JP2009255349A - Gas pressure injection molding method and injection molded body molded by this method - Google Patents

Gas pressure injection molding method and injection molded body molded by this method Download PDF

Info

Publication number
JP2009255349A
JP2009255349A JP2008105935A JP2008105935A JP2009255349A JP 2009255349 A JP2009255349 A JP 2009255349A JP 2008105935 A JP2008105935 A JP 2008105935A JP 2008105935 A JP2008105935 A JP 2008105935A JP 2009255349 A JP2009255349 A JP 2009255349A
Authority
JP
Japan
Prior art keywords
mold cavity
temperature
molded body
resin
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008105935A
Other languages
Japanese (ja)
Other versions
JP5392887B2 (en
Inventor
Kaoru Toyouchi
薫 豊内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008105935A priority Critical patent/JP5392887B2/en
Publication of JP2009255349A publication Critical patent/JP2009255349A/en
Application granted granted Critical
Publication of JP5392887B2 publication Critical patent/JP5392887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/174Applying a pressurised fluid to the outer surface of the injected material inside the mould cavity, e.g. for preventing shrinkage marks

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas pressure injection molding method for obtaining an injection molded body having no sink on a design surface, flat and smooth surface, and high-quality appearance, and an injection molded body molded by the method. <P>SOLUTION: The gas pressure injection molding method includes a step of pressing a pressurized gas between a back surface (non-design surface) of the injection molded body and a mold cavity corresponding thereto after injecting a thermoplastic resin in the mold cavity as a molten resin, and pressing the surface (design surface) of the injection molded body to the mold cavity surface (design side mold surface) corresponding thereto. The method includes (a) a step of raising the temperature of the mold cavity surface to a temperature 0-30°C higher than the glass transition temperature of the thermoplastic resin before injecting the molten resin into the mold cavity surface, and (b) a step of cooling the injection molded body by lowering the temperature of the mold cavity surface 20°C or lower than the glass transition temperature of the thermoplastic resin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、意匠面のひけがなく、表面平滑で、かつ、高品質の外観を有する射出成形体を得るためのガス加圧射出成形法及びその方法で成形された射出成形体に関する。   The present invention relates to a gas pressure injection molding method for obtaining an injection molded body having a design surface, a smooth surface and a high quality appearance, and an injection molded body molded by the method.

従来、裏面(以下、非意匠面とも称される。)にボス、リブが付いた成形体の表面(以下、意匠面とも称される。)に発生するひけを防止し、表面外観をより良好にするための方法が検討されている。例えば、特許文献1には、金型キャビティ面の温度を、成形する樹脂のビカット軟化点よりも若干低い温度に設定して溶融樹脂を射出した後、成形体の非意匠面とそれに対応する金型キャビティ面の間に加圧ガスを圧入しながら成形体を冷却することにより、樹脂収縮に伴って意匠面に発生するひけを防止し、外観に優れた成形体を得るガス加圧射出成形法が開示されている。また、特許文献2には、成形前に高周波誘導加熱により金型キャビティ面の温度を成形する樹脂の弾性率が室温時の1/3以下に低下する温度以上に設定して射出成形し、冷却過程で前述と同様に成形体の非意匠面と金型キャビティの間に加圧ガスを圧入することにより、ひけのない、外観に優れた成形体を得るガス加圧射出成形法が開示されている。
高品質の外観を有する成形体を得るための他の方法として、特許文献3には、加熱媒体(例えば、水蒸気)と冷却媒体(例えば、水)を金型キャビティ冷却孔に選択的に流すことにより、成形工程における金型キャビティの温度を制御する方法が開示されている。具体的には、射出成形前に金型キャビティ面の温度を樹脂の荷重たわみ温度より0〜100℃高い温度に昇温して射出し、成形後、荷重たわみ温度より10℃〜100℃低い温度に冷却して成形体を取り出す方法、即ち、成形工程で金型キャビティ温度を昇温、降温制御して射出成形する方法が開示されている。
Conventionally, sink marks that occur on the surface (hereinafter also referred to as a design surface) of a molded body having bosses and ribs on the back surface (hereinafter also referred to as a non-design surface) are prevented, and the surface appearance is improved. A method to make it is being studied. For example, in Patent Document 1, after the molten resin is injected after setting the temperature of the mold cavity surface to a temperature slightly lower than the Vicat softening point of the resin to be molded, the non-design surface of the molded body and the corresponding mold Gas pressure injection molding method to prevent sink marks that occur on the design surface due to resin shrinkage and to obtain a molded product with excellent appearance by cooling the molded product while injecting pressurized gas between the mold cavity surfaces Is disclosed. Further, in Patent Document 2, injection molding is performed by setting the temperature of the mold cavity surface by high frequency induction heating before molding to a temperature at which the elastic modulus of the resin is reduced to 1/3 or less at room temperature, and cooling. In the same way as described above, a gas pressure injection molding method is disclosed in which a pressurized gas is pressed between a non-design surface of a molded body and a mold cavity to obtain a molded body having no sink and excellent appearance. Yes.
As another method for obtaining a molded article having a high-quality appearance, Patent Document 3 discloses that a heating medium (for example, water vapor) and a cooling medium (for example, water) are selectively allowed to flow through a mold cavity cooling hole. Discloses a method for controlling the temperature of the mold cavity in the molding process. Specifically, the temperature of the mold cavity surface is raised to a temperature 0-100 ° C. higher than the resin deflection temperature before injection molding and injected, and after molding, a temperature 10 ° C.-100 ° C. lower than the deflection temperature under load. And a method of taking out a molded body by cooling, that is, a method of injection molding by raising and lowering the mold cavity temperature in the molding step.

特開平11−314241号公報JP-A-11-314241 特開平06−254924号公報Japanese Patent Laid-Open No. 06-254924 特開平10−100216号公報Japanese Patent Laid-Open No. 10-100196

しかしながら、特許文献1に開示された方法では意匠面のひけは改善されるものの、金型キャビティ面の温度が低く、ウエルドライン、ジェッティング、フローマーク等を完全に解決した高品質の外観を有する成形体を得ることは困難である。また、特許文献2に開示された方法では、誘導加熱で金型キャビティを加熱するためインダクターを用いるが、均一加熱を実現するインダクターのコイルの形状設計が難しく、金型キャビティの加熱むらが避けられない。また、複雑な形状を有する成形体、例えば、深い奥行きを有する筐体状の成形体等への適用は上述の理由から原理的に難しい等の問題点を有している。さらに、意匠面側の型面のみ加熱するため、意匠面と非意匠面の成形体表面に残留する樹脂配向ひずみが異なり、成形体の形状によっては反りの発生が抑えられない。
特許文献3に開示された方法では、金型キャビティ面の温度を樹脂のガラス転移温度以上(樹脂の荷重たわみ温度よりおよそ20℃以上高い温度)に設定した場合のみ、高品質の外観を有する成形体が得られるが、ボス、リブ部のひけの問題は改善されていない。また、ガスアシスト成形法を併用することにより、即ち、ボス、リブ等のひけを生じ易い部分の内部に高圧ガスを圧入することにより、部分的にある程度ひけを抑止できるが、基本的には高圧ガスが入った成形体の部分のみに効果があり、技術的に十分であるとは言えない。
However, in the method disclosed in Patent Document 1, although the sink mark on the design surface is improved, the temperature of the mold cavity surface is low, and it has a high-quality appearance that completely solves weld lines, jetting, flow marks, and the like. It is difficult to obtain a molded body. In the method disclosed in Patent Document 2, an inductor is used to heat the mold cavity by induction heating. However, it is difficult to design the shape of the inductor coil to achieve uniform heating, and uneven heating of the mold cavity can be avoided. Absent. In addition, application to a molded body having a complicated shape, for example, a case-shaped molded body having a deep depth, has a problem that it is difficult in principle for the reasons described above. Furthermore, since only the mold surface on the design surface side is heated, the resin orientation strain remaining on the surface of the molded body of the design surface and the non-design surface is different, and the occurrence of warpage cannot be suppressed depending on the shape of the molded body.
In the method disclosed in Patent Document 3, molding having a high-quality appearance is performed only when the temperature of the mold cavity surface is set to be equal to or higher than the glass transition temperature of the resin (approximately 20 ° C. higher than the deflection temperature under load of the resin). The body is obtained, but the problem of sink marks on the bosses and ribs has not been improved. In addition, by using a gas assist molding method in combination, that is, by inserting a high-pressure gas into a portion that tends to cause sink marks such as bosses and ribs, sink marks can be partially suppressed. It is effective only for the part of the molded body containing gas, and is not technically sufficient.

