thermostable isocitrate dehydrogenase was prepared. Using this pEXAC1, Escherichia
coli). The obtained transformant was 1996
November 28, FE joined the Institute of Biotechnology and Industrial Technology
Deposited as RM P-15962.

【0025】〔実施例5〕(組換え耐熱性イソクエン酸
脱水素酵素遺伝子の発現) 実施例4で得た耐熱性イソクエン酸脱水素酵素の高発現
プラスミドpEXAC1をエシェリシア コリーXL1
−BlueMRF’のコンピテントセルに導入し形質転
換体を得た。該形質転換体を2Lの1.6%トリプト
ン、1.0%酵母エキス、0.5%塩化ナトリウム、
0.1mMイソプロピル−β−D−チオガラクトピラノ
シド、100μg/μlアンピシリン(pH7.5)を
含む液体培地で37℃一晩振とう培養後、遠心(400
0rpm、10分)により集菌した。菌体を3倍量の1
0mMトリス・塩酸(pH7.6)、0.5mM ED
TAを含む溶液に懸濁し、超音波により破砕した。懸濁
液を45000rpm、30分の超遠心を行うことによ
り細胞抽出液を得、上清を別のチューブに移し、70
℃、30分加熱処理をした。析出した変性蛋白質を遠心
除去し、次いで、上清をDEAEトヨパール(東ソー)
に通すことにより精製を行った。あらかじめ10mMト
リス・塩酸(pH7.6)、0.5mM EDTAを含
む溶液で平衡化したDEAEトヨパールに先述の熱処理
済み蛋白質溶液を吸着させ、平衡化液で非吸着物質を洗
い流し、平衡化液にさらに1.0M塩化ナトリウムを加
えた溶液による濃度勾配をかけ、溶出する耐熱性イソク
エン酸脱水素酵素100mgを回収した。
Example 5 (Expression of Recombinant Thermostable Isocitrate Dehydrogenase Gene) The high expression plasmid pEXAC1 of the thermostable isocitrate dehydrogenase obtained in Example 4 was transformed into Escherichia coli XL1.
-BlueMRF 'was introduced into competent cells to obtain a transformant. The transformant was treated with 2 L of 1.6% tryptone, 1.0% yeast extract, 0.5% sodium chloride,
After shaking culture at 37 ° C. overnight in a liquid medium containing 0.1 mM isopropyl-β-D-thiogalactopyranoside and 100 μg / μl ampicillin (pH 7.5), centrifugation (400
(0 rpm, 10 minutes). 3 times the amount of cells
0 mM Tris-HCl (pH 7.6), 0.5 mM ED
The suspension was suspended in a solution containing TA and disrupted by sonication. The suspension was subjected to ultracentrifugation at 45,000 rpm for 30 minutes to obtain a cell extract, and the supernatant was transferred to another tube.
Heat treatment was performed at 30 ° C. for 30 minutes. The precipitated denatured protein is removed by centrifugation, and then the supernatant is subjected to DEAE Toyopearl (Tosoh).
For purification. The above-mentioned heat-treated protein solution is adsorbed to DEAE Toyopearl previously equilibrated with a solution containing 10 mM Tris-hydrochloric acid (pH 7.6) and 0.5 mM EDTA, non-adsorbed substances are washed away with the equilibration solution, and further added to the equilibration solution. A concentration gradient with a solution containing 1.0 M sodium chloride was applied, and 100 mg of the eluted thermostable isocitrate dehydrogenase was recovered.

【0026】〔実施例6〕(耐熱性イソクエン酸脱水素
酵素の諸性質) (1) 至適温度 耐熱性イソクエン酸脱水素酵素の至適温度の測定は、5
0mMトリス・塩酸(pH7.6)、0.5mM塩化マ
グネシウム、0.5mM NADP、0.5mMイソク
エン酸を含む、各温度に温めた活性測定溶液200μl
に酵素液4μlを加えることにより行った。活性の測定
は、補酵素NADPがNADPHに変換される際に生ず
る340nmにおける吸収増大を追跡し、初速度を活性
値とした。図1に示すように、活性の至適温度は85℃
付近であった。
[Example 6] (Properties of thermostable isocitrate dehydrogenase) (1) Optimum temperature
200 μl of activity measurement solution containing 0 mM Tris-hydrochloric acid (pH 7.6), 0.5 mM magnesium chloride, 0.5 mM NADP, and 0.5 mM isocitrate, warmed to each temperature
Was performed by adding 4 μl of the enzyme solution to the sample. The activity was measured by following the increase in absorption at 340 nm that occurs when the coenzyme NADP was converted to NADPH, and the initial rate was used as the activity value. As shown in FIG. 1, the optimal temperature of the activity was 85 ° C.
It was near.

【0027】(2) 至適pH 耐熱性イソクエン酸脱水素酵素の活性の至適pHの測定
は、0.5mM塩化マグネシウム、0.5mM NAD
P、0.5mMイソクエン酸を含む溶液に、終濃度50
mMとなる種々のpHのビストリスプロパンを加え、全
量を200μlとした溶液を作成し、酵素液4μlを加
えることにより行った。活性の測定は、上記と同様であ
る。活性測定温度は60℃に統一した。図2に示すよう
に、活性の至適pHは8〜9.5付近であった。
(2) Optimum pH The optimum pH of the activity of the thermostable isocitrate dehydrogenase was measured using 0.5 mM magnesium chloride, 0.5 mM NAD.
P, in a solution containing 0.5 mM isocitrate, to a final concentration of 50
Bistrispropane of various pHs to give mM was added to prepare a solution having a total volume of 200 μl, and 4 μl of an enzyme solution was added. The measurement of the activity is the same as described above. The activity measurement temperature was unified to 60 ° C. As shown in FIG. 2, the optimum pH for the activity was around 8 to 9.5.

