JPH1015944A - Apparatus for heating and cooing mold - Google Patents

Apparatus for heating and cooing mold

Info

Publication number
JPH1015944A
JPH1015944A JP19552996A JP19552996A JPH1015944A JP H1015944 A JPH1015944 A JP H1015944A JP 19552996 A JP19552996 A JP 19552996A JP 19552996 A JP19552996 A JP 19552996A JP H1015944 A JPH1015944 A JP H1015944A
Authority
JP
Japan
Prior art keywords
temperature
low
water
circulation path
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19552996A
Other languages
Japanese (ja)
Inventor
Satoshi Kitaichi
敏 北市
Nariyuki Takaoka
成幸 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP19552996A priority Critical patent/JPH1015944A/en
Publication of JPH1015944A publication Critical patent/JPH1015944A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means

Abstract

PROBLEM TO BE SOLVED: To use water with temp. of 100 deg.C or higher as a heating medium to pressurize a high temp. water system and a low temp. water system by a pressure pump or gas pressure. SOLUTION: A mold wherein a plurality of a heating medium passages 63 are provided in a close vicinity to the wall surface of a cavity and connected in parallel and series is used and at least a high temp. water system II circulating high temp. water and a low temp. water system I circulating low temp. water are set to constitutional elements and pressure equal to or higher than the saturation pressure corresponding to the temp. of the circulating water of the high temp. water system is applied to the high and low temp. water systems II, I to make it possible to change over the circulation route wherein the passage 63 of the mold 36 is incorporated in a part of the high temp. water system II and the circulation route wherein the passage 63 of the mold 36 is incorporated in the low temp. water system I.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック成形
等の成形に用いる成形型の加熱冷却装置の技術に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology of a heating and cooling device for a mold used for molding such as plastic molding.

【0002】[0002]

【従来の技術】プラスチックの射出成形は、目的とする
製品形状と同形状のキャビティを有する成形型に溶融し
たプラスチックを射出し冷却固化せしめて行なう。得ら
れた製品の外観は成形型のキャビティとほぼ等しいのは
もちろんであるが、厳密には異なる。
2. Description of the Related Art Injection molding of plastics is performed by injecting molten plastic into a mold having a cavity having the same shape as a desired product shape, and cooling and solidifying the molten plastic. The appearance of the resulting product is, of course, approximately equal to the mold cavity, but strictly different.

【0003】特に、キャビティ表面の微細な凹凸は正確
に転写されない場合が多い。これは溶融プラスチックが
キャビティ表面に接触した瞬間に冷却されて、溶融プラ
スチック表面に薄い固化層が形成されるので、キャビテ
ィ表面の微細な凹凸の正確な転写を妨げるからである。
キャビティ表面の微細な凹凸の寸法と、得られたプラス
チック成形品の表面の微細な凹凸の寸法との比を転写率
と呼んでいるが、精密なプラスチック射出成形において
はこの転写率を高くすることが課題の一つである。
In particular, fine irregularities on the cavity surface are often not accurately transferred. This is because the molten plastic is cooled as soon as it comes into contact with the cavity surface, and a thin solidified layer is formed on the surface of the molten plastic, which hinders accurate transfer of fine irregularities on the cavity surface.
The ratio of the size of the fine irregularities on the cavity surface to the size of the fine irregularities on the surface of the obtained plastic molded product is called the transfer rate. In precision plastic injection molding, the transfer rate must be increased. Is one of the issues.

【0004】またプラスチックの射出成形における製品
の不良として、「ウエルド」,「ひけ」,「シルバー」
と呼ばれる3つの大きな不良項目があり、これらの3大
不良を減少もしくは絶滅することは射出工程の現場では
極めて重要である。
[0004] In plastic injection molding, defective products include "weld", "hike", and "silver".
There are three major defective items, and reducing or eliminating these three major defects is extremely important in the field of the injection process.

【0005】上述した転写率の改善方法ならびに上記3
大不良の減少対策として、高温成形と呼ばれる成形方法
が知られている。これは予めキャビティ表面の温度を上
げておくことにより溶融プラスチック表面に固化層の形
成を遅らせ、キャビティ表面の微細な凹凸を正確に転写
させ、その後に型を冷却してプラスチック成形品を完全
に固化させて取り出す方法である。またこの高温成形を
用いることにより、先に述べた成形の3大不良も減少も
しくは絶滅することもできる。このように高温成形法は
射出成形として優れた工法である。
The above-described method for improving the transfer rate, and
A molding method called high-temperature molding is known as a measure for reducing large defects. This delays the formation of a solidified layer on the surface of the molten plastic by raising the temperature of the cavity surface in advance, accurately transfers the fine irregularities on the cavity surface, and then cools the mold to completely solidify the plastic molded product It is a method of taking out. By using this high-temperature molding, the above-mentioned three major defects of molding can also be reduced or eliminated. Thus, the high-temperature molding method is an excellent method for injection molding.

【0006】しかし高温成形においては、一般に金型の
昇温・冷却に時間がかかるので通常の射出成形サイクル
時間内に納まらず、成形コストが高くなるという欠点が
あった。
However, in high-temperature molding, since it generally takes time to raise and cool the temperature of the mold, it has a disadvantage that the molding cannot be performed within a normal injection molding cycle time and the molding cost is increased.

【0007】例えば高温成形の代表例として、型の加熱
のために型に電気ヒータを埋め込む方法がある。この方
法では型壁面温度を上げるためには、電気ヒータを埋め
込んでいる部分も加熱せねばならないので被加熱部の熱
容量が大きくなり、所定の温度に加熱するのに長時間を
要する上に、冷却時間も延長されてしまう。加熱,冷却
に要する時間は、型の大きさ,使用環境等で大幅に変化
するが、例えば型壁面温度を50℃上昇,下降させよう
とする場合、このような電気ヒータを埋め込んだ方法で
は、数分ないし数10分単位の時間を要するのが通例で
あった。これでは数秒を争って成形時間を短縮しようと
している成形現場に受け入れられないのは当然である。
For example, as a typical example of high-temperature molding, there is a method of embedding an electric heater in a mold for heating the mold. In this method, in order to raise the mold wall temperature, the portion in which the electric heater is embedded must also be heated, so that the heat capacity of the heated portion increases, and it takes a long time to heat to a predetermined temperature, and cooling Time will be extended. The time required for heating and cooling varies greatly depending on the size of the mold, the use environment, and the like. For example, when the mold wall temperature is to be raised or lowered by 50 ° C., such a method in which the electric heater is embedded is It usually took several minutes to several tens of minutes. Naturally, this is unacceptable for molding sites seeking to reduce molding time by competing for several seconds.

【0008】電気ヒータのかわりに型に適当な流路を設
け、この流路に高温熱媒体を流す方法が提案されてお
り、例えば特開昭62−117716号公報,特開平1
−115606号公報等に開示されている。
A method has been proposed in which an appropriate flow path is provided in a mold instead of an electric heater, and a high-temperature heat medium is passed through this flow path. For example, Japanese Patent Application Laid-Open Nos. 62-117716 and 1
-115606.

【0009】この方法の利点の1つは、流路を型壁面に
近付けて設けることにより加熱時間を短縮できることで
ある。流路と型壁面との熱伝導が良くなるのに加えて被
加温熱部の熱容量を小さくできるからである。さらにこ
の方法の大きな利点としては加熱時には高温の熱媒体を
流路に流し、冷却時には低温の熱媒体を流すので、加熱
時間だけでなく冷却時間も短縮することができる。
One of the advantages of this method is that the heating time can be shortened by providing the flow path close to the mold wall. This is because, in addition to improving the heat conduction between the flow path and the mold wall surface, the heat capacity of the heated portion can be reduced. Another great advantage of this method is that a high-temperature heat medium flows through the flow path during heating and a low-temperature heat medium flows during cooling, so that not only the heating time but also the cooling time can be reduced.

【0010】熱媒体を利用する高温成形方法において
は、高温と低温の熱媒体をそれぞれ用意すると共に、成
形サイクルに合わせて、型に高温熱媒体を供給したり低
温熱媒体を供給したりするための切り換え装置が必要で
ある。その例として、特開昭51−5362号公報,特
公平1−26848号公報等に開示されている。
In a high-temperature molding method using a heat medium, a high-temperature heat medium and a low-temperature heat medium are prepared, and a high-temperature heat medium and a low-temperature heat medium are supplied to a mold in accordance with a molding cycle. Switching device is required. Examples thereof are disclosed in JP-A-51-5362 and JP-B-1-26848.

【0011】上記特開昭51−5362号公報に開示さ
れている技術について、図12を参照して説明すると、
1は可動型本体、2は固定型本体、3は可動側型板、4
は固定側型板である。可動側型板3と固定側型板4とが
閉じてキャビティ6が形成される。また可動側型板3と
可動型本体1との間および固定側型板4と固定型本体2
との間には、それぞれ熱媒体通路7,8が形成されてい
る。これらの熱媒体通路には流入口9,10および流出
口11,12が形成され、流入口9,10は切換弁13
を介して、また流出口11,12は切換弁16を介して
それぞれ熱媒体加熱供給装置14および熱媒体冷却供給
装置15に接続されている。
The technique disclosed in Japanese Patent Laid-Open No. 51-5362 will be described with reference to FIG.
1 is a movable mold body, 2 is a fixed mold body, 3 is a movable mold plate, 4
Is a fixed-side template. The movable mold plate 3 and the fixed mold plate 4 are closed to form the cavity 6. Further, between the movable mold plate 3 and the movable mold body 1 and between the fixed mold plate 4 and the fixed mold body 2.
The heat medium passages 7 and 8 are formed between them. Inflow ports 9 and 10 and outflow ports 11 and 12 are formed in these heat medium passages.
The outlets 11 and 12 are connected to a heating medium heating / supplying device 14 and a heating medium cooling / supplying device 15 via a switching valve 16, respectively.

【0012】上記構成において、まず図示のように切換
弁13,16によって熱媒体加熱供給装置14に接続し
て高温の熱媒体を通路7,8に流通させ型板3,4を通
してキャビティ6内を所定の温度に加熱する。キャビテ
ィ6が所定の温度に達した後に、図示していないが射出
ノズルから射出口5を経てキャビティ6に樹脂を射出・
充填する。樹脂の射出後、切換弁13,16を熱媒体冷
却供給装置15に切り換えて通路7,8に低温の熱媒体
を流通させ、キャビティ6内の樹脂を冷却する。キャビ
ティ6内の樹脂が冷却・固化した後、可動型本体1,固
定型本体2を開いて成形品を取り出す。
In the above construction, first, as shown in the figure, the switching valves 13 and 16 are connected to the heating medium heating / supplying device 14 to allow the high-temperature heating medium to flow through the passages 7 and 8 so that the inside of the cavity 6 passes through the mold plates 3 and 4. Heat to a predetermined temperature. After the cavity 6 reaches a predetermined temperature, the resin is injected into the cavity 6 from the injection nozzle through the injection port 5 (not shown).
Fill. After the injection of the resin, the switching valves 13 and 16 are switched to the heat medium cooling / supplying device 15 so that a low-temperature heat medium flows through the passages 7 and 8 to cool the resin in the cavity 6. After the resin in the cavity 6 is cooled and solidified, the movable mold body 1 and the fixed mold body 2 are opened to take out a molded product.

【0013】ところで高温成形の効果を発揮させるには
樹脂射出前の型壁面の温度を、樹脂のガラス転移点の近
傍、できればガラス転移点以上にしておくことが必要で
ある。樹脂のガラス転移点は樹脂の種類により異なるが
一般に100℃〜120℃以上である。また冷却時の型
壁面の温度は普通40℃〜80℃であるので昇温温度幅
・冷却温度幅は40℃〜80℃となる。一方成形サイク
ルの延長を防ぐには、昇温・冷却に充てられる時間は最
大でも40秒、できれば数秒に抑えなければならない。
By the way, in order to exhibit the effect of high-temperature molding, it is necessary to keep the temperature of the mold wall surface before resin injection near the glass transition point of the resin, preferably at or above the glass transition point. Although the glass transition point of the resin varies depending on the type of the resin, it is generally 100 ° C. to 120 ° C. or higher. Further, the temperature of the mold wall surface during cooling is usually 40 ° C. to 80 ° C., so that the temperature rising temperature range and the cooling temperature range are 40 ° C. to 80 ° C. On the other hand, in order to prevent the molding cycle from being extended, the time allotted for heating and cooling must be limited to 40 seconds at the maximum, and preferably several seconds.