上記事情に鑑み、本発明が解決しようとする課題は、意匠面のひけがなく、表面平滑で、かつ、高品質の外観を有する射出成形体を得るためのガス加圧射出成形法及びその方法により成形された射出成形体を提供することである。   In view of the above circumstances, the problem to be solved by the present invention is a gas pressure injection molding method and method for obtaining an injection molded body having a smooth surface and a high quality appearance without sinking on the design surface. It is to provide an injection-molded body molded by the above method.

そこで本発明者は、上記課題を解決するために鋭意研究を重ねた結果、熱可塑性樹脂を溶融樹脂として金型キャビティ内に射出した後、射出成形体の裏面(非意匠面)とそれに対応する金型キャビティ面(非意匠側型面)間に加圧ガスを圧入して射出成形体の表面(意匠面)をそれに対応する金型キャビティ面(意匠側型面)に押し付ける工程を含むガス加圧射出成形法であって、(a)溶融樹脂を金型キャビティ内に射出する前に、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温する工程と、(b)溶融樹脂の射出終了後、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度に降温して射出成形体を冷却する工程と、を含む射出成形法により、意匠面全体にひけがなく、表面平滑で、かつ、高品質の外観を有する成形体を安定的に得られることを見出し本発明を完成させた。   Therefore, as a result of intensive studies to solve the above problems, the present inventor injected the thermoplastic resin into the mold cavity as a molten resin, and then corresponds to the back surface (non-design surface) of the injection molded body. Gas injection including the step of press-fitting a pressurized gas between the mold cavity surfaces (non-design side mold surfaces) and pressing the surface of the injection molded body (design surface) against the corresponding mold cavity surface (design side mold surface) (A) Before injecting molten resin into a mold cavity, the temperature of the mold cavity surface is raised to a temperature higher by 0 to 30 ° C. than the glass transition temperature of the thermoplastic resin. And (b) after completion of injection of the molten resin, cooling the injection molded body by lowering the temperature of the mold cavity surface to a temperature that is 20 ° C. lower than the glass transition temperature of the thermoplastic resin; By injection molding method including No sink marks on the entire Takumi surface, smooth surface, and a molded article having an appearance of high quality has led to the completion of the present invention found that stably obtained.

すなわち、本発明は以下のとおりである。
[1]
熱可塑性樹脂を溶融樹脂として金型キャビティ内に射出した後、射出成形体の裏面(非意匠面)とそれに対応する金型キャビティ面(非意匠側型面)間に加圧ガスを圧入して射出成形体の表面(意匠面)をそれに対応する金型キャビティ面(意匠側型面)に押し付ける工程を含むガス加圧射出成形法であって、
(a)溶融樹脂を金型キャビティ内に射出する前に、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温する工程と、
(b)溶融樹脂の射出終了後、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度に降温して射出成形体を冷却する工程と、
を含む、射出成形法。
[2]
前記熱可塑性樹脂は、非結晶性の熱可塑性樹脂である、上記[1]記載の射出成形法。
[3]
上記[1]又は[2]記載の射出成形法で成形された射出成形体。
That is, the present invention is as follows.
[1]
After injecting the thermoplastic resin into the mold cavity as a molten resin, pressurize the pressurized gas between the back surface (non-design surface) of the injection molded body and the corresponding mold cavity surface (non-design side mold surface). A gas pressure injection molding method including a step of pressing a surface (design surface) of an injection molded body against a corresponding mold cavity surface (design side mold surface),
(A) before injecting the molten resin into the mold cavity, raising the temperature of the mold cavity surface to a temperature 0-30 ° C. higher than the glass transition temperature of the thermoplastic resin;
(B) after completion of injection of the molten resin, cooling the injection molded body by lowering the temperature of the mold cavity surface to a temperature lower by 20 ° C. or more than the glass transition temperature of the thermoplastic resin;
Including injection molding.
[2]
The injection molding method according to [1] above, wherein the thermoplastic resin is an amorphous thermoplastic resin.
[3]
An injection molded article molded by the injection molding method according to the above [1] or [2].

本発明のガス加圧射出成形法により、意匠面のひけがなく、表面平滑で、かつ、ウエルドライン、フローマーク等のない高品質の外観を有する成形体を得ることができる。
本発明のガス加圧射出成形法は、ガラス繊維、炭素繊維、ガラスフレーク等のフィラー強化充填剤、その他のフィラーを添加したフィラー強化樹脂及び化学発泡剤、物理発泡剤等を添加した発泡性樹脂の射出成形にも適用できる。本発明の射出成形法は、これらの樹脂に適用した場合であっても、意匠面のひけがなく、フィラーの表面浮き、スワールマークのない表面平滑で、かつ、ウエルドライン、フローマーク等のない高品質の外観を有する成形体を安定的に得ることができる。
By the gas pressure injection molding method of the present invention, it is possible to obtain a molded product having a design appearance, a smooth surface, and a high quality appearance free from weld lines, flow marks and the like.
The gas pressure injection molding method of the present invention includes filler reinforcing fillers such as glass fibers, carbon fibers, and glass flakes, filler reinforcing resins added with other fillers, chemical foaming agents, and foaming resins added with physical foaming agents. It can be applied to other injection molding. Even when the injection molding method of the present invention is applied to these resins, there is no sink on the design surface, the surface of the filler is floated, the surface is smooth without swirl marks, and there are no weld lines, flow marks, etc. A molded product having a high-quality appearance can be stably obtained.

以下、本発明を実施するための最良の形態(以下、本実施の形態)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

まず、本実施の形態のガス加圧射出成形法(以下、単に本実施の形態の成形法とも言う。)に用いられる装置について説明する。以下の、図1〜図3において、本実施の形態の成形法で使用する金型の一例を示す。なお、図1〜図3においては、同一の要素には同一の符号を付し、重複する説明を省略する。   First, an apparatus used for the gas pressure injection molding method of the present embodiment (hereinafter also simply referred to as the molding method of the present embodiment) will be described. In the following FIGS. 1-3, an example of the metal mold | die used with the shaping | molding method of this Embodiment is shown. 1 to 3, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施の形態の成形法で使用される金型及び金型温度調節機の一例を示すものである。図1で示すように、金型1は固定型1aと可動型1bで構成されており、可動型1bには、射出成形終了後に、射出成形体を突き出すエジェクターピン6が配置されている。また、金型1は金型キャビティ温調用冷却孔8a及び8bを有し、金型温度調節機11によって制御された加熱媒体と冷却媒体が選択的に流れて、成形工程における金型キャビティ面の温度が調節される。   FIG. 1 shows an example of a mold and a mold temperature controller used in the molding method of the present embodiment. As shown in FIG. 1, the mold 1 includes a fixed mold 1a and a movable mold 1b, and an ejector pin 6 that projects an injection-molded body after the injection molding is arranged is disposed on the movable mold 1b. The mold 1 also has mold cavity temperature adjusting cooling holes 8a and 8b, and the heating medium and the cooling medium controlled by the mold temperature controller 11 selectively flow, so that the mold cavity surface in the molding process is The temperature is adjusted.