【0028】(3) 耐熱性 耐熱性イソクエン酸脱水素酵素の耐熱性の測定は、50
mMトリス・塩酸(pH7.6)、0.5mM塩化マグ
ネシウム、0.5mM NADP、0.5mMイソクエ
ン酸を含む活性測定溶液200μlに酵素液4μlを加
えることにより行った。酵素液は、10μlを各温度で
10分間加熱した後、そのうち4μlを分取し活性測定
に用いた。図3に示すように、該耐熱性イソクエン酸脱
水素酵素は、80℃、10分の加熱処理に対しても活性
を損なうことなく、90℃での熱処理後も2/3程度の
活性を有していた。
(3) Thermostability The thermostability of isocitrate dehydrogenase is measured by 50
This was performed by adding 4 μl of the enzyme solution to 200 μl of an activity measurement solution containing mM Tris / hydrochloric acid (pH 7.6), 0.5 mM magnesium chloride, 0.5 mM NADP, and 0.5 mM isocitrate. After heating 10 µl of the enzyme solution at each temperature for 10 minutes, 4 µl of the enzyme solution was collected and used for activity measurement. As shown in FIG. 3, the thermostable isocitrate dehydrogenase has an activity of about 2/3 even after a heat treatment at 90 ° C. without impairing the activity even at a heat treatment at 80 ° C. for 10 minutes. Was.

【0029】[0029]

【発明の効果】本発明によれば、耐熱性イソクエン酸脱
水素酵素をコードする遺伝子、及び該遺伝子を用いた遺
伝子工学的手法による効率的な耐熱性イソクエン酸脱水
素酵素の製造法が提供される。
According to the present invention, there are provided a gene encoding a thermostable isocitrate dehydrogenase and a method for efficiently producing the thermostable isocitrate dehydrogenase by genetic engineering using the gene. You.

【0030】[0030]

【配列表】[Sequence list]