【0014】従って昇温速度および冷却速度としては1
℃/秒以上は必要であるので、このような大きな昇温速
度・冷却速度を得るための具体的な手段として、型壁面
の近傍に流路を設け、この流路に高温もしくは低温の熱
媒体を流す方法が提案されていた。また高温の熱媒体の
温度は上記したように少なくとも100℃〜120℃以
上であることが必要であり、低温の熱媒体の温度は40
℃〜80℃以下である。
Therefore, the heating rate and the cooling rate are 1
As a specific means for obtaining such a large heating rate / cooling rate, a flow path is provided near the mold wall, and a high-temperature or low-temperature heat medium is provided in this flow path. A method of flowing was proposed. Further, the temperature of the high-temperature heat medium must be at least 100 ° C. to 120 ° C. or higher as described above, and the temperature of the low-temperature heat medium is 40 ° C.
℃-80 ℃ or less.

【0015】上記した特開昭51−5362号公報の記
述には熱媒体の種類が述べられていないが熱媒体に油等
の熱媒体を用いたとすると、一般に油は大気圧における
飽和温度が高いので高温側の熱媒体も低温側の熱媒体も
同じ大気圧の下で使用することができ、上記の場合でも
高温,低温の熱媒体の切り換えが可能である。しかし型
壁面の温度上昇を急速に行なおうとすると、油系の熱媒
体を用いるのは不都合である。というのは、油系の熱媒
体は粘度が高いので、流路の壁面と熱媒体との間の熱伝
達係数(境膜係数)の値が小さくなり、その結果として
キャビティ壁面への熱伝導が悪く、十分な昇温速度,冷
却速度が得られ難いという問題がある。例えば直径10
mmの流路に100℃の油系の熱媒体10リットル/分
を流した場合の熱伝達系数は、約1200W/℃/平方
メートルと見積られる。
Although the type of the heat medium is not described in the above-mentioned Japanese Patent Application Laid-Open No. 51-5362, if a heat medium such as oil is used as the heat medium, the oil generally has a high saturation temperature at atmospheric pressure. Therefore, the heat medium on the high temperature side and the heat medium on the low temperature side can be used under the same atmospheric pressure, and even in the above case, the heat medium at the high temperature and the low temperature can be switched. However, if the temperature of the mold wall surface is to be rapidly increased, it is inconvenient to use an oil-based heat medium. This is because the oil-based heat medium has a high viscosity, so the value of the heat transfer coefficient (film coefficient) between the wall of the flow path and the heat medium becomes small, and as a result, the heat transfer to the cavity wall is reduced. There is a problem that it is difficult to obtain a sufficient heating rate and cooling rate. For example, diameter 10
The number of heat transfer systems when an oil-based heat medium of 100 ° C. is flowed at 10 liters / minute through the flow path of mm is estimated to be about 1200 W / ° C./square meter.

【0016】しかし油系の熱媒体に代えて水を熱媒体と
して用い、同じ温度(100℃),同じ流量(10リッ
トル/分)の水を同じ直径10mmの流路に流した場合
の熱伝達係数は、15000W/℃/平方メートルと見
積られる。このように油系の熱媒体と水の熱媒体とを較
べると、同じ条件の下では水の熱伝達係数の方が油系の
熱媒体に較べて遙かに大きな値を示す。実際に我々の実
験・検討の結果でも、型壁面の急速な昇温速度,冷却速
度温度を得るには、熱伝達係数の値が大きい水を熱媒体
に用いる必要があることが判明した。
However, heat transfer in the case where water is used as a heat medium instead of an oil-based heat medium and water of the same temperature (100 ° C.) and the same flow rate (10 l / min) flows through a flow path of the same diameter of 10 mm. The coefficient is estimated to be 15000 W / ° C./square meter. As described above, when the oil-based heat medium and the water-based heat medium are compared, the heat transfer coefficient of water shows a much larger value than the oil-based heat medium under the same conditions. In fact, the results of our experiments and examinations also revealed that water with a large heat transfer coefficient must be used as the heating medium in order to obtain a rapid temperature rise and cooling rate temperature on the mold wall.

【0017】ところが、水を熱媒体に用いる場合、型壁
面を冷却する低温水の温度は100℃以下のことが多い
ので必ずしも加圧の必要がないが、型壁面を加熱する高
温水の温度を100℃以上に維持するには、大気圧以上
に加圧することが必要である。従って熱媒体に加える圧
力に考慮を払っていない特開昭51−5362号公報の
ような方法では、高温水,低温水の切り換えには不十分
であるという問題があった。
However, when water is used as the heat medium, the temperature of the low-temperature water for cooling the mold wall surface is often 100 ° C. or less, so that pressurization is not necessarily required. In order to maintain the temperature at 100 ° C. or higher, it is necessary to increase the pressure to atmospheric pressure or higher. Therefore, the method disclosed in Japanese Patent Application Laid-Open No. 51-5362, in which the pressure applied to the heat medium is not taken into consideration, is insufficient for switching between high-temperature water and low-temperature water.

【0018】[0018]

【発明が解決しようとする課題】上記したように熱媒体
による型の加熱冷却は、型壁面温度の急速な上昇,冷却
に有効な方法であるが、昇温速度,冷却速度をさらに大
きくするには熱媒体の温度をできるだけ高くすること、
ならびに熱媒体と流路壁面との熱伝達係数(境膜係数)
を大きくしなければならないという問題があった。加熱
に用いる高温熱媒体の温度を100℃以上にしようとす
ると大気圧のままでは飽和温度が100℃以上である油
系の熱媒体を用いざるを得ないが、油系の熱媒体は熱伝
達係数の値が著しく小さく、型壁面温度の急速上昇,急
速冷却には不敵であるという問題があった。
As described above, the heating and cooling of the mold with the heat medium is an effective method for rapidly increasing and cooling the mold wall temperature. However, when the heating rate and the cooling rate are further increased. Means that the temperature of the heating medium is as high as possible,
And heat transfer coefficient (film coefficient) between heat medium and flow channel wall
Had to be enlarged. If the temperature of the high-temperature heat medium used for heating is to be set to 100 ° C. or higher, an oil-based heat medium whose saturation temperature is 100 ° C. or higher must be used at atmospheric pressure. There was a problem that the value of the coefficient was extremely small, and the mold wall surface temperature was invincible to rapid rise and rapid cooling.

【0019】型壁面温度の急速上昇,急速冷却には熱媒
体として水を用いる必要があるが、水を100℃以上の
熱媒体として用いるには周知のように加圧しなければな
らない。
Although it is necessary to use water as a heat medium for the rapid rise and rapid cooling of the mold wall surface temperature, it is necessary to pressurize the water as a heat medium at 100 ° C. or higher, as is well known.

【0020】ところが、油系の熱媒体を前提にした従来
の熱媒体・加熱冷却装置では、熱媒体の加圧について考
慮されていない。すなわち、加熱に用いる高温熱媒体と
冷却に用いる低温熱媒体とを切り換える際の圧力差に考
慮が払われていないので、そのまま水を熱媒体とする加
熱冷却システムに用いることができないという問題があ
った。
However, in the conventional heating medium / heating / cooling apparatus on the premise of an oil-based heating medium, no consideration is given to pressurization of the heating medium. In other words, since no consideration is given to the pressure difference when switching between the high-temperature heat medium used for heating and the low-temperature heat medium used for cooling, there is a problem that it cannot be used for a heating / cooling system using water as a heat medium. Was.

【0021】[0021]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明は、成形型におけるキャビティ壁面の近
傍に配設した熱媒体流路に高温水系より高温水を流入循
環させて上記キャビティ壁面を加熱させる場合、および
上記熱媒体流路に低温水系より低温水を流入循環させて
上記キャビティを冷却させる場合に、上記高温水および
低温水は同圧に加圧し、かつ高温水の温度に相当する飽
和圧以上の圧力に加圧することとしている。これにより
熱媒体として100℃以上の高温水を利用することがで
き、その分キャビティ壁面の温度上昇速度を大きくする
ことが可能になった。また高温水系と低温水系とを同圧
に保持しているので、加熱と冷却に用いる熱媒体の切り
換えを急速に行なうことができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method in which high-temperature water flows from a high-temperature water system into a heat medium flow passage provided near a cavity wall surface of a molding die. When heating the cavity wall surface, and when cooling and cooling the cavity by flowing low-temperature water from the low-temperature water system into the heat medium flow path, the high-temperature water and low-temperature water are pressurized to the same pressure, and the temperature of the high-temperature water is increased. Is applied to a pressure equal to or higher than the saturation pressure. As a result, high-temperature water of 100 ° C. or more can be used as a heat medium, and the temperature rise rate of the cavity wall surface can be increased accordingly. Further, since the high-temperature water system and the low-temperature water system are maintained at the same pressure, the heat medium used for heating and cooling can be rapidly switched.

【0022】さらに、キャビティ壁面を加熱,冷却する
熱媒体に加圧水を用いるので、熱媒体と流路壁面との熱
伝達係数が大きくなってキャビティ壁面温度の上昇速度
のみならず冷却速度も大きくできるので、上記高温水の
温度の高温化、上記急速な熱媒体の切り換えとあいまっ
て、成形サイクル時間の延長を阻止しつつ、高温成形に
よる成形品の品質の向上、ならびに不良品の減少の効果
を得ることができる。
Further, since pressurized water is used as a heat medium for heating and cooling the cavity wall surface, the heat transfer coefficient between the heat medium and the flow path wall surface is increased, so that not only the rising speed of the cavity wall surface temperature but also the cooling speed can be increased. In combination with the increase in the temperature of the high-temperature water and the rapid switching of the heat medium, the effect of improving the quality of molded products by high-temperature molding and reducing defective products can be obtained while preventing the molding cycle time from being prolonged. be able to.

【0023】[0023]

【発明の実施の形態】本発明の成形型の加熱冷却装置
は、熱媒体の流路をキャビティの壁面に接近して設けた
成形型を用い、高温水を循環する高温水系と低温水を循
環する低温水系とを少なくとも構成要素とし、上記高温
水系の循環水温度に相当する飽和圧以上の圧力でかつ同
じ圧力を上記高温水系と低温水系とに加え、上記成形型
の流路を上記高温水系の一部に組み込む高温循環経路
と、上記成形型の流路を上記低温水系の一部に組み込む
低温循環経路とに切り換え可能にしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION A heating and cooling device for a mold according to the present invention uses a mold in which a flow path of a heat medium is provided close to a wall surface of a cavity, and circulates a high-temperature water system for circulating high-temperature water and low-temperature water. At least a saturation pressure corresponding to the circulating water temperature of the high-temperature water system and applying the same pressure to the high-temperature water system and the low-temperature water system, and causing the flow path of the mold to pass through the high-temperature water system. And a high-temperature circulation path to be incorporated into a part of the low-temperature water system and a low-temperature circulation path to be incorporated into a part of the low-temperature water system.

【0024】また本発明の成形型の加熱冷却装置には、
上記高温水系の循環水温度に相当する飽和圧以上の圧力
を吐出する加圧ポンプを設けており、上記加圧ポンプの
吐出圧により上記高温水系と低温水系とに同じ圧力を加
えることにしている。
The heating and cooling device for a mold according to the present invention includes:
A pressurizing pump for discharging a pressure equal to or higher than the saturation pressure corresponding to the circulating water temperature of the high-temperature water system is provided, and the same pressure is applied to the high-temperature water system and the low-temperature water system by the discharge pressure of the pressurizing pump. .