金型温度調節機11は、金型キャビティ面の温度を上昇させるために加熱媒体(例えば、水蒸気)を供給する加熱媒体供給源12と、金型キャビティ面の温度を降温(冷却)するために冷却媒体(例えば、水)を供給する冷却媒体供給源13と、加熱媒体供給源と冷却媒体供給源の動作を制御する制御装置とを有する。   The mold temperature controller 11 includes a heating medium supply source 12 that supplies a heating medium (for example, water vapor) to raise the temperature of the mold cavity surface, and a temperature (cooling) of the mold cavity surface. It has the cooling medium supply source 13 which supplies a cooling medium (for example, water), and the control apparatus which controls operation | movement of a heating medium supply source and a cooling medium supply source.

金型キャビティ面2a及び2bを構成する部分は、加熱熱媒、冷却媒体の熱効率を良くするために入れ子構造とし、入れ子は断熱層5a及び5bを介して金型本体と熱絶縁された断熱構造であるのが好ましい。また、金型キャビティ温調用冷却孔8a及び8bも金型キャビティ面を効率良く昇温及び降温する観点から、できるだけ金型キャビティ面に近い位置に、適切に設置されることが好ましい。   The portions constituting the mold cavity surfaces 2a and 2b have a nested structure in order to improve the heat efficiency of the heating and cooling medium, and the nested structure is thermally insulated from the mold body through the heat insulating layers 5a and 5b. Is preferred. In addition, the mold cavity temperature adjusting cooling holes 8a and 8b are also preferably installed as close to the mold cavity surface as possible from the viewpoint of efficiently raising and lowering the mold cavity surface.

金型1により成形される成形体は、厚肉リブ3を有する非意匠面とその反対側の面である意匠面を有し、非意匠面は可動型1b側の金型キャビティ面2b(非意匠側型面)で成形され、意匠面は固定型1a側の金型キャビティ面2a(意匠側型面)で成形される。ここで、意匠面を可動型1b側の金型キャビティ面2bで成形し、非意匠面を固定型1aの金型キャビティ面2bで成形してもよい。また、厚肉リブ3は厚肉ボスであってもよい。   The molded body formed by the mold 1 has a non-design surface having thick ribs 3 and a design surface that is the opposite surface, and the non-design surface is a mold cavity surface 2b (non-surface) on the movable mold 1b side. The design surface is molded with the mold cavity surface 2a (design side mold surface) on the fixed mold 1a side. Here, the design surface may be formed by the mold cavity surface 2b on the movable mold 1b side, and the non-design surface may be formed by the mold cavity surface 2b of the fixed mold 1a. The thick rib 3 may be a thick boss.

可動型1bにはガス圧入経路9が形成されており、加圧ガス源からガス圧入経路9へガスが供給される。また、可動型1bには、金型キャビティ2内に先端を臨ませた加圧ガス圧入ピン4が設けられている。この圧入ピン4は、図2(a)及び(b)に示されるように先端の断面が円の一部を削り取った形状をしており、これにより可動型1bとの間にクリアランスcが形成されている。このクリアランスは溶融樹脂が逆流して入り込むことはないが、加圧ガスは通過できる大きさになっている。具体的には、0.01〜0.05mmのクリアランスが設けられている。加圧源から供給された加圧ガスは、圧入ピン4と可動型1bとの間のクリアランスを通過し、金型キャビティ2内に圧入される。ガス逆流漏れを防止するため、圧入ピン4にはシール材7aが設置されている。シール材7aとしては、ニトリル−ブタジエンゴム製等の耐熱性Oリング等を用いることが好ましい。図3に加圧ガス圧入ピン4の構造の一例を示す。また、金型キャビティ2内に圧入されたガスの漏洩防止のため、エジェクターピン6と可動型1bとの間のクリアランスにもシール材7bが設けられている。   A gas injection path 9 is formed in the movable mold 1b, and gas is supplied from the pressurized gas source to the gas injection path 9. Further, the movable mold 1b is provided with a pressurized gas press-fitting pin 4 having a tip facing the mold cavity 2. As shown in FIGS. 2 (a) and 2 (b), the press-fit pin 4 has a shape in which the cross-section of the tip is a part of a circle, and a clearance c is formed between the press-fit pin 4 and the movable die 1b. Has been. The clearance does not allow the molten resin to flow back and enter, but the pressurized gas can pass through. Specifically, a clearance of 0.01 to 0.05 mm is provided. Pressurized gas supplied from the pressurization source passes through the clearance between the press-fit pin 4 and the movable mold 1 b and is press-fitted into the mold cavity 2. In order to prevent gas backflow leakage, the press-fit pin 4 is provided with a sealing material 7a. As the sealing material 7a, it is preferable to use a heat-resistant O-ring made of nitrile-butadiene rubber or the like. FIG. 3 shows an example of the structure of the pressurized gas press-fit pin 4. Further, in order to prevent leakage of gas press-fitted into the mold cavity 2, a seal material 7b is also provided in the clearance between the ejector pin 6 and the movable mold 1b.

また、金型1のパーティング面のシール性が高いと、溶融樹脂射出前の金型キャビティ2内の空気、溶融樹脂から発生したガス、加圧ガスの一部等が意匠面側に滞留し、厚肉リブ3に対応する意匠面側のひけが十分に改善されない場合がある。これを防止するために、固定型1aと可動型1bのパーティング面には、金型キャビティ2に通じるガス抜きベント溝10(溶融樹脂は侵入できないが、気体は通す大きさのスリット)を設けて大気開放しておくことが好ましい。   Further, if the sealing performance of the parting surface of the mold 1 is high, air in the mold cavity 2 before injection of the molten resin, gas generated from the molten resin, a part of the pressurized gas, etc. stay on the design surface side. The sink on the design surface side corresponding to the thick rib 3 may not be sufficiently improved. In order to prevent this, a degassing vent groove 10 (a slit that is large enough to allow gas to pass through, although molten resin cannot enter) is provided on the parting surfaces of the fixed mold 1a and the movable mold 1b. It is preferable to keep it open to the atmosphere.

[ガス加圧射出成形法]
次に、上記装置を用いて実施される本実施の形態のガス加圧射出成形法について、図中の記号を用いて説明する。
[Gas pressure injection molding method]
Next, the gas pressure injection molding method of this embodiment implemented using the above apparatus will be described using symbols in the drawings.

本実施の形態のガス加圧射出成形法は、熱可塑性樹脂を溶融樹脂として金型キャビティ内に射出した後、射出成形体の裏面(非意匠面)とそれに対応する金型キャビティ面(非意匠側型面)間に加圧ガスを圧入して射出成形体の表面(意匠面)をそれに対応する金型キャビティ面(意匠側型面)に押し付ける工程を含むガス加圧射出成形法であって、(a)溶融樹脂を金型キャビティ内に射出する前に、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温する工程と、(b)溶融樹脂の射出終了後、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度に降温して射出成形体を冷却する工程と、を含む。   In the gas pressure injection molding method of the present embodiment, a thermoplastic resin is injected into the mold cavity as a molten resin, and then the back surface (non-design surface) of the injection-molded product and the corresponding mold cavity surface (non-design) A gas pressure injection molding method including a step of pressing a pressurized gas between side mold surfaces) and pressing a surface of the injection molded body (design surface) against a corresponding mold cavity surface (design side mold surface). (A) before injecting the molten resin into the mold cavity, raising the temperature of the mold cavity surface to a temperature 0-30 ° C. higher than the glass transition temperature of the thermoplastic resin; And a step of cooling the injection-molded product by lowering the temperature of the mold cavity surface to a temperature lower by 20 ° C. or more than the glass transition temperature of the thermoplastic resin after the injection of the molten resin.