配列番号:1 配列の長さ:426 配列の型:アミノ酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列 Met Ala Tyr Gln Arg Ile Gln Ile Pro Gln Glu Gly Glu Lys Ile Thr 1 5 10 15 Ile Gln Glu Gly Val Leu Lys Val Pro Asp Gln Pro Ile Ile Gly Phe 20 25 30 Ile Glu Gly Asp Gly Thr Gly Pro Asp Ile Trp Arg Ala Ala Gln Pro 35 40 45 Val Leu Asp Ala Ala Val Ala Lys Ala Tyr Gly Gly Gln Arg Arg Ile 50 55 60 Val Trp Val Glu Leu Tyr Ala Gly Glu Lys Ala Asn Gln Val Tyr Gly 65 70 75 80 Glu Pro Ile Trp Leu Pro Glu Glu Thr Leu Glu Phe Ile Arg Glu Tyr 85 90 95 Leu Val Ala Ile Lys Gly Pro Leu Thr Thr Pro Val Gly Gly Gly Ile 100 105 110 Arg Ser Ile Asn Val Ala Leu Arg Gln Glu Leu Asp Leu Tyr Ala Cys 115 120 125 Val Arg Pro Val Arg Trp Phe Gln Gly Val Pro Ser Pro Val Lys His 130 135 140 Pro Glu Leu Val Asn Met Val Ile Phe Arg Glu Asn Thr Glu Asp Ile 145 150 155 160 Tyr Ala Gly Ile Glu Trp Pro Ala Gly Ser Glu Glu Val Lys Lys Val 165 170 175 Leu Asp Phe Leu Lys Arg Glu Phe Pro Lys Ala Tyr Ala Lys Ile Arg 180 185 190 Phe Pro Glu Thr Ser Gly Leu Gly Leu Lys Pro Ile Ser Lys Glu Gly 195 200 205 Thr Glu Arg Leu Val Glu Ala Ala Ile Glu Tyr Ala Ile Lys Glu Asp 210 215 220 Leu Pro Ser Val Thr Leu Val His Lys Gly Asn Ile Met Lys Phe Thr 225 230 235 240 Glu Gly Ala Phe Arg Glu Trp Gly Tyr Ala Leu Ala Arg Glu Lys Tyr 245 250 255 Gly Ala Thr Pro Leu Asp Gly Gly Pro Trp His Val Leu Lys Asn Pro 260 265 270 Arg Thr Gly Arg Glu Ile Val Ile Lys Asp Met Ile Ala Asp Asn Phe 275 280 285 Leu Gln Gln Ile Leu Leu Arg Pro Asp Glu Tyr Ser Val Ile Ala Thr 290 295 300 Met Asn Leu Asn Gly Asp Tyr Ile Ser Asp Ala Leu Ala Ala Gln Val 305 310 315 320 Gly Gly Ile Gly Ile Ala Pro Gly Ala Asn Ile Asn Tyr Lys Thr Gly 325 330 335 His Ala Val Phe Glu Ala Thr His Gly Thr Ala Pro Lys Tyr Ala Gly 340 345 350 Gln Asp Lys Val Asn Pro Ser Ser Val Ile Leu Ser Gly Glu Met Met 355 360 365 Leu Arg Tyr Leu Gly Trp Asn Glu Ala Ala Asp Leu Ile Ile Arg Ala 370 375 380 Met Glu Arg Thr Ile Ser Lys Gly Leu Val Thr Tyr Asp Phe His Arg 385 390 395 400 Leu Leu Val Ala Glu Gly Lys Pro Ala Thr Leu Leu Lys Thr Ser Glu 405 410 415 Phe Gly Gln Ala Leu Ile Gln His Met Asp *** 420 425 SEQ ID NO: 1 Sequence length: 426 Sequence type: amino acid Number of chains: double-stranded Topology: linear Sequence type: peptide sequence Met Ala Tyr Gln Arg Ile Gln Ile Pro Gln Glu Gly Glu Lys Ile Thr 1 5 10 15 Ile Gln Glu Gly Val Leu Lys Val Pro Asp Gln Pro Ile Ile Gly Phe 20 25 30 Ile Glu Gly Asp Gly Thr Gly Pro Asp Ile Trp Arg Ala Ala Gln Pro 35 40 45 Val Leu Asp Ala Ala Val Ala Lys Ala Tyr Gly Gly Gln Arg Arg Ile 50 55 60 Val Trp Val Glu Leu Tyr Ala Gly Glu Lys Ala Asn Gln Val Tyr Gly 65 70 75 80 Glu Pro Ile Trp Leu Pro Glu Glu Thr Leu Glu Phe Ile Arg Glu Tyr 85 90 95 Leu Val Ala Ile Lys Gly Pro Leu Thr Thr Pro Val Gly Gly Gly Ile 100 105 110 Arg Ser Ile Asn Val Ala Leu Arg Gln Glu Leu Asp Leu Tyr Ala Cys 115 120 125 Val Arg Pro Val Arg Trp Phe Gln Gly Val Pro Ser Pro Val Lys His 130 135 140 Pro Glu Leu Val Asn Met Val Ile Phe Arg Glu Asn Thr Glu Asp Ile 145 150 155 160 Tyr Ala Gly Ile Glu Trp Pro Ala Gly Ser Glu Glu Val Lys Lys Val 165 170 175 Leu Asp Ph e Leu Lys Arg Glu Phe Pro Lys Ala Tyr Ala Lys Ile Arg 180 185 190 Phe Pro Glu Thr Ser Gly Leu Gly Leu Lys Pro Ile Ser Lys Glu Gly 195 200 205 Thr Glu Arg Leu Val Glu Ala Ala Ile Glu Tyr Ala Ile Lys Glu Asp 210 215 220 Leu Pro Ser Val Thr Leu Val His Lys Gly Asn Ile Met Lys Phe Thr 225 230 235 240 Glu Gly Ala Phe Arg Glu Trp Gly Tyr Ala Leu Ala Arg Glu Lys Tyr 245 250 255 Gly Ala Thr Pro Leu Asp Gly Gly Pro Trp His Val Leu Lys Asn Pro 260 265 270 270 Arg Thr Gly Arg Glu Ile Val Ile Lys Asp Met Ile Ala Asp Asn Phe 275 280 285 Leu Gln Gln Ile Leu Leu Arg Pro Asp Glu Tyr Ser Val Ile Ala Thr 290 295 300 Met Asn Leu Asn Gly Asp Tyr Ile Ser Asp Ala Leu Ala Ala Gln Val 305 310 315 320 Gly Gly Ile Gly Ile Ala Pro Gly Ala Asn Ile Asn Tyr Lys Thr Gly 325 330 335 His Ala Val Phe Glu Ala Thr His Gly Thr Ala Pro Lys Tyr Ala Gly 340 345 350 Gln Asp Lys Val Asn Pro Ser Ser Val Ile Leu Ser Gly Glu Met Met 355 360 365 Leu Arg Tyr Leu Gly Trp Asn Glu Ala Ala Asp Leu Ile Ile Arg Ala 370 375 380 380 Met Glu Arg Th r Ile Ser Lys Gly Leu Val Thr Tyr Asp Phe His Arg 385 390 395 400 Leu Leu Val Ala Glu Gly Lys Pro Ala Thr Leu Leu Lys Thr Ser Glu 405 410 415 Phe Gly Gln Ala Leu Ile Gln His Met Asp *** 420 425