【0025】さらに高温水系と低温水系とに圧力を加え
る別の手段として、加圧した気体と水とを内蔵する加圧
タンクを設け、上記加圧タンクを高温水系と低温水系と
に連通させて行なう方法も可能であり、用途によっては
好ましい。
Further, as another means for applying pressure to the high-temperature water system and the low-temperature water system, a pressurized tank containing a pressurized gas and water is provided, and the pressurized tank is connected to the high-temperature water system and the low-temperature water system. A method of performing this is also possible, and is preferable depending on the application.

【0026】さらに本発明の成形型の加熱冷却装置で
は、高温水を循環する高温水系と低温水を循環する低温
水系とを少なくとも構成要素とするが、上記高温水系を
さらに高温水を循環する経路と、高温水より高い温度の
加熱水を循環する加熱水系とより構成し、上記高温水
系,低温水系,加熱水系はそれぞれに備えられた循環ポ
ンプにより水を循環させると共に、上記高温水系,低温
水系,加熱水系を連通させ、上記加熱水系の循環水温度
に相当する飽和圧以上のガス圧力を上記加熱水系の循環
ポンプの吸込口付近に加えることにより上記高温水系と
低温水系とを加圧し、上記成形型の流路を上記高温水系
の一部に組み込む高温循環経路と上記成形型の流路を上
記低温水系の一部に組み込む低温循環経路とに切り換え
可能にしたものである。
Further, in the heating and cooling device for a mold according to the present invention, a hot water system for circulating high-temperature water and a low-temperature water system for circulating low-temperature water are at least constituent elements. And a heating water system that circulates heating water at a temperature higher than the high temperature water. The high temperature water system, the low temperature water system, and the heating water system circulate water by means of circulation pumps provided therein, respectively. The heating water system is communicated, and a gas pressure higher than the saturation pressure corresponding to the circulating water temperature of the heating water system is applied to the vicinity of the suction port of the circulation pump of the heating water system to pressurize the high temperature water system and the low temperature water system, It is possible to switch between a high-temperature circulation path in which the flow path of the molding die is incorporated in a part of the high-temperature water system and a low-temperature circulation path in which the flow path of the molding die is incorporated in a part of the low-temperature water system.

【0027】また上記加熱水系には、加熱水循環ポンプ
と加熱器と3方調節弁とを少なくとも設け、上記加熱水
循環ポンプからの吐出水は加熱器を経て上記3方調節弁
の入口に流入し、上記3方調節弁の出口の1つの上記加
熱水循環ポンプの吸込口につながり、上記3方調節弁の
出口の他の1つは上記高温水循環ポンプの吸込口につな
がり、上記高温水循環ポンプの吸込口と上記加熱水循環
ポンプとの吸込口とを連通させることにより上記3方調
節弁の開度により上記高温水系に上記加熱水系を混入さ
せることにより上記高温水系の温度制御を可能にしたも
のである。
The heating water system is provided with at least a heating water circulation pump, a heater and a three-way control valve, and discharge water from the heating water circulation pump flows into an inlet of the three-way control valve through a heater. One of the outlets of the three-way control valve is connected to the suction port of the heated water circulation pump, and the other one of the three-way control valve is connected to the suction port of the high-temperature water circulation pump, and the suction port of the high-temperature water circulation pump is connected. And the suction port of the heated water circulation pump communicates with the hot water system by mixing the heated water system with the hot water system by opening the three-way control valve, thereby enabling temperature control of the hot water system.

【0028】また上記低温水系には、低温水循環ポンプ
と冷却器と3方調節弁とを少なくとも備え、上記低温水
循環ポンプからの吐出水の経路を成形型の流路を経由し
て上記3方調節弁の入口に連通させ、上記低温水循環ポ
ンプの吐出側と上記3方調節弁の入口とを直接に連通す
る経路を設け、上記3方調節弁の一方の出口は上記低温
水循環ポンプの吸込口に連通させ、他方の出口は温度調
整槽を経て上記低温水循環ポンプの吸込口に連通させ、
上記3方調節弁の開度により温度調整槽を通過した水と
温度調整槽を通過しない水とを混合させることにより上
記低温水系の温度調節を可能にしたものである。
Further, the low-temperature water system includes at least a low-temperature water circulation pump, a cooler, and a three-way control valve, and controls a path of water discharged from the low-temperature water circulation pump through the flow path of a molding die. A path is provided that communicates with the inlet of the valve and directly communicates the discharge side of the low-temperature water circulation pump with the inlet of the three-way control valve. One outlet of the three-way control valve is connected to the suction port of the low-temperature water circulation pump. The other outlet is connected to the suction port of the low-temperature water circulation pump through the temperature control tank,
The temperature of the low-temperature water system can be controlled by mixing the water that has passed through the temperature control tank and the water that has not passed through the temperature control tank according to the degree of opening of the three-way control valve.

【0029】[0029]

【実施例】【Example】

(実施例1)図1は本発明の一実施例としての成形型の
加熱冷却装置の構成図、図2〜図5は本発明の成形型の
加熱冷却装置を射出成形に適用した時の成形型の構造の
説明図である。また図6は型壁面温度の応答測定線図の
一例である。
(Embodiment 1) FIG. 1 is a block diagram of a heating and cooling apparatus for a molding die as one embodiment of the present invention, and FIGS. 2 to 5 are moldings when the heating and cooling apparatus for a molding die of the present invention is applied to injection molding. It is explanatory drawing of the structure of a type | mold. FIG. 6 is an example of a response measurement diagram of the mold wall surface temperature.

【0030】まず図2を用いて本発明の成形型の加熱冷
却装置を、射出成形に適用した時の成形型の構造を説明
する。図2の矢視M−Mによる断面図を図3に、また円
Nの部分の拡大図を図4に示す。
First, the structure of the mold when the heating and cooling device of the present invention is applied to injection molding will be described with reference to FIG. FIG. 3 is a cross-sectional view taken along the line MM of FIG. 2, and FIG. 4 is an enlarged view of a circle N.

【0031】図2において、56は固定型、57は可動
型、58は型取付板、59はロケートリング、60はス
プルー孔、61はエジェクターピンである。固定型56
と可動型57とを閉じて形成される空間がキャビティ6
2である。固定型56はロケートリング59により射出
成形機の所定の位置に位置決めされる。溶融樹脂は射出
ノズル(図示せず)からスプルー孔60を経てキャビテ
ィ62に射出される。固定型56のキャビティ62に沿
って図2に示すように流路63が多数設けてある。この
流路63について説明すると、図3に示すように固定型
56の前後にタンク64A,64Bが設けてあり、上記
流路63はタンク64A,64Bに連結管65A,65
Bにより連結されている。タンク64A,64Bは供給
管66A,66Bにより加熱冷却装置に連結されてい
る。
In FIG. 2, 56 is a fixed type, 57 is a movable type, 58 is a mold mounting plate, 59 is a locate ring, 60 is a sprue hole, and 61 is an ejector pin. Fixed type 56
The space formed by closing the movable mold 57 is the cavity 6.
2. The fixed mold 56 is positioned at a predetermined position of the injection molding machine by the locate ring 59. The molten resin is injected from an injection nozzle (not shown) into the cavity 62 via the sprue hole 60. As shown in FIG. 2, a number of flow paths 63 are provided along the cavity 62 of the fixed mold 56. The flow path 63 will be described. As shown in FIG. 3, tanks 64A and 64B are provided before and after the fixed mold 56. The flow path 63 is connected to the tanks 64A and 64B by connecting pipes 65A and 65B.
B. The tanks 64A and 64B are connected to a heating and cooling device by supply pipes 66A and 66B.

【0032】プラグ67A,67Bは供給管66A,6
6Bを固定型56に固定するためのものであるが、プラ
グ67A,67Bには熱電対が設けてあり、流路63に
流入循環させる循環水の温度を検出できるようになって
いる。このように本発明に用いる成形型では、熱媒体の
流路63をキャビティ62に沿って多数配列することに
より、キャビティ62の型壁面の温度を急速に上昇させ
得るような構造になっている。
The plugs 67A, 67B are connected to the supply pipes 66A, 6A.
6B is fixed to the fixed mold 56. The plugs 67A and 67B are provided with thermocouples so that the temperature of the circulating water flowing into and circulating in the flow passage 63 can be detected. As described above, the mold used in the present invention has a structure in which the temperature of the mold wall surface of the cavity 62 can be rapidly increased by arranging a large number of heat medium channels 63 along the cavity 62.

【0033】上記した成形型の熱媒体の流路63に高温
熱媒体あるいは低温熱媒体を供給する装置が、以下に説
明する本発明の加熱冷却装置である。
The above-described apparatus for supplying a high-temperature heat medium or a low-temperature heat medium to the flow path 63 of the heat medium of the molding die is the heating / cooling apparatus of the present invention described below.

【0034】次に図1を用いて本発明の加熱冷却装置に
ついて説明する。図1において、36が図2により説明
した成形型であり、Iが低温水系を示し、IIが高温水
系を示している。
Next, the heating / cooling apparatus of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 36 denotes a mold described with reference to FIG. 2, I denotes a low-temperature water system, and II denotes a high-temperature water system.

【0035】図1において、低温水系Iは、吸込側が水
源37に連通し、低温圧力調節弁(A)21を並列に挿
入した低温加圧ポンプ17の吐出側は、低温圧力調節弁
(B)22,低温循環ポンプ19,温度調整槽38,低
温切換バルブ(B)31を介して供給管66Aに連通さ
せ、供給管66Aは流路63に連通し、さらに供給管6
6Bを経て分岐点81に連通している。分岐点81はさ
らに、低温戻り経路99により、低温循環ポンプ19の
吸込側および低温切換バルブ(A)30を介して低温切
換バルブ(B)31にそれぞれ連通している。なお25
は低温循環ポンプ19の吸込圧力計、27は吐出圧力計
である。
In FIG. 1, the low-temperature water system I has a suction side communicating with a water source 37, and a low-temperature pressurizing pump 17 in which a low-temperature pressure adjusting valve (A) 21 is inserted in parallel. 22, the low-temperature circulation pump 19, the temperature adjusting tank 38, and the low-temperature switching valve (B) 31 communicate with the supply pipe 66A. The supply pipe 66A communicates with the flow path 63, and further with the supply pipe 6
It communicates with the branch point 81 via 6B. The branch point 81 further communicates with the low-temperature switching valve (B) 31 via the low-temperature circulating pump 19 and the low-temperature switching valve (A) 30 via a low-temperature return path 99. 25
Is a suction pressure gauge of the low-temperature circulation pump 19, and 27 is a discharge pressure gauge.

【0036】高温水系IIは、吸込側が水源37に連通
し、高温圧力調節弁(A)23を並列に挿入した高温加
圧ポンプ18の吐出側は、高温圧力調節弁(B)24,
高温循環ポンプ20,加熱器29,高温切換バルブ
(B)34を介して供給管66Aに連通している。供給
管66Bは、分岐点81を経て、高温戻り経路100に
より高温循環ポンプ20の吸込側および高温切換バルブ
(A)33を介して高温切換バルブ(B)34にそれぞ
れ連通している。なお26は高温循環ポンプ20の吸込
圧力計、28は吐出圧力計である。
The high-temperature water system II has a suction side communicating with a water source 37, and a high-temperature pressurizing pump 18 having a high-temperature pressure adjusting valve (A) 23 inserted in parallel.
The high temperature circulation pump 20, the heater 29, and the high temperature switching valve (B) 34 communicate with the supply pipe 66A. The supply pipe 66B communicates with the high-temperature switching valve (B) 34 via the branch point 81 via the high-temperature return path 100 via the suction side of the high-temperature circulation pump 20 and the high-temperature switching valve (A) 33. 26 is a suction pressure gauge of the high-temperature circulation pump 20, and 28 is a discharge pressure gauge.