本実施の形態の成形法は、金型キャビティ面の温度を熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温した状態で溶融樹脂を射出することにより、射出直後の樹脂粘度の急激な上昇が避けられ、後述するガス圧入工程における、意匠面のひけ防止のための非意匠面から押し付けるガス圧力の作用効果が大きくなる。従って、樹脂のビカット軟化点より低い金型キャビティ温度で成形する従来のガス加圧射出成形法に比べて、より低いガス圧力で、ひけがなく、表面平滑で、かつ、外観に優れた意匠面を有する成形体を得ることができる。   In the molding method of the present embodiment, the resin viscosity immediately after injection is obtained by injecting the molten resin in a state where the temperature of the mold cavity surface is raised to a temperature 0 to 30 ° C. higher than the glass transition temperature of the thermoplastic resin. Of the gas pressure to be pressed from the non-design surface for preventing sink of the design surface in the gas press-fitting step described later. Therefore, compared to the conventional gas pressure injection molding method that molds at a mold cavity temperature lower than the Vicat softening point of the resin, the design surface has a lower gas pressure, no sink, smooth surface, and excellent appearance. Can be obtained.

工程(a)は、溶融樹脂を金型キャビティ内に射出する前に、金型キャビティ面の温度を熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温する工程である。   Step (a) is a step of raising the temperature of the mold cavity surface to a temperature higher by 0 to 30 ° C. than the glass transition temperature of the thermoplastic resin before injecting the molten resin into the mold cavity.

本実施の形態の成形法においては、射出成形前の金型キャビティ面の温度を、熱可塑性樹脂のガラス転移温度より0〜30℃高い温度、好ましくは10〜20℃高い温度に昇温することが重要である。射出前の金型キャビティ面の温度が熱可塑性樹脂のガラス転移温度未満であると、後述するガス圧入工程における非意匠面から押し付けるガス圧力の作用効果が小さく、意匠面のひけが十分に抑制されないおそれがある。また、ウエルドライン、フローマーク等を完全に防止することが困難となるため外観が悪化する傾向にある。逆に、射出前の金型キャビティ面の温度が熱可塑性樹脂のガラス転移温度よりも30℃高い温度を超えると、金型の加熱冷却に不必要な熱ロスが生じ、また、金型キャビティ面の冷却時間が長くなり成形体の生産性が低下する傾向にある。射出前の金型キャビティ面の温度は、良好な外観を有する成形体を効率良く得るという観点から、熱可塑性樹脂のガラス転移温度よりも10〜20℃高い温度に昇温するのが特に好ましい。   In the molding method of the present embodiment, the temperature of the mold cavity surface before injection molding is raised to a temperature that is 0 to 30 ° C., preferably 10 to 20 ° C. higher than the glass transition temperature of the thermoplastic resin. is important. When the temperature of the mold cavity surface before injection is lower than the glass transition temperature of the thermoplastic resin, the effect of the gas pressure pressed from the non-design surface in the gas press-in process described later is small, and the sink on the design surface is not sufficiently suppressed. There is a fear. Further, since it becomes difficult to completely prevent weld lines, flow marks, etc., the appearance tends to deteriorate. Conversely, if the temperature of the mold cavity surface before injection exceeds 30 ° C. higher than the glass transition temperature of the thermoplastic resin, heat loss unnecessary for heating and cooling the mold occurs, and the mold cavity surface The cooling time of the product tends to be long and the productivity of the molded product tends to be reduced. The temperature of the mold cavity surface before injection is particularly preferably raised to a temperature 10 to 20 ° C. higher than the glass transition temperature of the thermoplastic resin from the viewpoint of efficiently obtaining a molded article having a good appearance.

金型キャビティ面の温度制御は、加熱媒体供給源12と冷却媒体供給源13を備えた金型温度調節機11で行う。本工程においては、加熱媒体(例えば水蒸気)を金型キャビティ冷却孔8a及び8bに流して、金型キャビティ面2a及び2bの温度を昇温する。   The temperature control of the mold cavity surface is performed by a mold temperature controller 11 including a heating medium supply source 12 and a cooling medium supply source 13. In this step, a heating medium (for example, water vapor) is passed through the mold cavity cooling holes 8a and 8b to raise the temperature of the mold cavity surfaces 2a and 2b.

金型キャビティ面を昇温後(工程(a)の後)、熱可塑性樹脂を溶融樹脂として金型キャビティ2内に射出する。溶融樹脂の射出量は、金型キャビティ2の容積を満たすのに充分な量であることが好ましい。また、溶融樹脂を射出する際には、キャビティ内に保圧を充分かけた状態であるのが好ましい。射出保圧を充分にかけることにより、樹脂と金型キャビティ面2a及び2bとの密着性が高くなり、後述するガス層の圧力保持性が向上する傾向にある。   After raising the temperature of the mold cavity surface (after step (a)), a thermoplastic resin is injected into the mold cavity 2 as a molten resin. The injection amount of the molten resin is preferably an amount sufficient to fill the volume of the mold cavity 2. Further, when injecting the molten resin, it is preferable that a sufficient holding pressure is applied in the cavity. By sufficiently applying the injection holding pressure, the adhesion between the resin and the mold cavity surfaces 2a and 2b is increased, and the pressure holding property of the gas layer described later tends to be improved.

溶融樹脂の射出終了直後、好ましくは保圧をかける前に、ガス圧入ピン4と可動型1bとの間のクリアランスを通して加圧ガスを圧入する(ガス圧入工程)。これにより、金型キャビティ2内に射出された溶融樹脂と金型キャビティ面2bとの隙間に、加圧ガスによるガス層が形成される。エジェクターピン6と可動型1bとの間のクリアランスに設けられたシール材7bはこのガス層の圧力保持を助けるものである。   Immediately after the injection of the molten resin, preferably before applying a holding pressure, a pressurized gas is injected through the clearance between the gas injection pin 4 and the movable mold 1b (gas injection step). As a result, a gas layer made of pressurized gas is formed in the gap between the molten resin injected into the mold cavity 2 and the mold cavity surface 2b. The sealing material 7b provided in the clearance between the ejector pin 6 and the movable die 1b helps to maintain the pressure of the gas layer.

成形体の厚肉リブ3の突出側(非意匠面側)に形成されたこのガス層は、溶融樹脂が冷却固化する間、その反対の面、即ち、成形体の意匠面側を金型キャビティ面2aに対して継続的に押し付ける。この時、図4に示すように、リブ3の根元は加圧ガスの圧力によって絞り込まれ、これによってリブ3付近の溶融樹脂が流動して、リブ3に対応する意匠面をさらに金型キャビティ面2aに押え付けることになる。このことにより、リブ3の体積収縮による意匠面のひけの発生を防止することができる。図5に加圧ガスを圧入しない通常の成形方法で成形された成形体の態様例を示す。厚肉リブ3に対応する反対側の意匠面は、冷却過程における厚肉リブ3の収縮の影響でひけが発生し、外観が不良なものとなる。   This gas layer formed on the projecting side (non-design surface side) of the thick rib 3 of the molded body has a mold cavity on the opposite surface, that is, the design surface side of the molded body while the molten resin is cooled and solidified. Press continuously against surface 2a. At this time, as shown in FIG. 4, the base of the rib 3 is squeezed by the pressure of the pressurized gas, whereby the molten resin in the vicinity of the rib 3 flows, and the design surface corresponding to the rib 3 further becomes the mold cavity surface. 2a. This can prevent the design surface from sinking due to the volume contraction of the rib 3. FIG. 5 shows an example of a molded body molded by a normal molding method in which no pressurized gas is injected. The design surface on the opposite side corresponding to the thick rib 3 is sinked due to the shrinkage of the thick rib 3 in the cooling process, and the appearance is poor.