【0031】配列番号:2 配列の長さ:2872 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:染色体DNA 起源:サーマス アクアティカス 株名:YT1(ATCC25104) 配列 GCTCCTTCCC GTGGACCCCT GGGCGAAGGT GGCCTCCTTC TCCAAAAGGA GGACCTTAAG 60 CCCCGCCTCC GCTAGCCGGT AGGCCGAGGC CGCCCCTACG ATCCCCGCCC CCACCACCAG 120 CACATCCGCC ACCTCCCCAG TTTAGGAAGC CGGGAGTATG CTAGGCCCCG GAGGTACCT 179 ATG GCC TAC CAG CGC ATC CAG ATT CCC CAG GAG GGC GAA AAG ATC ACC 227 Met Ala Tyr Gln Arg Ile Gln Ile Pro Gln Glu Gly Glu Lys Ile Thr 1 5 10 15 ATC CAA GAG GGC GTC CTG AAG GTG CCG GAC CAG CCC ATC ATC GGC TTC 275 Ile Gln Glu Gly Val Leu Lys Val Pro Asp Gln Pro Ile Ile Gly Phe 20 25 30 ATT GAG GGG GAT GGG ACC GGC CCT GAC ATC TGG AGA GCG GCC CAA CCC 323 Ile Glu Gly Asp Gly Thr Gly Pro Asp Ile Trp Arg Ala Ala Gln Pro 35 40 45 GTC CTA GAC GCC GCC GTG GCC AAA GCC TAC GGC GGG CAA CGG CGC ATC 371 Val Leu Asp Ala Ala Val Ala Lys Ala Tyr Gly Gly Gln Arg Arg Ile 50 55 60 GTC TGG GTG GAG CTT TAC GCC GGG GAA AAG GCC AAC CAG GTC TAC GGG 419 Val Trp Val Glu Leu Tyr Ala Gly Glu Lys Ala Asn Gln Val Tyr Gly 65 70 75 80 GAG CCC ATC TGG CTC CCC GAG GAG ACC CTG GAG TTC ATC CGG GAG TAC 467 Glu Pro Ile Trp Leu Pro Glu Glu Thr Leu Glu Phe Ile Arg Glu Tyr 85 90 95 CTG GTG GCC ATC AAG GGC CCC CTG ACC ACG CCG GTG GGC GGC GGC ATC 515 Leu Val Ala Ile Lys Gly Pro Leu Thr Thr Pro Val Gly Gly Gly Ile 100 105 110 CGG AGC ATC AAC GTG GCC CTC AGG CAG GAG CTG GAC CTC TAC GCC TGC 563 Arg Ser Ile Asn Val Ala Leu Arg Gln Glu Leu Asp Leu Tyr Ala Cys 115 120 125 GTG CGC CCC GTG CGC TGG TTC CAG GGG GTG CCC AGT CCG GTG AAG CAC 611 Val Arg Pro Val Arg Trp Phe Gln Gly Val Pro Ser Pro Val Lys His 130 135 140 CCG GAG CTG GTC AAC ATG GTC ATC TTC CGG GAG AAC ACC GAG GAC ATC 659 Pro Glu Leu Val Asn Met Val Ile Phe Arg Glu Asn Thr Glu Asp Ile 145 150 155 160 TAC GCC GGG ATT GAG TGG CCG GCG GGG AGC GAG GAG GTA AAG AAG GTC 707 Tyr Ala Gly Ile Glu Trp Pro Ala Gly Ser Glu Glu Val Lys Lys Val 165 170 175 CTA GAC TTC TTG AAG CGG GAG TTC CCC AAG GCC TAC GCC AAG ATC CGC 755 Leu Asp Phe Leu Lys Arg Glu Phe Pro Lys Ala Tyr Ala Lys Ile Arg 180 185 190 TTC CCC GAG ACC TCG GGC CTG GGC CTG AAG CCC ATC TCC AAG GAG GGC 803 Phe Pro Glu Thr Ser Gly Leu Gly Leu Lys Pro Ile Ser Lys Glu Gly 195 200 205 ACG GAG CGC CTG GTG GAG GCG GCC ATT GAG TAC GCC ATC AAG GAG GAC 851 Thr Glu Arg Leu Val Glu Ala Ala Ile Glu Tyr Ala Ile Lys Glu Asp 210 215 220 CTC CCC AGC GTG ACC CTG GTC CAC AAA GGC AAC ATC ATG AAG TTC ACC 899 Leu Pro Ser Val Thr Leu Val His Lys Gly Asn Ile Met Lys Phe Thr 225 230 235 240 GAA GGG GCC TTC CGG GAG TGG GGC TAC GCC CTG GCC CGG GAA AAG TAC 947 Glu Gly Ala Phe Arg Glu Trp Gly Tyr Ala Leu Ala Arg Glu Lys Tyr 245 250 255 GGG GCC ACG CCC CTG GAC GGC GGG CCC TGG CAC GTC CTC AAA AAC CCC 995 Gly Ala Thr Pro Leu Asp Gly Gly Pro Trp His Val Leu Lys Asn Pro 260 265 270 CGC ACC GGC AGG GAG ATC GTT ATC AAG GAC ATG ATC GCC GAC AAC TTC 1043 Arg Thr Gly Arg Glu Ile Val Ile Lys Asp Met Ile Ala Asp Asn Phe 275 280 285 CTG CAG CAG