【0037】まず準備状態について説明する。高温加圧
ポンプ18を運転し、高温圧力調節弁(A)23,高温
圧力調節弁(B)24を調節して、高温循環ポンプ20
の吸込圧力計26の指示が目的とする高温水の温度(例
えば130℃)に相当する飽和圧(例えば130℃の飽
和圧=2.7at)以上の値になるようにする。それに
は高温圧力調節弁(A)23の開度を大きくし、高温圧
力調節弁(B)24の開度を小さくすると高温加圧ポン
プ18からの吐出水の戻り量が大きくなるので、吸込圧
力計26の圧力指示値は低くなり、逆の操作をすると圧
力指示値が高くなる関係を利用する。こうして高温水系
IIは、目的とする温度に相当する加圧水を循環水とし
て循環できる運転状態とする。低温水系Iについても同
様の操作を行なって低温循環ポンプ19の吸込圧力計2
5の指示を上記の高温循環ポンプ20の吸込圧力計26
と同じ値を示すように調節し、運転状態とする。
First, the preparation state will be described. The high-temperature pressurizing pump 18 is operated to control the high-temperature pressure regulating valve (A) 23 and the high-temperature pressure regulating valve (B) 24 to
Is set to a value equal to or higher than the saturation pressure (for example, the saturation pressure at 130 ° C. = 2.7 at) corresponding to the target temperature of the high-temperature water (for example, 130 ° C.). If the opening degree of the high-temperature pressure control valve (A) 23 is increased and the opening degree of the high-temperature pressure control valve (B) 24 is reduced, the return amount of the discharge water from the high-temperature pressurizing pump 18 increases. A relationship is used in which the pressure indication value of the total 26 decreases and the pressure indication value increases when the operation is reversed. Thus, the high-temperature water system II is brought into an operating state in which pressurized water corresponding to a target temperature can be circulated as circulating water. The same operation is performed for the low-temperature water system I, and the suction pressure gauge 2 of the low-temperature circulation pump 19 is used.
5 is changed to the suction pressure gauge 26 of the high-temperature circulation pump 20 described above.
Is adjusted so as to show the same value as above, and the operation state is set.

【0038】次に待機状態について説明する。低温切換
バルブ(B)31,高温切換バルブ(B)34を閉じ、
低温切換バルブ(A)30,高温切換バルブ(A)33
を開けて低温循環ポンプ19,高温循環ポンプ20を運
転する。この待機状態では低温循環ポンプ19から吐出
された水は温度調整槽38を通って温度調整され、次い
で低温切換バルブ(A)30を経て低温循環ポンプ19
の吸込口に戻り、次第に温度を下げる。
Next, the standby state will be described. Close the low temperature switching valve (B) 31 and the high temperature switching valve (B) 34,
Low temperature switching valve (A) 30, high temperature switching valve (A) 33
Is opened and the low-temperature circulation pump 19 and the high-temperature circulation pump 20 are operated. In this standby state, the temperature of the water discharged from the low-temperature circulating pump 19 is adjusted through a temperature adjusting tank 38, and then the low-temperature circulating pump 19 is passed through a low-temperature switching valve (A) 30.
Return to the suction port and gradually lower the temperature.

【0039】なお、上記した温度調整槽38における温
度調整とは、通常は冷却動作が主体であるが、成形条件
によっては低温水系Iの温度が必要な温度より低い時も
あるので、その時には若干の加熱動作を伴う場合もあ
る。また仮に低温水系Iの温度を下げようとする場合で
も、温度調整槽38で必ずしも冷却動作を行わずに、所
定温度より高くなった低温水系Iの循環水の一部を系外
に放出し、その分の循環水量を低温加圧ポンプ17によ
り水源37から補給することにより、所定温度より低い
温度の水源の水を所定温度より高くなった低温水系Iの
循環水に混合させて温度調節することも可能である。
The temperature adjustment in the temperature adjustment tank 38 is usually performed mainly by a cooling operation. However, the temperature of the low-temperature water system I may be lower than a necessary temperature depending on molding conditions. In some cases. Even in the case where the temperature of the low-temperature water system I is to be lowered, a part of the circulating water of the low-temperature water system I that has become higher than a predetermined temperature is discharged to the outside without necessarily performing the cooling operation in the temperature adjustment tank 38. The amount of circulating water is replenished from the water source 37 by the low-temperature pressurizing pump 17, so that the water of the water source having a temperature lower than the predetermined temperature is mixed with the circulating water of the low-temperature water system I having a temperature higher than the predetermined temperature to adjust the temperature. Is also possible.

【0040】また高温循環ポンプ20から吐出された水
は加熱器29で加熱され、次いで高温切換バルブ(A)
33を経て高温循環ポンプ20の吸込口に戻り、次第に
温度を上げていく。
The water discharged from the high-temperature circulating pump 20 is heated by a heater 29, and then heated at a high-temperature switching valve (A).
After returning to the suction port of the high-temperature circulation pump 20 via 33, the temperature is gradually increased.

【0041】上記待機状態で、高温水系IIの水の温度
が所定の値に到達した後、型36を加熱するには、低温
切換バルブ(B)31は閉じ、低温切換バルブ(A)3
0は開けた状態のままで、高温切換バルブ(A)33を
閉じ、高温切換バルブ(B)34を開けることにより所
定に加圧された高温水を型36の流路63に流して行な
う。
In the above standby state, after the temperature of the high-temperature water system II reaches a predetermined value, in order to heat the mold 36, the low-temperature switching valve (B) 31 is closed and the low-temperature switching valve (A) 3
In the open state, the high-temperature switching valve (A) 33 is closed, and the high-temperature switching valve (B) 34 is opened, so that high-temperature water pressurized in a predetermined manner flows through the flow path 63 of the mold 36.

【0042】後述するように高温水が型36の流路63
に流れ込むとキャビティ62の型壁面温度は急速に上昇
するので、型壁面温度が所定温度に到達した時点で溶融
樹脂をスプルー60を経てキャビティ62に射出する。
射出終了後、所定の時間が経過した時点で成形型の冷却
を開始する。
As will be described later, high-temperature water flows through the channel 63 of the mold 36.
When the mold wall temperature of the cavity 62 rises rapidly, the molten resin is injected into the cavity 62 through the sprue 60 when the mold wall temperature reaches a predetermined temperature.
After the end of the injection, the cooling of the mold is started when a predetermined time has elapsed.

【0043】型36を冷却するには、高温切換バルブ
(A)33を開け、高温切換バルブ(B)34を閉じて
高温水系IIを待機状態に戻し、その後、低温切換バル
ブ(A)30を閉じ、低温切換バルブ(B)31を開け
ることにより低温水を型36の流路63に流して行な
う。
To cool the mold 36, the high temperature switching valve (A) 33 is opened, the high temperature switching valve (B) 34 is closed, and the high temperature water system II is returned to the standby state. By closing and opening the low-temperature switching valve (B) 31, low-temperature water flows through the flow path 63 of the mold 36.

【0044】型36が所定の温度まで冷却されれば、可
動型56と固定型57とを開いて成形品を取り出す。
When the mold 36 is cooled to a predetermined temperature, the movable mold 56 and the fixed mold 57 are opened to take out the molded product.

【0045】以上のように図1に示す加熱冷却装置で
は、高温水系IIと低温水系Iとが同じ圧力の下にある
ので、切り換えを自在に行なうことが可能である。
As described above, in the heating / cooling apparatus shown in FIG. 1, since the high-temperature water system II and the low-temperature water system I are under the same pressure, it is possible to switch freely.

【0046】型36に図3で説明した成形型を用い、図
1に説明した加熱冷却装置を用いて低温水と高温水とを
切り換えた時の型壁面温度の応答を測定した。
The mold 36 described in FIG. 3 was used as the mold 36, and the response of the mold wall temperature when switching between low-temperature water and high-temperature water was measured using the heating and cooling device described in FIG.

【0047】図6がその結果であり、縦軸は温度,横軸
は時間を表わしているが、測定結果を自動記録したデー
タをそのまま用いているので、時間経過は左方向に向か
っている。
FIG. 6 shows the results. The vertical axis represents the temperature and the horizontal axis represents the time. Since the data obtained by automatically recording the measurement results are used as they are, the time elapses toward the left.

【0048】この場合、低温水の温度は約50℃,高温
水の温度は約115℃であった。型36の流路63に循
環水が流入する入口と出口とのプラグ67A,67Bに
それぞれ熱電対からなる温度検出器を設けて循環水の温
度計測した。また型壁面に極めて接近させて熱電対を設
け、その測定結果を型壁面温度として表示している。時
刻T1までは型36の流路63には低温水が循環してい
るので、金型入口,出口の循環水温度、ならびに型壁面
温度は上記低温水の温度にほとんど等しくなっている。
時刻T1で型36における流路63への循環水を低温水
から高温水に切り換えた。金型入口における循環水温度
は直ちに高温水の温度である115℃を示し、やや遅れ
て金型出口における循環水温度も高温水の温度に近い温
度を示す。型壁面温度も図6から容易に読み取れるよう
に急速に温度上昇する。時刻T2で型壁面温度が約10
5℃に達した時点で、循環水を切り換え循環水を高温水
から再び低温水に戻しているが、時刻T1から時刻T2
までの時間は25秒である。すなわち、型壁面温度は2
5秒間で温度差55℃を上昇したことになる。25秒間
の平均温度上昇速度は2.2℃/秒であるが、時刻T1
の切り換え直後付近での温度上昇は7〜10℃/秒とい
う大きな値を示している。
In this case, the temperature of the low-temperature water was about 50 ° C., and the temperature of the high-temperature water was about 115 ° C. The temperature of the circulating water was measured by providing a temperature detector composed of a thermocouple at each of the plugs 67A and 67B at the inlet and the outlet where the circulating water flows into the channel 63 of the mold 36. Also, a thermocouple is provided very close to the mold wall surface, and the measurement result is displayed as the mold wall surface temperature. Until time T1, low-temperature water circulates in the flow path 63 of the mold 36, so that the temperature of the circulating water at the mold entrance and exit and the temperature of the mold wall are almost equal to the temperature of the low-temperature water.
At time T1, the circulating water to the channel 63 in the mold 36 was switched from low-temperature water to high-temperature water. The temperature of the circulating water at the inlet of the mold immediately shows 115 ° C., which is the temperature of the high-temperature water, and the temperature of the circulating water at the outlet of the mold also shows a temperature close to the temperature of the high-temperature water slightly later. The mold wall temperature also rises rapidly so that it can be easily read from FIG. At time T2, the mold wall temperature is about 10
When the temperature reaches 5 ° C., the circulating water is switched and the circulating water is returned from high-temperature water to low-temperature water again.
Time to 25 seconds. That is, the mold wall temperature is 2
This means that the temperature difference increased by 55 ° C. in 5 seconds. The average temperature rise rate for 25 seconds is 2.2 ° C./sec, but the time T1
The temperature rise in the vicinity immediately after the switching shows a large value of 7 to 10 ° C./sec.

【0049】また時刻T2で低温水に切り換えた時も、
温度上昇時とほぼ同様の速度で型壁面の温度が低下して
いることが読み取れる。
When switching to low-temperature water at time T2,
It can be seen that the temperature of the mold wall surface is decreasing at substantially the same speed as when the temperature is increasing.

【0050】上記したような大きな温度上昇速度,冷却
速度が得られるのは、すでに何度も説明したように、熱
媒体として水を用いているため、水と流路の壁との間の
熱伝達係数が大きいからであるが、その外にも下記する
ような要因もあげられる。
As described above many times, the above-mentioned high temperature rising rate and cooling rate can be obtained because water is used as the heat medium, and the heat between the water and the wall of the flow path is high. This is because the transfer coefficient is large, but there are other factors as described below.

【0051】その1は、温度上昇速度あるいは冷却速度
は、図4に示す流路63の拡大断面図のY寸法によって
も変わり、上記の測定結果はY寸法が6mmの時であ
る。Y寸法が小さくなれば型壁面の温度の応答はより早
くなるが、Y寸法を小さくし過ぎると型壁面の温度分布
にムラを生じるのでY寸法には自ずと適当な値がある。
The first is that the temperature rise rate or the cooling rate also changes depending on the Y dimension of the enlarged sectional view of the flow path 63 shown in FIG. 4, and the above measurement results are obtained when the Y dimension is 6 mm. The smaller the Y dimension, the quicker the response of the mold wall temperature. However, if the Y dimension is too small, the temperature distribution on the mold wall will be uneven, so the Y dimension has an appropriate value naturally.