ガス加圧射出成形法におけるひけ防止効果は、通常、加圧ガス圧入時における成形体のリブ3表面の樹脂固化層の厚みとリブ3内部の樹脂粘度に大きく依存する。本実施の形態の成形法においては、金型キャビティ面の温度を熱可塑性樹脂のガラス転移温度より0〜30℃高い温度に昇温して溶融樹脂を射出することで、射出終了直後のリブ3表面の樹脂固化層は薄く柔らかくなり、リブ3内部の樹脂粘度も十分に低い状態に保たれる。従って、従来の樹脂のガラス転移温度より20℃以上低い金型キャビティ温度で成形する方法と比較して、より低いガス圧で良好なひけ防止効果を得ることが可能となる。   In general, the effect of preventing sink marks in the gas pressure injection molding method largely depends on the thickness of the resin solidified layer on the surface of the rib 3 of the molded body and the resin viscosity inside the rib 3 at the time of pressurizing the pressurized gas. In the molding method of the present embodiment, the temperature of the mold cavity surface is raised to a temperature 0 to 30 ° C. higher than the glass transition temperature of the thermoplastic resin, and the molten resin is injected, so that the rib 3 immediately after the injection is finished. The resin solidified layer on the surface becomes thin and soft, and the resin viscosity inside the rib 3 is kept sufficiently low. Therefore, compared with the conventional method of molding at a mold cavity temperature that is 20 ° C. or more lower than the glass transition temperature of the resin, it is possible to obtain a good sink prevention effect at a lower gas pressure.

加圧ガスの圧入後、成形体の非意匠面側に形成されるガス層の圧力はある程度保持されるが、その圧力は経時的に降下する。ガス層の圧力の大きさ及び圧力降下速度は、意匠面のひけの発生及び外観に影響する。当然のことながら、高い圧力のガス層を長時間維持させることができれば、ひけ防止効果は高くなる。従って、図1に示される金型1のように、加圧ガスを漏洩させないように、可動型1bにシール材7a及び7bが設置された気密性の高い金型を用いることが好ましい。   After the pressurization of the pressurized gas, the pressure of the gas layer formed on the non-design surface side of the molded body is maintained to some extent, but the pressure decreases with time. The magnitude of the pressure in the gas layer and the pressure drop speed affect the occurrence of appearance sink marks and the appearance. As a matter of course, if the high pressure gas layer can be maintained for a long time, the sinking prevention effect is enhanced. Therefore, like the mold 1 shown in FIG. 1, it is preferable to use a highly airtight mold in which the sealing materials 7a and 7b are installed in the movable mold 1b so that the pressurized gas does not leak.

ガス層の圧力の降下速度は、金型1の気密性、使用する樹脂の種類、成形条件等によって大きく変化する。本実施の形態の成形法においては、金型キャビティ面の温度を熱可塑性樹脂のガラス転移温度より0〜30℃高くした状態で溶融樹脂を射出することにより、樹脂と金型キャビティ面2a及び2bとの密着性がより高くなるためガス層の圧力保持が良好となる。従って、従来の樹脂のガラス転移温度より20℃以上低い金型キャビティ温度で成形する方法と比べて、半分以下の低いガス圧力でも意匠面のひけを防止することが可能となる。   The rate of pressure drop of the gas layer varies greatly depending on the airtightness of the mold 1, the type of resin used, molding conditions, and the like. In the molding method of the present embodiment, the resin and the mold cavity surfaces 2a and 2b are injected by injecting the molten resin in a state where the temperature of the mold cavity surface is 0 to 30 ° C. higher than the glass transition temperature of the thermoplastic resin. Since the adhesion to the gas layer becomes higher, the pressure retention of the gas layer becomes better. Therefore, it is possible to prevent the sink of the design surface even with a gas pressure that is less than half that of the conventional method of molding at a mold cavity temperature that is 20 ° C. lower than the glass transition temperature of the resin.

加圧ガスの圧力は、樹脂の種類、成形体の厚肉リブ3の形状、板厚等によって異なるが、通常1〜15MPa、好ましくは3〜10MPaである。加圧ガスを金型キャビティ2内に圧入するタイミングは、溶融樹脂を金型キャビティ2に充分に充填した直後が好ましい。また、加圧ガスの漏洩を防止するために、加圧ガスで成形体をその意匠面側に押え付けると同時に樹脂保圧を加え、さらに樹脂を補充することが有効である。本実施の形態の成形法に用いることができる加圧ガスとしては特に限定されず、窒素、空気、炭酸ガス等を用いることができるが、中でも、窒素等の不活性ガスを用いるのが好ましい。   The pressure of the pressurized gas varies depending on the type of resin, the shape of the thick rib 3 of the molded body, the plate thickness, and the like, but is usually 1 to 15 MPa, preferably 3 to 10 MPa. The timing for pressurizing the pressurized gas into the mold cavity 2 is preferably immediately after the molten resin is sufficiently filled in the mold cavity 2. Further, in order to prevent leakage of the pressurized gas, it is effective to press the molded body against the design surface side with the pressurized gas and simultaneously apply resin holding pressure to replenish the resin. The pressurized gas that can be used in the molding method of the present embodiment is not particularly limited, and nitrogen, air, carbon dioxide gas, and the like can be used. Among them, it is preferable to use an inert gas such as nitrogen.

工程(b)は、溶融樹脂の射出終了後、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度に降温して射出成形体を冷却する工程である。   Step (b) is a step of cooling the injection molded body by lowering the temperature of the mold cavity surface to a temperature lower by 20 ° C. or more than the glass transition temperature of the thermoplastic resin after the injection of the molten resin.

溶融樹脂を射出後、加熱媒体の供給を止め、速やかに冷却媒体を冷却媒体供給源13より金型キャビティ冷却孔8a及び8bに流し、金型キャビティ面2a及び2bを熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度、好ましくは30℃以上低い温度に降温して、十分に成形体を冷却した後、成形体を金型から取り出す。   After injecting the molten resin, the supply of the heating medium is stopped, the cooling medium is promptly flowed from the cooling medium supply source 13 to the mold cavity cooling holes 8a and 8b, and the mold cavity surfaces 2a and 2b are passed through the glass transition temperature of the thermoplastic resin. Then, the temperature is lowered to a temperature lower by 20 ° C. or more, preferably 30 ° C. or more, and the molded body is sufficiently cooled, and then the molded body is taken out from the mold.

ここで、工程(b)における金型キャビティ面の温度が熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度と規定したのは、大部分の非結晶性樹脂の荷重たわみ温度が、ガラス転移温度よりも約20℃低いところにあり、これ以下の温度で成形体を金型から取り出せば、成形体の冷却不足による変形が抑止できるという観点からである。   Here, the temperature of the mold cavity surface in step (b) is defined as a temperature that is 20 ° C. or more lower than the glass transition temperature of the thermoplastic resin because the deflection temperature under load of most of the non-crystalline resin is the glass transition temperature. This is because it is about 20 ° C. lower than the temperature, and if the molded body is taken out of the mold at a temperature lower than this, deformation due to insufficient cooling of the molded body can be suppressed.

また、成形体を金型から取り出した後、冷却媒体供給源13からの金型キャビティ冷却孔8a及び8bへの冷却媒体の供給を止め、加熱媒体を加熱媒体供給源12から金型キャビティ冷却孔8a及び8bに流して金型キャビティ面2a及び2bの昇温を開始し、金型キャビティ面の温度を熱可塑性樹脂のガラス転移温度よりも0℃〜30℃高い温度に昇温することにより、連続して本実施の形態の成形法を実施することができる。   Further, after the molded body is taken out from the mold, supply of the cooling medium from the cooling medium supply source 13 to the mold cavity cooling holes 8a and 8b is stopped, and the heating medium is transferred from the heating medium supply source 12 to the mold cavity cooling hole. The temperature of the mold cavity surface 2a and 2b is started to flow through 8a and 8b, and the temperature of the mold cavity surface is raised to a temperature 0 ° C to 30 ° C higher than the glass transition temperature of the thermoplastic resin, The molding method of the present embodiment can be carried out continuously.