ATC CTC CTC CGC CCC GAC GAA TAC TCG GTG ATC GCC ACC 1091 Leu Gln Gln Ile Leu Leu Arg Pro Asp Glu Tyr Ser Val Ile Ala Thr 290 295 300 ATG AAC CTG AAC GGG GAC TAC ATC TCC GAT GCC CTG GCC GCC CAG GTG 1139 Met Asn Leu Asn Gly Asp Tyr Ile Ser Asp Ala Leu Ala Ala Gln Val 305 310 315 320 GGG GGC ATC GGC ATC GCC CCC GGG GCC AAC ATC AAC TAC AAG ACG GGC 1187 Gly Gly Ile Gly Ile Ala Pro Gly Ala Asn Ile Asn Tyr Lys Thr Gly 325 330 335 CAC GCC GTC TTT GAG GCC ACC CAC GGC ACC GCC CCC AAG TAC GCT GGC 1235 His Ala Val Phe Glu Ala Thr His Gly Thr Ala Pro Lys Tyr Ala Gly 340 345 350 CAG GAC AAG GTG AAC CCC AGC AGC GTC ATC CTC TCC GGG GAG ATG ATG 1283 Gln Asp Lys Val Asn Pro Ser Ser Val Ile Leu Ser Gly Glu Met Met 355 360 365 CTT CGC TAC CTG GGC TGG AAC GAG GCG GCG GAC CTC ATC ATC AGG GCC 1331 Leu Arg Tyr Leu Gly Trp Asn Glu Ala Ala Asp Leu Ile Ile Arg Ala 370 375 380 ATG GAG AGG ACC ATC AGC AAG GGC CTG GTC ACC TAC GAC TTC CAC CGC 1379 Met Glu Arg Thr Ile Ser Lys Gly Leu Val Thr Tyr Asp Phe His Arg 385 390 395 400 CTC CTG GTG GCC GAG GGC AAG CCC GCC ACG CTT CTT AAG ACC AGC GAG 1427 Leu Leu Val Ala Glu Gly Lys Pro Ala Thr Leu Leu Lys Thr Ser Glu 405 410 415 TTC GGC CAG GCC CTG ATC CAG CAC ATG GAC TGA AAACGTTTGG GGCCCCCGCC 1480 Phe Gly Gln Ala Leu Ile Gln His Met Asp *** 420 425 GTGGCAAAAG CCACGGCGGG GTGCTTAGAC CAGGGCGAAG CGGGCCTCGA GGGCCGGAAG 1540 GTCCGCCTCC AGGAAGCGGA GGCGGACCTC GGCGTTGAGG GCAAGAGGCC CGGAGAGGGC 1600 CACCTGGGCG GAAAGCCCGA GCTCCGGGAG GAGGAAGACC CCCTGTCCCC CCGGCCTCTC 1660 CACCAGGACG CCCGGGCCCT CGTAGCCCTT TTCCATCAGG TAGAGGAGGG TCCAGTGGAG 1720 CTTGCTCCGC CTCTCCCCTT CCCGCACCAG GTCGGCCACC GCCTCCGCCG CCCCCACCCG 1780 CTCCAGGACC TCCCCCTGGG AAAGGGGCCT TTCCCCCTTG AGCCAGGCCC TGAGCTGCTG 1840 GTGAGCCACC AGGTCCAGGT AGCGCCTTAA GGGGCTCGTC ACCTGGGCGT AGAGGGGAAG 1900 GCCGAGGCCC CGGTGGGGGG CGGGGACGGCC TTGAGCTGCG CCCTCTTCA GGGTCTTCCG 1960 CTGCGCCCAC ATGGCGGCGA GGCCCTCCCCC TCCACCCGGT GGGAAGGGGC CTCCTGGGT 2020 GGCGAAGGGA AAGGGAAGGC CCTCCCTCAGG GCCAGGTGGG CGGCGCGTAG GCGAAGGAG 2080 CATGGCCTCC CGCACCCAGA CCCGGCTTTCA TAGGGGGGAA GGGGGGTGAT CCGGATCTC 2140 CTCCCCCTCC ACCCGAACCT TGACCTCGGGC AGGGCGATGT CCAAAGCCCC CTGGGCCAG 2200 GCGCTTCCGA AAAAAGTCCC CCGCCAAGGCC TTCATGGGCG CCAGGGCCTC CACCTCGAG 2260 GGCTCCCGGT AGAAAGCCGC CTCACCCGCAC CCAGGAGAGG TAAAGGTCCT CCCGCAAAA 2320 GGCTCCTTCC GGGGAGACCA GAAGCTCAAAG GTGAGGGCTG GGGAGACCTC CTTAAGCCC 2380 CAGCCCAGGG CCTCGGTCAC CGCCAGGGGGA GCATGGGCAC CGTGCCCTCG GGCAGATAG 2440 AGGTTGGCCC CCCGGCGGAG GGCCTCCTGGT CCAGGGGGCT TCCCGGCCCG ACCAAAGCG 2500 GCCACATCGG CCACATGGAC GAAAAGGTGGA AGCCCTCCTC CACCCTTTCG GCGTAAAGG 2560 GCGTCGTCCG GGTCCTGGCT CCCCTCGTCGT CAATGGCGAA GGCGGGGAGG TGGGTGAGG 2620 TCCACCCGCT CCTCCTCGGG CAGGGGGGGGA CGGGGAGGTC CGGCGGGGCC AGGGGAAGG 2680 CCAAGCCGCC TGGGGTGGGG GTTTTCCCGCC GCCAGAGGCC CAGGCGGAGA AGGAGCCGT 2740 GGGCGGCCTC GGGGGTTTCG GGAAGGCCCAG GGCCTTGAGA AGCCGGCTTT CCTTCCTCT 2800 CGCCGTGGGC CAGAGCCTCC ACCTCGGCCAG GAGGGGGCGG TCCTCGAGGG AGGGCCGTC 2860 CCTGGCGGAT CC 