【0052】なお図4において、Yは流路63とキャビ
ティ62の壁面との間隔、dは流路63の径、Xは流路
63の間隔、pは流路63のピッチを示している。
In FIG. 4, Y represents the distance between the flow path 63 and the wall surface of the cavity 62, d represents the diameter of the flow path 63, X represents the distance between the flow paths 63, and p represents the pitch of the flow path 63.

【0053】その2は、型壁面の温度の応答を支配する
要因として、高温水から低温水へ、逆に低温水から高温
水への切り換えに要する時間があげられる。図6に示す
ように金型出口の循環水温度は入口の循環水温度より遅
れているが、この時間遅れは上記したように入口から出
口まで循環水が流れる時間に支配されるもはもちろんで
あるが、今一つの大きな要因として切り換え前に型内に
存在していた低温水に高温水が混入する現象があげられ
る。逆に切り換え前に型内に存在していた高温水に低温
水が混入する時も同じである。高温水と低温水とが混合
すると当然循環水の温度は両者の中間になるから流路の
壁面との温度差が小さくなり、従って流路壁面への熱移
動量が小さくなる。その結果として型壁面の温度の応答
が遅くなるのである。
The second factor that governs the temperature response of the mold wall surface is the time required to switch from high-temperature water to low-temperature water and vice versa. As shown in FIG. 6, the temperature of the circulating water at the outlet of the mold is later than the temperature of the circulating water at the inlet. However, this time delay is, of course, governed by the time during which the circulating water flows from the inlet to the outlet as described above. However, another major factor is a phenomenon in which high-temperature water mixes with low-temperature water that was present in the mold before switching. Conversely, the same is true when low-temperature water is mixed with high-temperature water that was present in the mold before switching. When the high-temperature water and the low-temperature water are mixed, the temperature of the circulating water is naturally intermediate between the two, so that the temperature difference between the circulating water and the wall surface of the flow channel is reduced, and the amount of heat transfer to the flow channel wall surface is reduced. As a result, the temperature response of the mold wall surface becomes slow.

【0054】このような切り換え時の高温水と低温水と
の混合をできるだけ小さくするには、図1の低温切換バ
ルブ(A)30,低温切換バルブ(B)31,高温切換
バルブ(A)33,高温切換バルブ(B)34を高速で
切り換えることが必要である。実施例では上記したよう
に高温水系IIのみならず低温水系Iも高温水系IIと
同じ圧力に保持しているので、切り換えに際して高温水
と低温水とが混入したりすることもなく、切換バルブを
高速で切り換えることが可能となり、その分、型壁面温
度の応答速度を早めることが可能になった。
In order to minimize the mixing of high-temperature water and low-temperature water during such switching, the low-temperature switching valve (A) 30, the low-temperature switching valve (B) 31, and the high-temperature switching valve (A) 33 in FIG. , It is necessary to switch the high temperature switching valve (B) 34 at high speed. In the embodiment, as described above, not only the high-temperature water system II but also the low-temperature water system I is maintained at the same pressure as the high-temperature water system II. Switching can be performed at high speed, and the response speed of the mold wall surface temperature can be increased accordingly.

【0055】なお上記の説明は、型36内の流路63が
図1に示すように並列に接続されている場合について述
べたが、流路63の接続は図5に示すような直列接続の
場合もある。一般に図1に示すような並列接続の方が管
路抵抗が小さいので大きな流量を流すことが可能であ
り、従って型壁面温度の応答速度を早めるのに都合がよ
いが、その分、型構造が複雑になったりするので、比較
的大型の型に用いるのが適当である。
In the above description, the case where the channels 63 in the mold 36 are connected in parallel as shown in FIG. 1 has been described. In some cases. Generally, the parallel connection as shown in FIG. 1 has a smaller pipe resistance, so that a large flow rate can be flowed. Therefore, it is convenient to increase the response speed of the mold wall surface temperature. Since it becomes complicated, it is appropriate to use a relatively large mold.

【0056】これに対し図5に示す直列接続は、小型の
型に用いることも可能である。また上記の説明では、図
1の低温水系Iと高温水系IIとにそれぞれ加圧用の加
圧ポンプ17,18を設けていたが、低温循環ポンプ1
9の吸込口と高温循環ポンプ20の吸込口を連通するよ
うに接続し、その接続点に加圧ポンプの吐出圧を加える
ことにより低温水系Iと高温水系IIとを同時に加圧す
る方法も可能である。そうすることにより加圧ポンプの
台数を2台から1台に減らすこともできる。
On the other hand, the series connection shown in FIG. 5 can be used for a small type. In the above description, the low-pressure water system I and the high-temperature water system II shown in FIG.
9 and the suction port of the high-temperature circulation pump 20 are connected so as to communicate with each other, and the low pressure water system I and the high temperature water system II are simultaneously pressurized by applying the discharge pressure of the pressure pump to the connection point. is there. By doing so, the number of pressurizing pumps can be reduced from two to one.

【0057】(実施例2)次に図7を用いて本発明の加
熱冷却装置の他の実施例について説明する。図7におい
て、Iは低温水系、IIは高温水系、IIIは加熱水系
を示している。
(Embodiment 2) Next, another embodiment of the heating / cooling apparatus of the present invention will be described with reference to FIG. In FIG. 7, I indicates a low-temperature water system, II indicates a high-temperature water system, and III indicates a heated water system.

【0058】図7において、37が水源であり、供給ポ
ンプ50により仕切弁51を経て上記高温水系II,低
温水系I,加熱水系IIIに循環水を充満させる。なお
41は加圧タンクであり、上部の空間に所定の圧力の窒
素ガスが充満できるようになっている。また46は低温
切換バルブ(A)、47は低温切換バルブ(B)、48
は高温切換バルブ(C)、49は高温切換バルブ(D)
である。
In FIG. 7, reference numeral 37 denotes a water source. The high-temperature water system II, the low-temperature water system I, and the heating water system III are filled with circulating water through a gate valve 51 by a supply pump 50. Reference numeral 41 denotes a pressurized tank, so that an upper space can be filled with nitrogen gas at a predetermined pressure. 46 is a low temperature switching valve (A), 47 is a low temperature switching valve (B), 48
Is a high temperature switching valve (C), 49 is a high temperature switching valve (D)
It is.

【0059】高温水系IIは、さらに加熱循環ポンプ3
9により循環する加熱水系IIIと高温循環ポンプ20
により循環する系とで構成されている。以下、加熱循環
ポンプ39により循環される水を加熱水、またその経路
を加熱水経路と呼び、高温循環ポンプ20により循環す
る水を高温水、またその経路を高温水経路と呼んで区別
することにする。
The high-temperature water system II further includes a heating circulation pump 3
Water system III circulated by the heat pump 9 and the high-temperature circulation pump 20
And a circulating system. Hereinafter, the water circulated by the heating circulating pump 39 is referred to as heating water, and the path thereof is referred to as a heating water path, and the water circulating by the high temperature circulating pump 20 is referred to as high temperature water, and the path thereof is referred to as a high temperature water path. To

【0060】加熱水経路において、29が加熱器であ
り、電熱もしくは化石燃料を用いたボイラー等の発熱装
置を加熱器として用いる。加熱循環ポンプ39で矢印6
8の方向に送り出された加熱水は、上記加熱器29で熱
せられ、高温温度調節3方弁44の入口44aに入る。
通常、加熱水の設定温度は高温水の設定温度より高く設
定されている。
In the heating water path, reference numeral 29 denotes a heater, and a heating device such as a boiler using electric heat or fossil fuel is used as the heater. Arrow 6 with heating circulation pump 39
The heated water sent out in the direction of 8 is heated by the heater 29 and enters the inlet 44 a of the three-way valve 44 for high temperature control.
Usually, the set temperature of the heating water is set higher than the set temperature of the high-temperature water.

【0061】高温水経路においては、上記したように2
0が高温循環ポンプであり、矢印75の方向に吐出され
た高温水は、待機状態では高温切換バルブ(C)48を
経て矢印73の方向に流れて分岐管72を経て高温循環
ポンプ20の吸込口に戻る。高温循環ポンプ20の吸込
口と吐出口にはそれぞれ吸込圧力計26と吐出圧力計2
8とが、さらに吐出口には温度計70が設けられてい
る。
In the high-temperature water path, as described above,
Reference numeral 0 denotes a high-temperature circulation pump, and the high-temperature water discharged in the direction of arrow 75 flows in the direction of arrow 73 through the high-temperature switching valve (C) 48 in the standby state, and is suctioned by the high-temperature circulation pump 20 through the branch pipe 72. Return to mouth. A suction pressure gauge 26 and a discharge pressure gauge 2 are provided at a suction port and a discharge port of the high-temperature circulation pump 20, respectively.
8 and a thermometer 70 at the discharge port.

【0062】上記温度計70の温度が、上記高温水の設
定温度より低い時は、上記高温温度調節3方弁44の通
路は入口44aと出口44cとの連絡開度が大きくな
り、逆に入口44aと出口44bとの連絡開度が小さく
なるので、加熱水が高温循環ポンプ20の吸込口により
多く供給され、高温水の温度は上昇する。
When the temperature of the thermometer 70 is lower than the set temperature of the high-temperature water, the communication opening between the inlet 44a and the outlet 44c in the passage of the high-temperature temperature control three-way valve 44 increases, Since the opening degree of communication between the outlet 44a and the outlet 44b becomes smaller, more heated water is supplied to the suction port of the high-temperature circulation pump 20, and the temperature of the high-temperature water rises.

【0063】上記温度計70の温度が、上記高温水の設
定温度より高くなると、上記高温温度調節3方弁44の
通路は入口44aと出口44cとの連絡開度が小さくな
り、逆に入口44aと出口44bとの連絡開度が大きく
なるので、矢印79の方向への流量が多くなり、加熱循
環ポンプ39の吸込口への戻り流量が多くなる。従って
高温水路系に加熱水の供給が減少するので(あるいは無
くなるので)高温水路系の温度上昇は止まる。この状態
のまま加熱水の循環が継続すると、加熱器29により加
熱水の温度はさらに上昇し加熱水の設定温度を越える
と、加熱器29の電源が切れ、またはボイラーの燃料供
給を止める等により加熱動作を停止させる。
When the temperature of the thermometer 70 becomes higher than the set temperature of the high-temperature water, the opening of the communication between the inlet 44a and the outlet 44c in the passage of the three-way valve 44 decreases, and conversely, the inlet 44a Since the opening degree of communication between the outlet and the outlet 44b increases, the flow rate in the direction of the arrow 79 increases, and the return flow rate to the suction port of the heating circulation pump 39 increases. Accordingly, the supply of heating water to the high-temperature water channel system decreases (or disappears), so that the temperature rise in the high-temperature water channel system stops. If the circulation of the heating water continues in this state, the temperature of the heating water further increases by the heater 29, and when the temperature exceeds the set temperature of the heating water, the power of the heater 29 is turned off or the fuel supply to the boiler is stopped. Stop the heating operation.

【0064】次に低温水系Iには、低温循環ポンプ19
により水は矢印76方向に吐出され、待機状態では低温
切換バルブ(A)46を経て、低温温度調節3方弁43
の入口43aに流入する。低温循環ポンプ19の吸込口
と吐出口にはそれぞれ吸込圧力計25と吐出圧力計27
とが、さらに吐出口には温度計71が設けられている。
Next, a low-temperature circulation pump 19
Causes the water to be discharged in the direction of the arrow 76, and in the standby state, passes through the low-temperature switching valve (A) 46,
Flows into the entrance 43a. A suction pressure gauge 25 and a discharge pressure gauge 27 are provided at the suction port and the discharge port of the low-temperature circulation pump 19, respectively.
However, a thermometer 71 is provided at the discharge port.

【0065】上記温度計71の温度が、上記低温水の設
定温度より低い時は、上記低温温度調節3方弁43の通
路は入口43aと出口43cとの連絡開度が大きいので
低温水は矢印77の方向に流れて低温循環ポンプ19に
吸込口に戻る流量が大きくなる。
When the temperature of the thermometer 71 is lower than the set temperature of the low-temperature water, the low-temperature temperature control three-way valve 43 has a large communication opening between the inlet 43a and the outlet 43c. The flow rate flowing in the direction of 77 and returning to the suction port of the low-temperature circulation pump 19 increases.