金型キャビティに溶融樹脂として射出される熱可塑性樹脂としては、特に限定されないが、好ましくは非結晶性の熱可塑性樹脂(以下、非結晶性樹脂とも言う。)である。非結晶性樹脂は、樹脂射出後の冷却過程において、樹脂の固化点(ガラス転移温度)までは急激な粘度変化がなくゴム弾性状態を保持するため、加圧ガスによるひけ防止効果が大きくなる傾向にある。一方、結晶性樹脂は、冷却過程において樹脂が溶融温度(正確には再結晶化温度)以下の温度に達すると、結晶化により成形体の表面が急激に固くなり、それに伴って急激な収縮を開始するため、加圧ガスでひけを防止するのが実質的に困難となる場合がある。   The thermoplastic resin injected into the mold cavity as a molten resin is not particularly limited, but is preferably an amorphous thermoplastic resin (hereinafter also referred to as an amorphous resin). Amorphous resins tend to be more effective in preventing sinking due to pressurized gas because they do not undergo a sudden change in viscosity until the resin solidification point (glass transition temperature) during the cooling process after resin injection, and maintain a rubber elastic state. It is in. On the other hand, when the resin reaches a temperature below the melting temperature (more precisely, the recrystallization temperature) during the cooling process, the surface of the molded body suddenly becomes hard due to crystallization, and sudden shrinkage is caused accordingly. Because it begins, it may be substantially difficult to prevent sinking with pressurized gas.

非結晶性の熱可塑性樹脂としては、例えば、ポリスチレン(PS)やハイインパクトポリスチレン(HIPS)のようなゴム補強スチレン系樹脂、スチレン−アクリロニトリル共重合体(SAN樹脂)、アクリロニトリル−ブチルアクリレートラバー−スチレン共重合体(AAS樹脂)、例えば、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−メチルメタクリル−ブタジエン−スチレン共重合体等のABS樹脂、ポリカーボネート(PC樹脂)、PC/ABS等のPC系樹脂、ポリメチルメタクリレート(PMMA樹脂)等のアクリル系樹脂、変性ポリフェレンニレンエーテル(変性PPE樹脂)等が挙げられる。熱可塑性樹脂は、ポリマーアロイでもよく、例えば、上述のPC/ABS樹脂、スチレンで変性した変性PPE樹脂や、PMMA/ABS樹脂、PC/PS樹脂等が好適に用いられる。   Examples of the amorphous thermoplastic resin include rubber-reinforced styrene resins such as polystyrene (PS) and high impact polystyrene (HIPS), styrene-acrylonitrile copolymer (SAN resin), acrylonitrile-butyl acrylate rubber-styrene. Copolymer (AAS resin), for example, ABS resin such as acrylonitrile-butadiene-styrene copolymer, acrylonitrile-methylmethacryl-butadiene-styrene copolymer, PC resin such as polycarbonate (PC resin), PC / ABS, Examples thereof include acrylic resins such as polymethyl methacrylate (PMMA resin), modified polyferylene nylene ether (modified PPE resin), and the like. The thermoplastic resin may be a polymer alloy. For example, the above-mentioned PC / ABS resin, a modified PPE resin modified with styrene, a PMMA / ABS resin, a PC / PS resin, or the like is preferably used.

本実施の形態の成形法において、例えば、熱可塑性樹脂としてガラス転移温度110℃を有する非結晶性ABS樹脂(例えば、アクリロニトリル−ブタジエン−スチレン共重合体)を用いた場合には、工程(a)の樹脂射出前の金型キャビティ面の温度は好ましくは120〜130℃であり、工程(b)の樹脂射出後の冷却工程おける金型キャビティ面の温度は好ましくは50℃以下である。   In the molding method of the present embodiment, for example, when an amorphous ABS resin having a glass transition temperature of 110 ° C. (for example, acrylonitrile-butadiene-styrene copolymer) is used as the thermoplastic resin, the step (a) The temperature of the mold cavity surface before the resin injection is preferably 120 to 130 ° C., and the temperature of the mold cavity surface in the cooling step after the resin injection in the step (b) is preferably 50 ° C. or less.

本実施の形態の成形法で用いられる熱可塑性樹脂には、種々の添加剤が含まれていてもよい。例えば、エラストマー、可塑剤、発泡剤、安定剤、帯電防止剤、紫外線吸収剤、難燃剤、着色剤、離型剤及びガラス繊維・チタン酸カリウィスカー・酸化亜鉛ウィスカー等の繊維状補強剤、さらにはガラスビーズ、ガラスフレーク、マイカ、炭酸カルシュウム、タルク等の充填剤を任意に添加することができる。   The thermoplastic resin used in the molding method of the present embodiment may contain various additives. For example, elastomers, plasticizers, foaming agents, stabilizers, antistatic agents, ultraviolet absorbers, flame retardants, colorants, mold release agents and fibrous reinforcing agents such as glass fibers, potassium titanate whiskers, zinc oxide whiskers, Can optionally contain fillers such as glass beads, glass flakes, mica, calcium carbonate, talc and the like.

ガラス繊維、炭素繊維、ガラスフレーク等のフィラー強化充填剤、その他のフィラーを添加したフィラー強化樹脂を通常の成形方法で成形した場合、フィラーの成形体表面への浮きが避けられず、表面平滑で、かつ、優れた外観を有する成形体を得ることは困難である。しかしながら本実施の形態の成形法によれば、溶融樹脂を射出する前に金型キャビティ面の温度を、熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温して溶融樹脂を金型キャビティ内に射出するため、金型キャビティ面に接触した樹脂が十分に柔らかく、射出圧力による樹脂圧によって成形体表面のフィラーの浮きが抑制され、金型キャビティ面が良好に転写されるため、表面平滑であり、かつ、高品質の外観を有する成形体を得ることが可能となる。   When filler-reinforced resin added with fillers such as glass fiber, carbon fiber, glass flakes, and other fillers is molded by the usual molding method, the float of the filler on the surface of the molded body is inevitable and the surface is smooth. Moreover, it is difficult to obtain a molded body having an excellent appearance. However, according to the molding method of the present embodiment, the temperature of the mold cavity surface is raised to a temperature 0 to 30 ° C. higher than the glass transition temperature of the thermoplastic resin before injecting the molten resin. Because the resin is injected into the mold cavity, the resin in contact with the mold cavity surface is sufficiently soft, and the resin pressure due to the injection pressure suppresses the floating of the filler on the surface of the molded body, and the mold cavity surface is transferred well. It is possible to obtain a molded body having a smooth surface and a high quality appearance.

また、通常、発泡性樹脂を射出成形すると、金型キャビティを溶融樹脂が流動する過程で、発泡ガスの噴出により、成形体の表面に発生する表面荒れ、いわゆるスワールマークが成形体の表面に発生するが、この場合も上記と同様の機構により、本実施の形態の成形法によれば、表面平滑であり、かつ、高品質な外観を有する成形体を得ることができる。なお、発泡性樹脂を射出成形する場合は、溶融樹脂が金型キャビティを流動する際のガスの噴出を防ぐため、射出前に、予め、金型キャビティ内を窒素、圧縮空気のガスで加圧するのが好ましい。   In general, when foaming resin is injection-molded, surface roughness that occurs on the surface of the molded product due to the blowing of foaming gas in the process of molten resin flowing in the mold cavity, so-called swirl marks, occurs on the surface of the molded product. However, also in this case, according to the molding method of the present embodiment, a molded body having a smooth surface and a high quality appearance can be obtained by the same mechanism as described above. In the case of injection molding of foamable resin, the inside of the mold cavity is previously pressurized with nitrogen or compressed air before injection in order to prevent the gas from being blown when the molten resin flows through the mold cavity. Is preferred.