2872SEQ ID NO: 2 Sequence length: 2872 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: chromosomal DNA Origin: Thermus aquaticus Strain: YT1 (ATCC25104) Sequence GCTCCTTCCC GTGGACCCCT GGGCGAAGGT GGCCTCCTTC TCCAAAAGGA GGACCTTAAG 60 CCCCGCCTCC GCTAGCCGGT AGGCCGAGGC CGCCCCTACG ATCCCCGCCC CCACCACCAG 120 CACATCCGCC ACCTCCCCAG TTTAGGAAGC CGGGAGTATG CTAGGCCCCG GAGGTACCT 179 ATG GCC TAC CAG CGC ATC CAG ATT CCC CAG GAG GGC GAA AAG ATC ACC 227 Met Ala Tyr Gln Arg Ile Gln Ile Pro Gln Glu Gly Glu Lys Ile Thr 1 5 10 15 ATC CAA GAG GGC GTC CTG AAG GTG CCG GAC CAG CCC ATC ATC GGC TTC 275 Ile Gln Glu Gly Val Leu Lys Val Pro Asp Gln Pro Ile Ile Gly Phe 20 25 30 ATT GAG GGG GAT GGG ACC GGC CCT GAC ATC TGG AGA GCG GCC CAA CCC 323 Ile Glu Gly Asp Gly Thr Gly Pro Asp Ile Trp Arg Ala Ala Gln Pro 35 40 45 GTC CTA GAC GCC GCC GTG GCC AAA GCC TAC GGC GGG CAA CGG CGC ATC 371 Val Leu Asp Ala Ala Val Ala Lys Ala Tyr Gly Gly Gln Arg Arg Ile 50 55 60 GTC TGG GTG GAG CTT TAC GCC GGG GAA AAG GCC AAC CAG GTC TAC GGG 419 Val Trp Val Glu Leu Tyr Ala Gly Glu Lys Ala Asn Gln Val Tyr Gly 65 70 75 80 GAG CCC ATC TGG CTC CCC GAG GAG ACC CTG GAG TTC ATC CGG GAG TAC 467 Glu Pro Ile Trp Leu Pro Glu Glu Thr Leu Glu Phe Ile Arg Glu Tyr 85 90 95 CTG GTG GCC ATC AAG GGC CCC CTG ACC ACG CCG GTG GGC GGC GGC ATC 515 Leu Val Ala Ile Lys Gly Pro Leu Thr Thr Pro Val Gly Gly Gly Ile 100 105 110 CGG AGC ATC AAC GTG GCC CTC AGG CAG GAG CTG GAC CTC TAC GCC TGC 563 Arg Ser Ile Asn Val Ala Leu Arg Gln Glu Leu Asp Leu Tyr Ala Cys 115 120 125 GTG CGC CCC GTG CGC TGG TTC CAG GGG GTG CCC AGT CCG GTG AAG CAC 611 Val Arg Pro Val Arg Trp Phe Gln Gly Val Pro Ser Pro Val Lys His 130 135 140 CCG GAG CTG GTC AAC ATG GTC ATC TTC CGG GAG AAC ACC GAG GAC ATC 659 Pro Glu Leu Val Asn Met Val Ile Phe Arg Glu Asn Thr Glu Asp Ile 145 150 155 160 TAC GCC GGG ATT GAG TGG CCG GCG GGG AGC GAG GAG GTA AAG AAG GTC 707 Tyr Ala Gly I le Glu Trp Pro Ala Gly Ser Glu Glu Val Lys Lys Val 165 170 175 CTA GAC TTC TTG AAG CGG GAG TTC CCC AAG GCC TAC GCC AAG ATC CGC 755 Leu Asp Phe Leu Lys Arg Glu Phe Pro Lys Ala Tyr Ala Lys Ile Arg 180 185 190 TTC CCC GAG ACC TCG GGC CTG GGC CTG AAG CCC ATC TCC AAG GAG GGC 803 Phe Pro Glu Thr Ser Gly Leu Gly Leu Lys Pro Ile Ser Lys Glu Gly 195 200 205 ACG GAG CGC CTG GTG GAG GCG GCC ATT GAG TAC GCC ATC AAG GAG GAC 851 Thr Glu Arg Leu Val Glu Ala Ala Ile Glu Tyr Ala Ile Lys Glu Asp 210 215 220 CTC CCC AGC GTG ACC CTG GTC CAC AAA GGC AAC ATC ATG AAG TTC ACC 899 Leu Pro Ser Val Thr Leu Val His Lys Gly Asn Ile Met Lys Phe Thr 225 230 235 240 GAA GGG GCC TTC CGG GAG TGG GGC TAC GCC CTG GCC CGG GAA AAG TAC 947 Glu Gly Ala Phe Arg Glu Trp Gly Tyr Ala Leu Ala Arg Glu Lys Tyr 245 250 255 GGG GCC ACG CCC CTG GAC GGC GGG CCC TGG CAC GTC CTC AAA AAC CCC 995 Gly Ala Thr Pro Leu Asp Gly Gly Pro Trp His Val Leu Lys Asn Pro 260 265 270 CGC ACC GGC AGG GAG ATC GTT ATC AAG GAC ATG ATC GCC GAC AAC TTC 1043Arg Thr Gly Arg Glu Ile Val Ile Lys Asp