【0066】上記温度計71の温度が、上記低温水の設
定温度より高くなると、上記低温温度調節3方弁43の
通路は入口43aと出口43bとの連絡開度が大きくな
り、逆に入口43aと出口43cとの連絡開度が小さく
なるので、矢印78の方向への流量が多くなり温度調整
槽38により温度調整されて低温循環ポンプ19に吸入
口に戻る。
When the temperature of the thermometer 71 becomes higher than the set temperature of the low-temperature water, the opening of the passage of the low-temperature temperature control three-way valve 43 between the inlet 43a and the outlet 43b increases, and conversely, the inlet 43a Since the opening degree of communication between the outlet 43c and the outlet 43c decreases, the flow rate in the direction of arrow 78 increases, the temperature is adjusted by the temperature adjustment tank 38, and the low-temperature circulation pump 19 returns to the suction port.

【0067】上記した実施例2における温度調整槽38
における温度調整についても、通常は冷却動作が主体で
ある。ただし成形条件によっては低温水系Iの温度が必
要な温度を下回ることもあるので、その時には若干の加
熱動作を伴う場合もある。
The temperature control tank 38 in the second embodiment described above.
In the temperature adjustment in, the cooling operation is usually mainly performed. However, depending on the molding conditions, the temperature of the low-temperature water system I may be lower than the required temperature, and in that case, a slight heating operation may be involved.

【0068】以上は加熱水系III,高温水系IIおよ
び低温水系Iの循環水の循環経路について説明したが、
次にこれらの循環経路に加圧する手段について説明す
る。
The circulation route of the circulating water of the heating water system III, the high temperature water system II and the low temperature water system I has been described above.
Next, means for pressurizing these circulation paths will be described.

【0069】既に述べたように、41は加圧タンクであ
り上部の空間に所定の圧力の窒素ガスを充満できるよう
になっている。この窒素ガスの圧力は連通管74により
加熱循環ポンプ39の吸込口に加えられるので、吸込口
の圧力計40の指示は加圧タンク41の圧力計42とほ
ぼ同じ値を示す。一般にポンプの吸込口の圧力は循環経
路の中で最も低い圧力であるので、吸込口圧力が循環水
温度の飽和圧力を下回ると蒸気が発生してポンプの循環
動作に悪影響を与えるが、上記したように加熱循環ポン
プ39の吸込口には窒素ガスの圧力がかかるので、蒸気
の発生が抑制できる。
As described above, reference numeral 41 denotes a pressurized tank, and the upper space can be filled with nitrogen gas at a predetermined pressure. Since the pressure of the nitrogen gas is applied to the suction port of the heating and circulating pump 39 through the communication pipe 74, the indication of the pressure gauge 40 at the suction port indicates substantially the same value as the pressure gauge 42 of the pressurized tank 41. In general, since the pressure at the suction port of the pump is the lowest pressure in the circulation path, if the suction port pressure falls below the saturation pressure of the circulating water temperature, steam is generated to adversely affect the circulation operation of the pump. As described above, since the pressure of the nitrogen gas is applied to the suction port of the heating circulation pump 39, generation of steam can be suppressed.

【0070】窒素ガスの圧力は分岐管72を通じて高温
循環ポンプ20の吸込口にも加わるので、吸込口の圧力
計26の指示も加圧タンク41の圧力計42の指示とほ
ぼ同じ値を示す。実際には分岐管72等における流路抵
抗の値の分だけ異なる指示となるが、高温循環ポンプ2
0の吸込口の圧力を循環水温度の飽和圧力より高くする
ことができるので高温循環ポンプ20の吸込口における
蒸気発生は抑制される。
Since the pressure of the nitrogen gas is also applied to the suction port of the high-temperature circulating pump 20 through the branch pipe 72, the indication of the pressure gauge 26 at the suction port shows almost the same value as the indication of the pressure gauge 42 of the pressurized tank 41. Actually, the instruction differs depending on the value of the flow path resistance in the branch pipe 72 or the like.
Since the pressure at the suction port 0 can be higher than the saturation pressure of the circulating water temperature, the generation of steam at the suction port of the high-temperature circulating pump 20 is suppressed.

【0071】また型36の出口で高温水系IIと低温水
系Iとは、逆止弁52,53およびオリフィス54,5
5を通じて連通している。従って上記した加圧タンク4
1の圧力は、オリフィス54,55を通じて低温水系I
にも加わる。
At the outlet of the mold 36, the high-temperature water system II and the low-temperature water system I are connected with the check valves 52 and 53 and the orifices 54 and 5 respectively.
It communicates through 5. Therefore, the above-mentioned pressurized tank 4
1 is supplied to the low temperature water system I through the orifices 54 and 55.
Join.

【0072】このようにして、高温水系II,低温水系
Iの圧力が同圧に保たれるので型36への高温水と低温
水との切り換えが容易になる。
As described above, since the pressures of the high-temperature water system II and the low-temperature water system I are maintained at the same pressure, it is easy to switch the high-temperature water and the low-temperature water to the mold 36.

【0073】上記したように実施例1および実施例2
は、低温水系Iと高温水系IIとを簡単に切り換えるこ
とが可能である点では同じ効果を発揮する。構成の簡便
さという点では、実施例1の方が実施例2に較べ構成が
簡単で手軽に扱うことができる点で優れている。
As described above, Embodiments 1 and 2
Has the same effect in that it is possible to easily switch between the low-temperature water system I and the high-temperature water system II. In terms of simplicity of the configuration, the first embodiment is superior to the second embodiment in that the configuration is simple and can be handled easily.

【0074】しかし、実施例1を用いて実際に長時間に
わたって運転を継続すると、高温循環ポンプ20により
循環されている高温水の一部が高温圧力調節弁(B)2
4を逆流し、さらに高温加圧ポンプ18を逆流して水源
37にまで逆流する現象があることを経験した。この原
因は定かではないが、温度上昇による高温水の熱膨張
と、高温水・低温水の切り換え時のウオータ・ハンマー
現象とが相乗した結果ではないかと推定される。逆流を
防ぐために配管の途中に逆止弁を設けると、高温水の熱
膨張のため高温水系の圧力が異常に上昇するという問題
があり、高温水の水源への逆流を防ぐことができなかっ
た。また圧力調節を加圧ポンプの圧力調節弁で行なって
いるが、圧力調節弁の調節の僅かの差で高温水系と低温
水系との圧力のバランスが崩れて、長時間にわたって高
温水系と低温水系の圧力バランスを保つのが困難である
という問題もあった。こういう運転上の安定性の点では
実施例2は実施例1より優れた実績を示した。
However, when the operation is actually continued for a long time by using the first embodiment, a part of the high-temperature water circulated by the high-temperature circulating pump 20 becomes part of the high-temperature pressure regulating valve (B) 2.
4 and back flow through the hot pressurizing pump 18 to the water source 37. The reason for this is not clear, but it is presumed that the thermal expansion due to the temperature rise and the water-hammer phenomenon at the time of switching between high-temperature water and low-temperature water are synergistic. If a check valve is provided in the middle of the pipe to prevent backflow, there is a problem that the pressure of the high-temperature water system rises abnormally due to the thermal expansion of high-temperature water, and the backflow of high-temperature water to the water source could not be prevented. . The pressure is adjusted by the pressure control valve of the pressure pump, but the pressure difference between the high temperature water system and the low temperature water system is lost due to a slight difference in the adjustment of the pressure control valve, and the high temperature water system and the low temperature water There was also a problem that it was difficult to maintain pressure balance. Example 2 showed better results than Example 1 in terms of such operational stability.

【0075】なお上述の説明において本発明の成形型の
加熱冷却装置の適用例として、射出成形型を用いた場合
について説明したが、適用可能な成形型としては射出成
形型にとどまらずその他の成形型、例えば圧縮成形型,
ブロー成形型,RIM成形型等、一般に型壁面の急速加
熱,急速冷却を必要とする成形型の加熱冷却装置として
広く用いることができる。
In the above description, as an application example of the heating and cooling apparatus for a molding die of the present invention, the case where an injection molding die is used has been described. However, applicable molding dies are not limited to injection molding dies. Molds, such as compression molds,
It can be widely used as a heating / cooling device for a mold generally requiring rapid heating and rapid cooling of a mold wall, such as a blow mold and a RIM mold.

【0076】以下、ブロー成形に本発明の成形型の加熱
冷却装置を適用した場合につき図8〜図11を用いて説
明する。
Hereinafter, a case where the heating and cooling apparatus of the present invention is applied to blow molding will be described with reference to FIGS.

【0077】図8は、本発明の成形型の加熱冷却装置を
ブロー成形に適用する場合の成形型の断面図である。図
8の矢印線Q−Qにおける断面図を図9に示す。また図
10は上述のブロー成形工程の第1工程の説明図であ
り、図11は同じく第2工程の説明図である。
FIG. 8 is a cross-sectional view of a molding die in a case where the heating and cooling device for a molding die of the present invention is applied to blow molding. FIG. 9 is a sectional view taken along the arrow line QQ in FIG. FIG. 10 is an explanatory view of a first step in the above-described blow molding step, and FIG. 11 is an explanatory view of a second step in the same manner.

【0078】図8において、ブロー成形型枠101,1
02はそれぞれブロー成形中子103,104を内包し
ている。ブロー成形中子103,104は成形品の外形
と同じ輪郭系状を持ったキャビティ壁面103A,10
4Aを有している。さらにブロー成形中子103,10
4の外周には複数の流路63が刻まれているが、図9に
示すようにブロー成形中子103,104をブロー成形
型枠101,102に組み合わせることにより熱媒体の
流路63となる。
In FIG. 8, the blow molding molds 101, 1
Numeral 02 includes blow molding cores 103 and 104, respectively. The blow molding cores 103 and 104 have cavity wall surfaces 103A and 103 having the same contour system as the outer shape of the molded product.
4A. Furthermore, blow molding cores 103 and 10
Although a plurality of flow paths 63 are engraved on the outer periphery of 4, as shown in FIG. 9, by combining blow molding cores 103 and 104 with blow molding molds 101 and 102, they become heat medium flow paths 63. .

【0079】図9の型枠101について説明すると、複
数の流路63はタンク105と106に連通しており、
タンク105,106は連絡管109,110により供
給管113,114に連通している。供給管113,1
14は既に説明した加熱冷却装置に連結されている。型
枠102についても同様の構成であるので説明は省略す
る。
Referring to the mold 101 shown in FIG. 9, a plurality of flow paths 63 communicate with tanks 105 and 106.
The tanks 105 and 106 communicate with supply pipes 113 and 114 through communication pipes 109 and 110, respectively. Supply pipe 113,1
Reference numeral 14 is connected to the heating and cooling device described above. Since the mold 102 has the same configuration, the description is omitted.

【0080】図8において、型枠101,102はそれ
ぞれ矢印117,118の方向に往復運動をして型を開
閉する。図10に型枠101,102が開いた状態を示
す。
In FIG. 8, the molds 101 and 102 reciprocate in the directions of arrows 117 and 118, respectively, to open and close the molds. FIG. 10 shows a state in which the molds 101 and 102 are open.

【0081】ブロー成形の一般的な工程は、第1工程と
して図10の状態で、押し出しノズル120からパリソ
ン119を押し出す。所定の長さのパリソン119が押
し出されると、第2工程として図11に示すように型枠
101,102を閉じ、空気ノズル121より大気圧以
上の高圧空気を吹き込み、パリソン119を中子のキャ
ビティ壁面103A,104Aに押し付けて所定の製品
外形とする。その後、成形型である中子103,104
を冷却して製品を取り出す。
The general process of blow molding is to extrude the parison 119 from the extrusion nozzle 120 in the state shown in FIG. 10 as the first process. When the parison 119 having a predetermined length is extruded, the molds 101 and 102 are closed as shown in FIG. 11 as a second step, and high-pressure air of atmospheric pressure or higher is blown from the air nozzle 121 to form the parison 119 as a core cavity. It is pressed against the wall surfaces 103A and 104A to form a predetermined product outer shape. Then, the cores 103 and 104,
Cool and take out the product.

【0082】以上が一般的なブロー成形の工程である
が、上述したように製品の外形は、パリソン119が高
圧空気によりキャビティ壁面103A,104Aに押し
付けられることによって決まる。高圧空気を用いるとは
言え、その値はせいぜい数〜数十気圧程度である。射出
成形において、溶融樹脂に数百気圧の射出圧をかけてい
るのに比較すると遙かに小さな圧力でキャビティ壁面に
押し付けられている訳である。従って一般にブロー成形
は射出成形に比較して型壁面の転写性が良くないのが欠
点の一つであった。
The above is the general blow molding process. As described above, the outer shape of the product is determined by the parison 119 being pressed against the cavity wall surfaces 103A and 104A by high-pressure air. Although high-pressure air is used, its value is at most several to several tens of atmospheres. In injection molding, the molten resin is pressed against the cavity wall surface with a much smaller pressure than when an injection pressure of several hundred atmospheres is applied. Therefore, one of the drawbacks is that blow molding generally has poor transferability of the mold wall surface as compared with injection molding.

【0083】しかしブロー成形型を図8,図9に示すよ
うにキャビティ壁面103A,104Aの近傍に複数の
流路63を設けた成形型とし、これに本発明の加熱冷却
装置を適用することによりキャビティ壁面103A,1
04Aを急速加熱,急速冷却することが可能となる。従
って図10において、型枠101,102を開いてパリ
ソンを吹き込むまでに、予め流路63に高温水を流して
キャビティ壁面103A,104Aの温度を上昇させて
おく。これにより図11で高圧空気を吹き込んだ時、パ
リソン119は通常のブロー成形の場合よりは高温のキ
ャビティ壁面103A,104Aに押し付けられるの
で、通常のブロー成形の場合に比較してキャビティ壁面
の成形品表面への転写性が著しく改善することができ
る。
However, as shown in FIGS. 8 and 9, the blow mold is a mold provided with a plurality of flow paths 63 near the cavity wall surfaces 103A and 104A, and the heating and cooling apparatus of the present invention is applied to this mold. Cavity wall surface 103A, 1
04A can be rapidly heated and cooled. Therefore, in FIG. 10, high temperature water is flowed through the flow passage 63 in advance to raise the temperature of the cavity wall surfaces 103A and 104A before the molds 101 and 102 are opened and the parison is blown. As a result, when high-pressure air is blown in FIG. 11, the parison 119 is pressed against the cavity walls 103A and 104A, which have a higher temperature than in the case of normal blow molding. Transferability to the surface can be significantly improved.

【0084】また冷却時においても、流路63がキャビ
ティ壁面103A,104Aの近くにあるので冷却効果
が良くなり、冷却時間の短縮も可能となり成形サイクル
時間の短縮にも効果がある。
In cooling, since the flow path 63 is near the cavity wall surfaces 103A and 104A, the cooling effect is improved, the cooling time can be shortened, and the molding cycle time is also shortened.

【0085】また上記の説明では、急速加熱,急速冷却
のためには熱媒体として清水を用いた方が有利でありそ
のためには熱媒体である清水への加圧が必要であること
を述べた。
In the above description, it has been stated that for rapid heating and rapid cooling, it is more advantageous to use clear water as a heat medium, and for that purpose, pressurization of clear water as a heat medium is required. .

【0086】しかし成形条件によっては清水以外の熱媒
体、例えば油系の熱媒体を用いる場合もあり、かつその
熱媒体を飽和温度に近い温度で用いようとすると熱媒体
に飽和圧以上の加圧を必要とする。そのような清水以外
の熱媒体についても熱媒体の飽和圧以上の加圧が必要な
時は、本発明の成形型の加熱冷却装置は有効に用いるこ
とができる。
However, depending on the molding conditions, a heat medium other than fresh water, for example, an oil-based heat medium may be used, and when the heat medium is used at a temperature close to the saturation temperature, the heat medium is pressed to a pressure higher than the saturation pressure. Need. When the heat medium other than the fresh water needs to be pressurized at a pressure higher than the saturation pressure of the heat medium, the heating and cooling device for a mold of the present invention can be effectively used.

【0087】[0087]

【発明の効果】本発明は、以上に説明したような状態で
実施されるので、以下に記載するような効果を奏する。
型のキャビティの近傍に流路を設け、上記流路に熱媒体
を流す構造の成形型において、加圧ポンプあるいはガス
圧力により高温水系と低温水系とに圧力を加えるように
したので、熱媒体として100℃以上の水を用いること
が可能になった。水は熱媒体として、流路壁面との間の
熱伝達係数が大きいので、その結果、型壁面の温度の上
昇速度,冷却速度を大きくすることが可能になった。ま
た高温水系と低温水系とを同圧にしているので、型への
循環水を高温から低温に速やかに切り換えることが可能
になり、型壁面の温度の応答性を速やかにすることが可
能になった。
Since the present invention is carried out in the state described above, the following effects can be obtained.
A flow path is provided near the cavity of the mold, and in a molding die having a structure in which a heat medium flows through the flow path, pressure is applied to the high-temperature water system and the low-temperature water system by a pressurizing pump or gas pressure. It became possible to use water at 100 ° C. or higher. Since water has a large heat transfer coefficient with the flow path wall as a heat medium, as a result, it has become possible to increase the temperature rise rate and the cooling rate of the mold wall. In addition, since the high-temperature water system and the low-temperature water system have the same pressure, the circulating water to the mold can be quickly switched from high temperature to low temperature, and the temperature responsiveness of the mold wall surface can be made quick. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における成形型の加熱冷却装置
の構成図
FIG. 1 is a configuration diagram of a heating and cooling device for a molding die according to an embodiment of the present invention.

【図2】本発明の成形型の加熱冷却装置に用いる射出成
形型の断面図
FIG. 2 is a cross-sectional view of an injection mold used for the heating and cooling device of the mold of the present invention.

【図3】図2の矢線M−Mにおける断面図FIG. 3 is a cross-sectional view taken along a line MM of FIG. 2;

【図4】図2の円Nの部分の拡大断面図FIG. 4 is an enlarged sectional view of a circle N in FIG. 2;

【図5】本発明に用いる成形型の流路の構成の他の実施
FIG. 5 shows another embodiment of the configuration of the flow path of the molding die used in the present invention.

【図6】本発明の成形型の加熱冷却装置による型壁面温
度の応答測定線図の一例
FIG. 6 shows an example of a response measurement diagram of a mold wall surface temperature by the heating and cooling device for a mold according to the present invention.

【図7】本発明の成形型の加熱冷却装置の他の実施例に
おける構成図
FIG. 7 is a configuration diagram of another embodiment of a heating and cooling device for a molding die according to the present invention.

【図8】本発明の成形型の加熱冷却装置に用いるブロー
成形型の断面図
FIG. 8 is a cross-sectional view of a blow mold used for the heating and cooling device of the mold of the present invention.

【図9】図8の矢視Q−Qにおける断面図9 is a sectional view taken along the line QQ in FIG. 8;

【図10】ブロー成形に本発明の成形型の加熱冷却装置
を用いた時の第1工程の説明図
FIG. 10 is an explanatory view of the first step when the heating and cooling device for a mold according to the present invention is used for blow molding.

【図11】ブロー成形に本発明の成形型の加熱冷却装置
を用いた時の第2工程の説明図
FIG. 11 is an explanatory view of the second step when the heating and cooling device of the mold of the present invention is used for blow molding.

【図12】従来における加熱冷却装置の構成図FIG. 12 is a configuration diagram of a conventional heating and cooling device.

【符号の説明】[Explanation of symbols]

I 低温水系 II 高温水系 III 加熱水系 17 低温加圧ポンプ 18 高温加圧ポンプ 19 低温循環ポンプ 20 高温循環ポンプ 29 加熱器 36 型 38 温度調整槽 39 加熱循環ポンプ 41 加圧タンク 43 低温温度調節3方弁 44 高温温度調節3方弁 63 流路 I Low-temperature water system II High-temperature water system III Heating water system 17 Low-temperature pressurizing pump 18 High-temperature pressurizing pump 19 Low-temperature circulating pump 20 High-temperature circulating pump 29 Heater 36 Type 38 Temperature control tank 39 Heating circulating pump 41 Pressurized tank 43 Low-temperature temperature control 3 way Valve 44 High temperature temperature control three-way valve 63 Flow path

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱媒体の流路をキャビティの壁面に接近
して設けた成形型を用い、高温熱媒体を循環する高温熱
媒体系の循環路と低温熱媒体を循環する低温熱媒体系の
循環路とを少なくとも構成要素とし、上記成形型の熱媒
体の流路を上記高温熱媒体系の循環路の一部に挿入して
高温循環経路を形成し、上記成形型の熱媒体の流路を上
記低温熱媒体系の循環路の一部に挿入して低温循環経路
を形成し、これら高温循環経路と低温循環経路とは切り
換え可能にし、かつこの高温循環経路を循環する高温熱
媒体の温度に相当する飽和圧以上の圧力を、上記高温循
環経路および低温循環経路に印加した成形型の加熱冷却
装置。
1. A high-temperature heat medium circulating path for circulating a high-temperature heat medium and a low-temperature heat medium system for circulating a low-temperature heat medium using a mold provided with a heat medium flow path close to the wall surface of the cavity. A circulation path is at least a component, and a flow path of the heat medium of the molding die is inserted into a part of a circulation path of the high-temperature heat medium system to form a high-temperature circulation path. Is inserted into a part of the circulation path of the low-temperature heat medium system to form a low-temperature circulation path, the high-temperature circulation path and the low-temperature circulation path can be switched, and the temperature of the high-temperature heat medium circulating through the high-temperature circulation path A heating and cooling device for a mold, wherein a pressure equal to or higher than the saturation pressure is applied to the high-temperature circulation path and the low-temperature circulation path.
【請求項2】 熱媒体の流路をキャビティ壁面に接近さ
せて設けた成形型が、少なくとも高温水を循環する高温
水系の循環路と、低温水を循環する低温水系の循環路と
を有し、上記熱媒体の流路を上記高温水系の循環路の一
部に挿入して高温循環経路を形成し、上記熱媒体の流路
を上記低温水系の循環路の一部に挿入して低温循環経路
を形成し、これら高温循環経路と低温循環経路とは切り
換え可能にし、かつこの高温循環経路を循環する高温水
の温度に相当する飽和圧以上の圧力を、上記高温循環経
路および低温循環経路に印加した成形型の加熱冷却装
置。
2. A molding die provided with a flow path of a heating medium close to a cavity wall surface has at least a high-temperature water circulation path for circulating high-temperature water and a low-temperature water circulation path for circulating low-temperature water. Inserting the flow path of the heat medium into a part of the circulation path of the high-temperature water system to form a high-temperature circulation path, and inserting the flow path of the heat medium into a part of the circulation path of the low-temperature water system to perform low-temperature circulation A path is formed, the high-temperature circulation path and the low-temperature circulation path are switchable, and a pressure equal to or higher than the saturation pressure corresponding to the temperature of the high-temperature water circulating in the high-temperature circulation path is applied to the high-temperature circulation path and the low-temperature circulation path. Heating and cooling device for the applied mold.
【請求項3】 熱媒体の流路をキャビティ壁面に接近さ
せて設けた成形型が、高温水を循環する高温水系の循環
路と、低温水を循環する低温水系の循環路と、加圧手段
と、切換手段とを少なくとも備え、上記高温水系の循環
路は高温水循環ポンプおよび加熱器を少なくとも有し、
上記低温水系の循環路は低温水循環ポンプおよび温度調
整槽を少なくとも有し、上記熱媒体の流路を上記高温水
系の循環路の一部に挿入して形成した高温循環経路と上
記熱媒体の流路を上記低温水系の循環路の一部に挿入し
て形成した低温循環経路とは上記切換手段により切り換
え可能とし、これら高温循環経路および低温循環経路に
は、高温循環経路を循環する高温水の温度に相当する飽
和圧以上の圧力を上記加圧手段により印加した成形型の
加熱冷却装置。
3. A high-temperature water circulation path for circulating high-temperature water, a low-temperature water circulation path for circulating low-temperature water, and a pressurizing means. And at least switching means, wherein the high-temperature water system circulation path has at least a high-temperature water circulation pump and a heater,
The circulation path of the low-temperature water system has at least a low-temperature water circulation pump and a temperature control tank, and a high-temperature circulation path formed by inserting the flow path of the heat medium into a part of the circulation path of the high-temperature water system and a flow path of the heat medium. A low-temperature circulation path formed by inserting a path into a part of the low-temperature water circulation path can be switched by the switching means, and the high-temperature circulation path and the low-temperature circulation path have high-temperature water circulating through the high-temperature circulation path. A heating and cooling device for a molding die to which a pressure equal to or higher than a saturation pressure corresponding to a temperature is applied by the pressurizing means.
【請求項4】 加圧手段として加圧ポンプを用い、この
加圧ポンプの吐出圧を飽和圧以上とした請求項3記載の
成形型の加熱冷却装置。
4. The heating and cooling apparatus for a molding die according to claim 3, wherein a pressure pump is used as the pressure means, and the discharge pressure of the pressure pump is equal to or higher than the saturation pressure.
【請求項5】 加圧気体と液体とを内蔵する加圧タンク
を加圧手段として用い、この加圧タンクにより飽和圧以
上の圧力を印加した請求項3記載の成形型の加熱冷却装
置。
5. The heating and cooling apparatus for a mold according to claim 3, wherein a pressurizing tank containing a pressurized gas and a liquid is used as pressurizing means, and a pressure higher than a saturation pressure is applied by the pressurizing tank.
【請求項6】 加圧気体の圧力を飽和圧以上の圧力にし
た請求項5記載の成形型の加熱冷却装置。
6. The heating and cooling device for a mold according to claim 5, wherein the pressure of the pressurized gas is set to a pressure equal to or higher than the saturation pressure.
【請求項7】 熱媒体の流路をキャビティ壁面に接近さ
せて設けた成形型が、高温水を循環する高温水系の循環
路と、低温水を循環する低温水系の循環路と、加圧手段
と、切換手段とを少なくとも備え、上記高温水系の循環
路は高温水循環ポンプおよび高温水より温度が高い加熱
水を加熱水循環ポンプにより循環する加熱水系の循環路
を少なくとも有し、上記低温水系の循環路は低温水循環
ポンプおよび温度調整槽を少なくとも有し、上記熱媒体
の流路を上記高温水系の循環路の一部に挿入して形成し
た高温循環経路と上記熱媒体の流路を上記低温水系の循
環路の一部に挿入して形成した低温循環経路とは上記切
換手段により切り換え可能とし、上記加熱水循環ポンプ
の吸込側に、上記加圧手段により加熱水系を循環する加
熱水の温度に相当する飽和圧以上の圧力を印加して上記
高温循環経路および低温循環経路を加圧した成形型の加
熱冷却装置。
7. A high-temperature water circulation circuit for circulating high-temperature water, a low-temperature water circulation circuit for circulating low-temperature water, and a pressurizing means. And a switching means, wherein the circulation path of the high-temperature water system has at least a circulation path of a high-temperature water circulation pump and a circulation path of a heating water system that circulates heating water having a higher temperature than the high-temperature water by the heating water circulation pump. The path has at least a low-temperature water circulation pump and a temperature adjustment tank, and the high-temperature circulation path formed by inserting the flow path of the heat medium into a part of the high-temperature water system circulation path and the flow path of the heat medium are connected to the low-temperature water system. The switching means can be switched to a low-temperature circulation path formed by inserting a part of the circulation path, and the temperature of the heating water circulating through the heating water system by the pressurizing means is provided on the suction side of the heating water circulation pump. You A heating and cooling device for a molding die in which a pressure equal to or higher than a saturation pressure is applied to pressurize the high-temperature circulation path and the low-temperature circulation path.
【請求項8】 加熱水系の循環路が加熱水循環ポンプと
加熱器と3方調節弁とを備え、上記加熱水循環ポンプの
吐出側は上記加熱器を経て上記3方調節弁の入口と連通
させ、この3方調節弁の一方の出口は上記加熱水循環ポ
ンプの吸込口と連通させ、他方の出口は高温水循環ポン
プの吸込口と連通させ、上記高温水循環ポンプの吸込側
と上記加熱水循環ポンプの吸込側とを連通させ、上記3
方調節弁の開度により加熱水を高温水に混合させること
により温度調節する請求項7記載の成形型の加熱冷却装
置。
8. A circulation path of the heating water system includes a heating water circulation pump, a heater, and a three-way control valve, and a discharge side of the heating water circulation pump communicates with an inlet of the three-way control valve through the heater. One outlet of the three-way control valve communicates with the suction port of the heated water circulation pump, and the other outlet communicates with the suction port of the high-temperature water circulation pump, and the suction side of the high-temperature water circulation pump and the suction side of the heated water circulation pump. And the above 3
8. The heating and cooling device for a molding die according to claim 7, wherein the temperature is adjusted by mixing the heating water with the high-temperature water according to the degree of opening of the direction control valve.
【請求項9】 低温水系の循環路が低温水循環ポンプと
温度調整槽と3方調節弁とを少なくとも備え、上記低温
水循環ポンプからの吐出水の経路を成形型の流路を経由
して上記3方調節弁の入口に連通させ、上記3方調節弁
の一方の出口は上記低温水循環ポンプの吸込口に連通さ
せ、他方の出口は温度調整槽を経て上記低温水循環ポン
プの吸込口に連通させ、上記3方調節弁の開度により温
度調整槽を通過した水と温度調整槽を通過しない水とを
混合させて、上記低温水循環ポンプの吸込口に流入させ
ることにより温度調節する請求項7記載の成形型の加熱
冷却装置。
9. A low-temperature water circulation path includes at least a low-temperature water circulation pump, a temperature control tank, and a three-way control valve, and a path of water discharged from the low-temperature water circulation pump passes through a molding die flow path. One-way outlet of the three-way control valve is connected to the suction port of the low-temperature water circulation pump, and the other outlet is connected to the suction port of the low-temperature water circulation pump via the temperature adjustment tank; 8. The temperature is adjusted by mixing water that has passed through the temperature control tank and water that has not passed through the temperature control tank according to the degree of opening of the three-way control valve, and flows into the suction port of the low-temperature water circulation pump. Heating and cooling device for molds.
JP19552996A 1996-07-05 1996-07-05 Apparatus for heating and cooing mold Pending JPH1015944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19552996A JPH1015944A (en) 1996-07-05 1996-07-05 Apparatus for heating and cooing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19552996A JPH1015944A (en) 1996-07-05 1996-07-05 Apparatus for heating and cooing mold

Publications (1)

Publication Number Publication Date
JPH1015944A true JPH1015944A (en) 1998-01-20

Family

ID=16342613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19552996A Pending JPH1015944A (en) 1996-07-05 1996-07-05 Apparatus for heating and cooing mold

Country Status (1)

Country Link
JP (1) JPH1015944A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033634A1 (en) * 1997-12-26 1999-07-08 Nippon Steel Chemical Co., Ltd. Blow molding device and method of molding
JP2002210740A (en) * 2001-01-15 2002-07-30 Aisin Seiki Co Ltd Heating/cooling change-over device of molding die and method for changing over heating/cooling processes for molding die
WO2005025835A1 (en) * 2003-09-17 2005-03-24 S.I.P.A. Societá Industrializzazione Progettazione E Automazione S.P.A. Heated blow mould for thermostabilizing treatment
JP2009226878A (en) * 2008-03-25 2009-10-08 Mitsubishi Heavy Industries Plastic Technology Co Ltd Method and apparatus for mold heating and cooling control
JP2009255349A (en) * 2008-04-15 2009-11-05 Asahi Kasei Chemicals Corp Gas pressure injection molding method and injection molded body molded by this method
JP2012500739A (en) * 2008-08-29 2012-01-12 クラウスマッファイ テヒノロギース ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for controlling variotherm temperature in an injection mold
JP2014502226A (en) * 2010-12-01 2014-01-30 プレイザン カーボン コンポジティーズ,インコーポレイテッド Method and system for forming composite articles
JP2014080123A (en) * 2012-10-17 2014-05-08 Denso Corp Vehicle heat control system
JP2017087441A (en) * 2015-11-02 2017-05-25 株式会社松井製作所 Pressure control apparatus
US10493666B2 (en) 2011-07-28 2019-12-03 Plasan Carbon Composites, Inc. System and method for forming composite articles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033634A1 (en) * 1997-12-26 1999-07-08 Nippon Steel Chemical Co., Ltd. Blow molding device and method of molding
JP2002210740A (en) * 2001-01-15 2002-07-30 Aisin Seiki Co Ltd Heating/cooling change-over device of molding die and method for changing over heating/cooling processes for molding die
JP4577544B2 (en) * 2001-01-15 2010-11-10 アイシン精機株式会社 Heating / cooling switching device for molding die and heating / cooling switching method for molding die
WO2005025835A1 (en) * 2003-09-17 2005-03-24 S.I.P.A. Societá Industrializzazione Progettazione E Automazione S.P.A. Heated blow mould for thermostabilizing treatment
JP2009226878A (en) * 2008-03-25 2009-10-08 Mitsubishi Heavy Industries Plastic Technology Co Ltd Method and apparatus for mold heating and cooling control
JP2009255349A (en) * 2008-04-15 2009-11-05 Asahi Kasei Chemicals Corp Gas pressure injection molding method and injection molded body molded by this method
JP2012500739A (en) * 2008-08-29 2012-01-12 クラウスマッファイ テヒノロギース ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for controlling variotherm temperature in an injection mold
JP2014502226A (en) * 2010-12-01 2014-01-30 プレイザン カーボン コンポジティーズ,インコーポレイテッド Method and system for forming composite articles
US9676124B2 (en) 2010-12-01 2017-06-13 Plasan Carbon Composites, Inc. Method and system for forming composite articles
US10493666B2 (en) 2011-07-28 2019-12-03 Plasan Carbon Composites, Inc. System and method for forming composite articles
JP2014080123A (en) * 2012-10-17 2014-05-08 Denso Corp Vehicle heat control system
JP2017087441A (en) * 2015-11-02 2017-05-25 株式会社松井製作所 Pressure control apparatus

Similar Documents

Publication Publication Date Title
JP2662023B2 (en) Injection molding method and apparatus
TWI322757B (en)
US20080111280A1 (en) Temperature control system for mold and injection molding method using the same
JPH1034657A (en) Heating and cooling apparatus for mold
JPH1015944A (en) Apparatus for heating and cooing mold
JP2005515084A (en) Method and apparatus for measuring the temperature of molten material in a mold cavity
KR100741661B1 (en) Apparatus and method for controlling temperature of mold
JPH08244072A (en) Injection mold and molding method
JPS62117716A (en) Mold and temperature controlling thereof
JP3072217B2 (en) Injection molding method
KR101954165B1 (en) A method of controlling an amount of heat by an inverter pump in a plastic resin injection molding
JPH05154880A (en) Metal mold and method for molding plastic lens
JP4091880B2 (en) Mold temperature controller
JP2003231165A (en) Mold
JPS60251633A (en) Transfer mold forming method and resin tablet pressurizing device thereof
JP4994916B2 (en) Injection molding machine and injection molding method
JPH1177762A (en) Injection molding die and manufacture of injection molded product
KR20070041468A (en) Electric heating type injection mold
CN104999622B (en) A kind of thermoplastic resin heavy section casting product mold system
JP3371013B2 (en) Injection molding machine
KR19990010600A (en) Mold temperature automatic control system
JP2003145599A (en) Heating/cooling system
JP4493360B2 (en) Mold structure for injection molding
KR20060036071A (en) A mold for injection molding
JPS62179912A (en) Molding equipment of synthetic resin molded part