以下に本実施の形態を具体的に説明した実施例及び比較例を例示するが、本実施の形態はその要旨を超えない限り以下の実施例に限定されるものではない。
実施例における成形条件、射出成形体の評価方法は以下の通りである。
(1)成形条件
射出成形機: 住友重機械工業社製SG220
樹脂射出二次圧(保圧): 射出一次圧の80%
金型キャビティ温度の制御: 昇温には高圧蒸気、降温には水を使用
加圧ガス圧入条件
使用ガス: 窒素
ガス圧力: 5MPa
ガス圧入時期、時間: 射出終了直後、5sec
ガス圧開放: 射出終了40sec後
(2)成形体のひけの深さ:後述する図6に示すリブに対応した意匠面(H部)の最大値
(測定機)
機器名:ミツトヨ製「SURFTEST500」
検出部:ダイヤモンド針接触式センサー(円錐形90°)
先端曲率半径:5μm
(測定条件)
走査速度:2mm/sec
走査距離:4mm
(3)成形体の60°光沢度: ASTM D523−67
測定機: スガ試験機株式会社製デジタル変角光沢形「UGV−5K」
Examples and comparative examples that specifically describe the present embodiment will be exemplified below, but the present embodiment is not limited to the following examples unless it exceeds the gist.
The molding conditions in the examples and the evaluation method of the injection-molded body are as follows.
(1) Molding conditions Injection molding machine: SG220 manufactured by Sumitomo Heavy Industries, Ltd.
Resin injection secondary pressure (holding pressure): 80% of injection primary pressure
Control of mold cavity temperature: Use high-pressure steam for temperature rise and water for temperature drop Pressurized gas injection conditions Gas used: Nitrogen Gas pressure: 5 MPa
Gas injection timing, time: 5 sec immediately after injection
Gas pressure release: 40 seconds after the end of injection (2) Sink depth of molded product: Maximum value of design surface (H portion) corresponding to rib shown in FIG.
Device name: “SURFTEST500” manufactured by Mitutoyo
Detector: Diamond needle contact sensor (conical 90 °)
Tip radius of curvature: 5 μm
(Measurement condition)
Scanning speed: 2mm / sec
Scanning distance: 4mm
(3) 60 ° glossiness of molded product: ASTM D523-67
Measuring machine: Digital variable angle gloss type “UGV-5K” manufactured by Suga Test Instruments Co., Ltd.

図6は、以下の実施例及び比較例で得られた射出成形体の斜視図を示す。射出成形体は大きさが300mm×200mm×30mm、板厚2.5mmで非意匠部(裏面)に2.0mmの厚さのリブを有する。   FIG. 6 shows a perspective view of an injection molded body obtained in the following examples and comparative examples. The injection-molded body has a size of 300 mm × 200 mm × 30 mm, a plate thickness of 2.5 mm, and a rib with a thickness of 2.0 mm on the non-design part (back surface).

(実施例1、2及び比較例1〜4)
図1の構造の金型を用い、表1に示された熱可塑性樹脂及び成形条件で成形して、図6に示す成形体を得た。全ての実施例及び比較例において、溶融樹脂の射出直後、非意匠面のリブに囲まれたエリア3箇所(図6のA)より加圧ガスを圧入した。得られた成形体の意匠面(図6のH部)のひけの深さを上述した測定器及び条件で測定し、表面平滑性の目安とした。また、成形体の意匠面の60°グロス(光沢度)を測定し、表面外観の美麗さの目安とした。測定結果を表1に示す。
(Examples 1 and 2 and Comparative Examples 1 to 4)
1 was molded using the thermoplastic resin and molding conditions shown in Table 1 to obtain a molded body shown in FIG. In all Examples and Comparative Examples, immediately after injection of the molten resin, pressurized gas was injected from three locations (A in FIG. 6) surrounded by the ribs on the non-design surface. The depth of sink marks on the design surface (H part in FIG. 6) of the obtained molded body was measured using the measuring instrument and conditions described above, and used as a measure of surface smoothness. Further, the 60 ° gloss (glossiness) of the design surface of the molded body was measured and used as a measure of the beauty of the surface appearance. The measurement results are shown in Table 1.

表1の結果から明らかなように、金型キャビティ面の温度を樹脂のガラス転移温度よりも10℃高い温度に昇温した状態で溶融樹脂を射出し、射出終了後には、金型キャビティ面の温度を樹脂のガラス転移温度よりも50℃低い温度に降温(冷却)して成形を行った実施例1及び2の成形体は、意匠面のひけが小さく(ひけの深さが浅く)、表面平滑であり、かつ、60°光沢度が高く高品質な外観を有していた。
一方、金型キャビティ面の温度を樹脂のガラス転移温度よりも50℃低い温度に一定にした状態でガス加圧射出成形を行った比較例1及び2の成形体は、実施例1及び2の成形体と比べて意匠面のひけが大きく、60°光沢度も低かった。特に、実施例2と比較例2は、フィラー強化樹脂を用いているため、ひけの深さ及び60°光沢度の差が大きかった。
また、ガス加圧工程を行わずに、金型キャビティ面の温度を、樹脂の射出時にガラス転移温度よりも10℃高い温度に、冷却時に樹脂のガラス転移温度よりも50℃低い温度にして射出成形を行った比較例3及び4の成形体は、60°光沢度は実施例1及び2と遜色ないものの、ひけの深さが実施例1及び2と比べて著しく大きかった。
As is clear from the results in Table 1, the molten resin was injected in a state where the temperature of the mold cavity surface was raised to a temperature 10 ° C. higher than the glass transition temperature of the resin. The molded bodies of Examples 1 and 2 formed by lowering (cooling) the temperature to a temperature lower by 50 ° C. than the glass transition temperature of the resin have a small design surface sink (shrink depth is shallow), and the surface. It was smooth and had a high 60 ° glossiness and a high quality appearance.
On the other hand, the molded bodies of Comparative Examples 1 and 2 in which gas pressure injection molding was performed in a state where the temperature of the mold cavity surface was kept constant at a temperature lower by 50 ° C. than the glass transition temperature of the resin were the same as those of Examples 1 and 2. Compared to the molded body, the design surface sink was large and the 60 ° gloss was also low. In particular, Example 2 and Comparative Example 2 used a filler-reinforced resin, and thus there was a large difference in sink depth and 60 ° gloss.
Also, without performing the gas pressurization process, the mold cavity surface temperature is 10 ° C higher than the glass transition temperature at the time of resin injection, and 50 ° C lower than the glass transition temperature of the resin at the time of cooling. Although the molded articles of Comparative Examples 3 and 4 that were molded had a 60 ° glossiness comparable to that of Examples 1 and 2, the sink depth was significantly larger than that of Examples 1 and 2.

本発明のガス加圧射出成形法で得られる(リブ付き)成形体は、ひけがなく、表面平滑で、かつ、優れた外観を有しており、特に、美麗な外観が要求されるOA機器のハウジング、フラットパネルディスプレイの前面カバーや筐体等としての産業上利用可能性を有する。   The molded body (with ribs) obtained by the gas pressure injection molding method of the present invention has no sink, has a smooth surface, and has an excellent appearance. In particular, an OA device that requires a beautiful appearance. The present invention has industrial applicability as a housing, a front cover or a housing of a flat panel display.

本実施の形態のガス加圧射出成形法で使用される金型及び金型温度調節機の一例を示したものである。An example of a mold and a mold temperature controller used in the gas pressure injection molding method of the present embodiment is shown. 本実施の形態のガス加圧射出成形法で使用される金型の加圧ガス圧入ピン先端のクリアランスの形態の一例を示したものである。An example of the form of the clearance of the front-end | tip of the pressurization gas press-fit pin of the metal mold | die used with the gas pressurization injection molding method of this Embodiment is shown. 本実施の形態のガス加圧射出成形法で使用される金型の加圧ガス圧入ピンの形状の一例を示したものである。An example of the shape of the pressurization gas press-fit pin of the metal mold | die used with the gas pressurization injection molding method of this Embodiment is shown. 加圧ガスを非意匠面のリブ部に圧入した場合の成形体の一態様を示したものである。The one aspect | mode of the molded object at the time of press-fitting pressurized gas to the rib part of a non-design surface is shown. 加圧ガスを非意匠面のリブ部に圧入しない場合の成形体の一態様を示したものである。The one aspect | mode of the molded object when not press-fitting pressurized gas to the rib part of a non-design surface is shown. 本実施の形態の射出成形体の一例を示したものである。An example of the injection-molded body of the present embodiment is shown.