Met Ile Ala Asp Asn Phe 275 280 285 CTG CAG CAG ATC CTC CTC CGC CCC GAC GAA TAC TCG GTG ATC GCC ACC 1091 Leu Gln Gln Ile Leu Leu Arg Pro Asp Glu Tyr Ser Val Ile Ala Thr 290 295 300 ATG AAC CTG AAC GGG GAC TAC ATC TCC GAT GCC CTG GCC GCC CAG GTG 1139 Met Asn Leu Asn Gly Asp Tyr Ile Ser Asp Ala Leu Ala Ala Gln Val 305 310 310 315 320 GGG GGC ATC GGC ATC GCC CCC GGG GCC AAC ATC AAC TAC AAG ACG GGC 1187 Gly Gly Ile Gly Ile Ala Pro Gly Ala Asn Ile Asn Tyr Lys Thr Gly 325 330 335 CAC GCC GTC TTT GAG GCC ACC CAC GGC ACC GCC CCC AAG TAC GCT GGC 1235 His Ala Val Phe Glu Ala Thr His Gly Thr Ala Pro Lys Tyr Ala Gly 340 345 350 CAG GAC AAG GTG AAC CCC AGC AGC GTC ATC CTC TCC GGG GAG ATG ATG 1283 Gln Asp Lys Val Asn Pro Ser Ser Val Ile Leu Ser Gly Glu Met Met 355 360 365 CTT CGC TAC CTG GGC TGG AAC GAG GCG GCG GAC CTC ATC ATC AGG GCC 1331 Leu Arg Tyr Leu Gly Trp Asn Glu Ala Ala Asp Leu Ile Ile Arle Ala 370 375 380 ATG GAG AGG ACC ATC AGC AAG GGC CTG GTC ACC TAC GA C TTC CAC CGC 1379 Met Glu Arg Thr Ile Ser Lys Gly Leu Val Thr Tyr Asp Phe His Arg 385 390 395 400 CTC CTG GTG GCC GAG GGC AAG CCC GCC ACG CTT CTT AAG ACC AGC GAG 1427 Leu Leu Val Ala Glu Gly Lys Pro Ala Thr Leu Leu Lys Thr Ser Glu 405 410 415 TTC GGC CAG GCC CTG ATC CAG CAC ATG GAC TGA AAACGTTTGG GGCCCCCGCC 1480 Phe Gly Gln Ala Leu Ile Gln His Met Asp *** 420 425 GTGGCAAAAG CCACGGCGGG GTGCTGGAC GGCGCCGAGGCC GG GGCGTTGAGG GCAAGAGGCC CGGAGAGGGC 1600 CACCTGGGCG GAAAGCCCGA GCTCCGGGAG GAGGAAGACC CCCTGTCCCC CCGGCCTCTC 1660 CACCAGGACG CCCGGGCCCT CGTAGCCCTT TTCCATCAGG TAGAGGAGGG TCCAGTGGAG 1720 CTTGCTCCGC CTCTCCCCTT CCCGCACCAG GTCGGCCACC GCCTCCGCCG CCCCCACCCG 1780 CTCCAGGACC TCCCCCTGGG AAAGGGGCCT TTCCCCCTTG AGCCAGGCCC TGAGCTGCTG 1840 GTGAGCCACC AGGTCCAGGT AGCGCCTTAA GGGGCTCGTC ACCTGGGCGT AGAGGGGAAG 1900 GCCGAGGCCC CGGTGGGGGG CGGGGACGGCC TTGAGCTGCG CCCTCTTCA GGGTCTTCCG 1960 CTGCGCCCAC ATGGCGGCGA GGCCCTCCCCC TCCACCCGGT GGGAAGGGGC CTCCTGGGT 2020 GGCGAAGGGA AAGGGAAGGC CCTCCCTCAGG GCCAGGTGGG CGGCGCGTAG GCGAAGGAG 2080 CATGGCCTCC CGCACCCAGA CCCGGCTTTCA TAGGGGGGAA GGGGGGTGAT CCGGATCTC 2140 CTCCCCCTCC ACCCGAACCT TGACCTCGGGC AGGGCGATGT CCAAAGCCCC CTGGGCCAG 2200 GCGCTTCCGA AAAAAGTCCC CCGCCAAGGCC TTCATGGGCG CCAGGGCCTC CACCTCGAG 2260 GGCTCCCGGT AGAAAGCCGC CTCACCCGCAC CCAGGAGAGG TAAAGGTCCT CCCGCAAAA 2320 GGCTCCTTCC GGGGAGACCA GAAGCTCAAAG GTGAGGGCTG GGGAGACCTC CTTAAGCCC 2380 CAGCCCAGGG CCTCGGTCAC CGCCAGGGGGA GCATGGGCAC CGTGCCCTCG GGCAGATAG 2440 AGGTTGGCCC CCCGGCGGAG GGCCTCCTGGT CCAGGGGGCT TCCCGGCCCG ACCAAAGCG 2500 GCCACATCGG CCACATGGAC GAAAAGGTGGA AGCCCTCCTC CACCCTTTCG GCGTAAAGG 2560 GCGTCGTCCG GGTCCTGGCT CCCCTCGTCGT CAATGGCGAA GGCGGGGAGG TGGGTGAGG 2620 TCCACCCGCT CCTCCTCGGG CAGGGGGGGGA CGGGGAGGTC CGGCGGGGCC AGGGGAAGG 2680 CCAAGCCGCC TGGGGTGGGG GTTTTCCCGCC GCCAGAGGCC CAGGCGGAGA AGGAGCCGT 2740 GGGCGGCCTC GGGGGTTTCG GGAAGGCCCAG GGCCTTGAGA AGCCGGCTTT CCTTCCTCT 2800 CGCCGTGGGC CAGAGCCTCC ACCTCGGCCAG GAGGGGGCGG TCCTCGAGGG AGGGCCGTC 2860 CCTGGCGGAT CC 2872

【図面の簡単な説明】[Brief description of the drawings]

【図1】 各温度における耐熱性イソクエン酸脱水素酵
素活性を示す。
FIG. 1 shows thermostable isocitrate dehydrogenase activity at each temperature.

【図2】 各pHにおける耐熱性イソクエン酸脱水素酵
素活性を示す。
FIG. 2 shows the thermostable isocitrate dehydrogenase activity at each pH.

【図3】 耐熱性イソクエン酸脱水素酵素活性の熱安定
性を示す。
FIG. 3 shows the thermostability of thermostable isocitrate dehydrogenase activity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:01) (C12N 1/21 C12R 1:19) (C12N 9/04 C12R 1:19) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C12R 1:01) (C12N 1/21 C12R 1:19) (C12N 9/04 C12R 1:19)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1記載のアミノ酸配列、又は該
アミノ酸配列において1もしくは複数のアミノ酸が付
加、欠失もしくは置換されたものであって、且つイソク
エン酸脱水素酵素活性をもたらすアミノ酸配列を有する
耐熱性イソクエン酸脱水素酵素をコードするDNA。
1. An amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one or more amino acids are added, deleted or substituted in the amino acid sequence, and which has an isocitrate dehydrogenase activity. DNA encoding thermostable isocitrate dehydrogenase.
【請求項2】 配列番号2記載の塩基配列を有する、耐
熱性イソクエン酸脱水素酵素をコードするDNA。
2. A DNA encoding the thermostable isocitrate dehydrogenase having the nucleotide sequence of SEQ ID NO: 2.
【請求項3】 サーマス アクアティカス由来である請
求項2記載のDNA。
3. The DNA according to claim 2, which is derived from Thermus Aquaticus.
【請求項4】 請求項1〜3いずれかに記載のDNAを
ベクターDNAに挿入してなることを特徴とする組換え
ベクター。
4. A recombinant vector obtained by inserting the DNA according to claim 1 into a vector DNA.
【請求項5】 請求項4記載の組換えベクターで形質転
換した形質転換体。
A transformant transformed with the recombinant vector according to claim 4.
【請求項6】 請求項5記載の形質転換体を培地に培養
し、培養物から耐熱性イソクエン酸脱水素酵素を採取す
ることを特徴とする耐熱性イソクエン酸脱水素酵素の製
造法。
6. A method for producing a thermostable isocitrate dehydrogenase, comprising culturing the transformant according to claim 5 in a medium, and collecting thermostable isocitrate dehydrogenase from the culture.
【請求項7】 配列番号1記載のアミノ酸配列、又は該
アミノ酸配列において1もしくは複数のアミノ酸が付
加、欠失もしくは置換されたものであって、且つイソク
エン酸脱水素酵素活性をもたらすアミノ酸配列を有する
耐熱性イソクエン酸脱水素酵素。
7. An amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one or more amino acids are added, deleted or substituted in the amino acid sequence, and which has an isocitrate dehydrogenase activity. Thermostable isocitrate dehydrogenase.
JP8328400A 1996-12-09 1996-12-09 Heat-resistant dehydrogenase gene of isocitric acid Pending JPH10165181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8328400A JPH10165181A (en) 1996-12-09 1996-12-09 Heat-resistant dehydrogenase gene of isocitric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8328400A JPH10165181A (en) 1996-12-09 1996-12-09 Heat-resistant dehydrogenase gene of isocitric acid

Publications (1)

Publication Number Publication Date
JPH10165181A true JPH10165181A (en) 1998-06-23

Family

ID=18209839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8328400A Pending JPH10165181A (en) 1996-12-09 1996-12-09 Heat-resistant dehydrogenase gene of isocitric acid

Country Status (1)

Country Link
JP (1) JPH10165181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969099A2 (en) * 1998-06-09 2000-01-05 Japan as represented by Director-General, Agency of Industrial Science and Technology Ammonia elimination liquid reagent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969099A2 (en) * 1998-06-09 2000-01-05 Japan as represented by Director-General, Agency of Industrial Science and Technology Ammonia elimination liquid reagent
EP0969099A3 (en) * 1998-06-09 2002-01-09 Japan as represented by Director-General, Agency of Industrial Science and Technology Ammonia elimination liquid reagent
US6352847B1 (en) 1998-06-09 2002-03-05 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Ammonia elimination liquid reagent

Similar Documents

Publication Publication Date Title
CA2253021C (en) New mutants of formate dehydrogenase from candida boidinii, new gene sequences encoding these and use of the new formate dehydrogenases
US5229286A (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase from leuconostoc dextranicus
JP5289801B2 (en) Protein with uricase activity
JPH10165181A (en) Heat-resistant dehydrogenase gene of isocitric acid
JP4352286B2 (en) Mutant glucose-6-phosphate dehydrogenase and method for producing the same
JP4022784B2 (en) Novel hexokinase
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
JPH10248574A (en) New lactic acid-oxidizing enzyme
JP3498808B2 (en) DNA polymerase gene
JP4161236B2 (en) Novel L-α-glycerophosphate oxidase and method for producing the same
JPH10174585A (en) Stable creatine amidinohydrolase
JP3335287B2 (en) Hexokinase gene
JPH11318438A (en) Recombined microorganism 3-hydroxybutyric acid dehydrogenase, its production and its use
JP3829950B2 (en) Novel creatinine amide hydrolase
JP2008022766A (en) Method for increasing specific activity of uricase and modified uricase having improved specific activity
JP4066203B2 (en) Novel creatinine amide hydrolase
US5416014A (en) Cloned N-carbamoyl sarcosine amidohydrolase
JP4239046B2 (en) Mutant hexokinase and method for producing the same
JP4367616B2 (en) Thermostable lactate oxidase
JP4161232B2 (en) Novel protein having sarcosine oxidase activity and method for producing the same
JP2000078982A (en) Stable hexokinase and its production
JPH09262089A (en) Dna coding for b-type subunit of avian lactic acid dehydrogenase
JP2004089052A (en) Method for producing glucose dehydrogenase
JP4487174B2 (en) Liquid stable cholesterol oxidase and process for producing the same
JP2003339385A (en) New 3-hydroxybutyric acid dehydrogenase gene, method for producing the same enzyme, method for measuring ketone body by using the same enzyme and composition for measurement