符号の説明Explanation of symbols

1: 金型
1a: 固定型
1b: 可動型
2: 金型キャビティ
2a: 意匠側金型キャビティ面
2b: 非意匠側金型キャビティ面
3: 厚肉リブ
4: 加圧ガス圧入ピン
5a、5b: 断熱層
6: エジェクターピン
7a、7b: シール材
8a、8b: 金型キャビティ冷却孔
9: ガス圧入経路
10: パーティング面のベント溝
11: 金型温度調節機
12: 加熱媒体供給源
13: 冷却媒体供給源
c: 切り欠け溝
A: 加圧ガス圧入口
H部: リブ反対面の成形体のひけ
1: Mold 1a: Fixed mold 1b: Movable mold 2: Mold cavity 2a: Design side mold cavity surface 2b: Non-design side mold cavity surface 3: Thick ribs 4: Pressurized gas press-fit pins 5a, 5b: Thermal insulation layer 6: Ejector pin 7a, 7b: Sealing material 8a, 8b: Mold cavity cooling hole 9: Gas injection path 10: Vent groove on parting surface 11: Mold temperature controller 12: Heating medium supply source 13: Cooling Medium supply source c: Notch groove A: Pressurized gas pressure inlet H part: Sink mark of molded body on opposite surface of rib

Claims (3)

熱可塑性樹脂を溶融樹脂として金型キャビティ内に射出した後、射出成形体の裏面(非意匠面)とそれに対応する金型キャビティ面(非意匠側型面)間に加圧ガスを圧入して射出成形体の表面(意匠面)をそれに対応する金型キャビティ面(意匠側型面)に押し付ける工程を含むガス加圧射出成形法であって、
(a)溶融樹脂を金型キャビティ内に射出する前に、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも0〜30℃高い温度に昇温する工程と、
(b)溶融樹脂の射出終了後、前記金型キャビティ面の温度を前記熱可塑性樹脂のガラス転移温度よりも20℃以上低い温度に降温して射出成形体を冷却する工程と、
を含む、射出成形法。
After injecting the thermoplastic resin into the mold cavity as a molten resin, pressurize the pressurized gas between the back surface (non-design surface) of the injection molded body and the corresponding mold cavity surface (non-design side mold surface). A gas pressure injection molding method including a step of pressing a surface (design surface) of an injection molded body against a corresponding mold cavity surface (design side mold surface),
(A) before injecting the molten resin into the mold cavity, raising the temperature of the mold cavity surface to a temperature 0-30 ° C. higher than the glass transition temperature of the thermoplastic resin;
(B) after completion of injection of the molten resin, cooling the injection molded body by lowering the temperature of the mold cavity surface to a temperature lower by 20 ° C. or more than the glass transition temperature of the thermoplastic resin;
Including injection molding.
前記熱可塑性樹脂は、非結晶性の熱可塑性樹脂である、請求項1記載の射出成形法。   The injection molding method according to claim 1, wherein the thermoplastic resin is an amorphous thermoplastic resin. 請求項1又は2記載の射出成形法で成形された射出成形体。   An injection molded article molded by the injection molding method according to claim 1 or 2.
JP2008105935A 2008-04-15 2008-04-15 Gas pressure injection molding method and injection molded body molded by the method Expired - Fee Related JP5392887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105935A JP5392887B2 (en) 2008-04-15 2008-04-15 Gas pressure injection molding method and injection molded body molded by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105935A JP5392887B2 (en) 2008-04-15 2008-04-15 Gas pressure injection molding method and injection molded body molded by the method

Publications (2)

Publication Number Publication Date
JP2009255349A true JP2009255349A (en) 2009-11-05
JP5392887B2 JP5392887B2 (en) 2014-01-22

Family

ID=41383420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105935A Expired - Fee Related JP5392887B2 (en) 2008-04-15 2008-04-15 Gas pressure injection molding method and injection molded body molded by the method

Country Status (1)

Country Link
JP (1) JP5392887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017155A1 (en) * 2014-07-30 2017-05-25 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
WO2019235030A1 (en) * 2018-06-07 2019-12-12 クミ化成株式会社 Injection molding mold
CN113213735A (en) * 2021-05-17 2021-08-06 Oppo广东移动通信有限公司 Glass processing device and mold thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939047A (en) * 1995-08-02 1997-02-10 Japan Steel Works Ltd:The Injection molding die, injection molder, and injection molding method
JPH1015944A (en) * 1996-07-05 1998-01-20 Taiho Kogyo Kk Apparatus for heating and cooing mold
JP2003170432A (en) * 2001-12-07 2003-06-17 Idemitsu Petrochem Co Ltd Foam and manufacturing method therefor
JP2007137008A (en) * 2005-11-22 2007-06-07 Toyoda Gosei Co Ltd Manufacturing process of resin molding
JP2007168256A (en) * 2005-12-22 2007-07-05 Honda Motor Co Ltd Molding method and molding machine
JP2009101557A (en) * 2007-10-23 2009-05-14 Fuji Seiko:Kk Method of injection molding and device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939047A (en) * 1995-08-02 1997-02-10 Japan Steel Works Ltd:The Injection molding die, injection molder, and injection molding method
JPH1015944A (en) * 1996-07-05 1998-01-20 Taiho Kogyo Kk Apparatus for heating and cooing mold
JP2003170432A (en) * 2001-12-07 2003-06-17 Idemitsu Petrochem Co Ltd Foam and manufacturing method therefor
JP2007137008A (en) * 2005-11-22 2007-06-07 Toyoda Gosei Co Ltd Manufacturing process of resin molding
JP2007168256A (en) * 2005-12-22 2007-07-05 Honda Motor Co Ltd Molding method and molding machine
JP2009101557A (en) * 2007-10-23 2009-05-14 Fuji Seiko:Kk Method of injection molding and device thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017155A1 (en) * 2014-07-30 2017-05-25 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
US10413970B2 (en) 2014-07-30 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
WO2019235030A1 (en) * 2018-06-07 2019-12-12 クミ化成株式会社 Injection molding mold
JP2019209650A (en) * 2018-06-07 2019-12-12 クミ化成株式会社 Injection mold
CN112236286A (en) * 2018-06-07 2021-01-15 久美化成株式会社 Injection molding die
CN113213735A (en) * 2021-05-17 2021-08-06 Oppo广东移动通信有限公司 Glass processing device and mold thereof

Also Published As

Publication number Publication date
JP5392887B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP3101943B2 (en) Injection molding method for resin with non-resin fluid
JP5162364B2 (en) Multilayer molded article manufacturing method and multilayer molded article
TW200427569A (en) Process for producing light transmitting plate
JP5392887B2 (en) Gas pressure injection molding method and injection molded body molded by the method
JP3366739B2 (en) Mold for injection molding of thermoplastic resin
EP0826477B1 (en) Method for molding thermoplastic resin
US6322735B1 (en) Method for molding thermoplastic resin
JPH11179750A (en) Injection molding method using gas together
WO2011040186A1 (en) Device for manufacturing resin molded articles for use in optical elements, and method for manufacturing optical elements
JP6902261B2 (en) Injection molding mold
CN102152442A (en) Injection molding method and injection molding device
JP2015223732A (en) Mold for injection molding
KR102053459B1 (en) A Molded Product and Forming Apparatus for Micro Cellular forming process
JP2009083395A (en) Production process of thermoplastic resin molding
JP2001347546A (en) Injection molding die for thermoplastic resin, molding method, and thermoplastic resin molding
JPH11245256A (en) Method for injection molding of non-crystalline thermoplastic resin
JP2010052147A (en) Injection compression molding die for cavity frame structure
JP2002172655A (en) Injection mold for thermoplastic resin
JP5200835B2 (en) Resin mold and injection molding machine
EP1044089B1 (en) Momentary surface heated mould tool with gas flame
JP2010110932A (en) Injection moulding apparatus
JP3790317B2 (en) Gas combined injection molding method
JP2006062110A (en) Method and apparatus for molding neck bending container using resin
JPH11314241A (en) Gas pressure injection molding method
JP2000158505A (en) Method for molding polyacetal resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5392887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees