JPH10158820A - Vapor deposition device, organic vaporization source and production of organic thin film - Google Patents

Vapor deposition device, organic vaporization source and production of organic thin film

Info

Publication number
JPH10158820A
JPH10158820A JP34264996A JP34264996A JPH10158820A JP H10158820 A JPH10158820 A JP H10158820A JP 34264996 A JP34264996 A JP 34264996A JP 34264996 A JP34264996 A JP 34264996A JP H10158820 A JPH10158820 A JP H10158820A
Authority
JP
Japan
Prior art keywords
thin film
organic thin
organic
film material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34264996A
Other languages
Japanese (ja)
Other versions
JP3788835B2 (en
Inventor
Naoki Nagashima
直樹 長嶋
Natsuki Takahashi
夏木 高橋
Toshio Negishi
敏夫 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP34264996A priority Critical patent/JP3788835B2/en
Priority to TW87108447A priority patent/TW409150B/en
Publication of JPH10158820A publication Critical patent/JPH10158820A/en
Application granted granted Critical
Publication of JP3788835B2 publication Critical patent/JP3788835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the temp. overshooting of an org. thin film material, to shorten the heating and cooling time and to suppress the generation of org. compd. vapor except during vapor deposition. SOLUTION: An org. thin film material arranged in an org. vaporization source is placed in an inert gas atmosphere and heated to a specified temp. (S3 , S4 ), evacuation is conducted to generate the vapor of the material (S5 ), and an org. thin film is formed (S6 , S7 ). Since the vaporization of the material is suppressed in the inert gas atmosphere, the material is effectively utilized. Further, as the inert gas acts as a heating medium, the heating rate is increased, and the heat is sufficiently equalized. The cooling rate is increased, when the cooling is performed in the inert gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成膜対象物表面に
有機薄膜を形成する有機薄膜製造方法と、その方法を行
うのに適した蒸着装置及び有機蒸発源に関する。
The present invention relates to an organic thin film manufacturing method for forming an organic thin film on the surface of a film-forming target, and a vapor deposition apparatus and an organic evaporation source suitable for performing the method.

【0002】[0002]

【従来の技術】従来のエレクトロニクス技術は半導体を
中心とする無機物を対象としてきたが、近年では、有機
化合物を用いた機能性有機薄膜が着目されている。
2. Description of the Related Art Conventional electronic technology has been directed to inorganic substances mainly in semiconductors, but in recent years, attention has been paid to functional organic thin films using organic compounds.

【0003】有機化合物を用いる理由として、 無機物より多様な反応系・特性が利用できる。 無機物より低エネルギーで表面処理ができる。 という利点が挙げられる。[0003] As a reason for using an organic compound, a wider variety of reaction systems and characteristics can be used than an inorganic compound. Surface treatment can be performed with lower energy than inorganic substances. The advantage is that.

【0004】機能性有機薄膜を利用するものには、有機
EL素子、圧電センサ、焦電センサ、電気絶縁膜等があ
るが、これらのうち、有機EL素子は、ディスプレイパ
ネルとして利用できることから注目されており、表示部
分の大口径化のために、大面積基板に均一に有機薄膜を
形成できる技術が求められている。
There are organic EL elements, piezoelectric sensors, pyroelectric sensors, electric insulating films, and the like that use a functional organic thin film. Of these, the organic EL elements are attracting attention because they can be used as display panels. Therefore, a technique capable of uniformly forming an organic thin film on a large-area substrate has been demanded in order to increase the diameter of a display portion.

【0005】しかしながら従来の有機薄膜製造工程に
は、Al薄膜やSiO2薄膜等の金属薄膜や無機薄膜を
形成するための真空蒸着装置が転用されており、有機薄
膜の形成に適した蒸着装置は未だ開発されていない。
However, a vacuum evaporation apparatus for forming a metal thin film such as an Al thin film or a SiO 2 thin film or an inorganic thin film is diverted in the conventional organic thin film manufacturing process. Not yet developed.

【0006】ここで、有機薄膜材料と無機薄膜材料とを
比較すると、有機薄膜材料には以下のような特徴が認め
られる。
Here, when the organic thin film material is compared with the inorganic thin film material, the following characteristics are recognized in the organic thin film material.

【0007】 有機薄膜材料は蒸気圧が高く、その蒸
発源温度は、金属蒸発源が600℃〜2000℃程度と
高温であるのに対し、0℃(場合によっては零下)〜40
0℃の間にあり、20℃〜400℃の温度範囲で分解を
起こしてしまうものも多い。従って、蒸発時に精密な温
度制御を行うことが望ましい。金属薄膜を形成する際に
は、一般に、エレクトロンビームを金属蒸発源に照射す
るE/B蒸着装置が用いられているが、有機薄膜材料に
とってはエネルギーが高すぎ、エレクトロンビームを照
射されると分解してしまう。
[0007] The organic thin film material has a high vapor pressure, and the evaporation source temperature is 0 ° C (lower in some cases) to 40 ° C, while the metal evaporation source is as high as about 600 ° C to 2000 ° C.
It is between 0 ° C., and often causes decomposition in a temperature range of 20 ° C. to 400 ° C. Therefore, it is desirable to perform precise temperature control during evaporation. When forming a metal thin film, an E / B vapor deposition apparatus that irradiates an electron beam to a metal evaporation source is generally used. However, the energy is too high for an organic thin film material, and the electron beam is decomposed when irradiated with the electron beam. Resulting in.

【0008】 有機薄膜材料のうちには粉体のものも
あるが、一般に、粉体状の材料は熱伝導が悪く、特に真
空中で加熱しようとすると、真空の断熱効果により昇温
や冷却を行いずらく、制御温度と実際の温度との間に遅
れを生じる場合がある。他方、そのような粉体状の材料
は、一旦蒸発源の温度が上がってしまうと、輻射冷却だ
けでは冷えにくく、加熱を停止しても蒸発がすぐには終
了しない場合がある。いわゆる、蒸発の「きれ」が悪い
という問題である。
[0008] Among organic thin film materials, there are powder materials, but in general, powder materials have poor heat conduction. In particular, when trying to heat in a vacuum, the temperature is increased or cooled by the heat insulating effect of the vacuum. Unfortunately, there may be a delay between the control temperature and the actual temperature. On the other hand, once the temperature of the evaporation source once rises, it is difficult for such a powdery material to be cooled only by radiative cooling, and evaporation may not end immediately even if heating is stopped. It is a so-called problem that the "cut" of evaporation is bad.

【0009】 有機薄膜材料は、蒸気圧が高いため、
低温度の真空槽の槽壁に吸着したものが、真空槽の温度
上昇により離脱(再蒸発)する場合があり、離脱粒子が有
機薄膜中に混入すると、有機薄膜の特性を劣化させる場
合がある。
The organic thin film material has a high vapor pressure,
What is adsorbed on the tank wall of the low-temperature vacuum chamber may be released (re-evaporated) due to the rise in the temperature of the vacuum chamber, and if the released particles are mixed into the organic thin film, the characteristics of the organic thin film may be degraded .

【0010】 有機薄膜材料には水分を吸着し易い物
質が多いが、水分を吸着すると特性が変質してしまうも
のがある。また、多層の有機薄膜を形成する際に、水分
が有機薄膜に取り込まれると、界面の特性が変化してし
まう場合がある。特に、有機EL素子や圧焦電素子等の
機能性素子を作成する場合、最終的な性能に欠陥を生じ
てしまうことがある。
There are many organic thin film materials that easily adsorb moisture, but there are some materials whose properties are deteriorated when moisture is adsorbed. In addition, when moisture is taken into the organic thin film when forming a multilayer organic thin film, the characteristics of the interface may change. In particular, when producing a functional element such as an organic EL element or a pyroelectric element, a defect may occur in the final performance.

【0011】 金属蒸発源は、蒸発するときに方向性
を持ち、その方向は余弦則(COS LAW)に従って蒸発源か
らほぼ直進する性質を持つが、有機薄膜材料によっては
拡散に近い廻り込み現象を起こす場合がある。
A metal evaporation source has a directional property when evaporating, and the direction has a property of proceeding substantially straight from the evaporation source according to the cosine law (COS LAW). May cause.

【0012】 蒸着重合膜を成膜する場合は、同時に
蒸着する2つの有機薄膜材料の組成比が化学量論比に従
っていることが必要である。組成比が化学量論比からず
れてしまった場合は、圧焦電素子ではその機能が失われ
るか、若しくは低下してしまう。組成比を化学量論比に
するためには、成膜速度の精密制御が必要である。
When forming a vapor-deposited polymer film, it is necessary that the composition ratio of two organic thin-film materials to be vapor-deposited at the same time follows the stoichiometric ratio. If the composition ratio deviates from the stoichiometric ratio, the function of the piezoelectric device is lost or deteriorated. In order to make the composition ratio stoichiometric, precise control of the film formation rate is required.

【0013】以上のように、有機薄膜材料には取り扱い
に困難な点が多い。従来用いられている真空蒸着装置の
蒸発源には以下のような種類があるが(図8(a)〜
(e))、上述した有機薄膜材料の性質や、要求される有
機薄膜の特性により、いずれも使用に適さない。
As described above, there are many difficulties in handling organic thin film materials. There are the following types of evaporation sources of a conventionally used vacuum evaporation apparatus (FIG. 8A).
(e)) Neither is suitable for use due to the properties of the organic thin film material described above and the required properties of the organic thin film.

【0014】(A) 蒸発源容器101を金属で形成し、
直接通電して加熱し、薄膜材料を蒸発させる方式(図8
(a):直接抵抗加熱タイプ) この方式は、金属が融解する温度域では温度安定性に優
れているが、有機薄膜材料が蒸発する温度域では安定性
・制御性が悪い。従って、有機化合物蒸気(有機薄膜材
料の蒸気)の発生速度が不安定となる。また、有機薄膜
材料のうちには金属を腐食させたり、金属と反応するも
のがあるが、容器を構成する金属に対してそのような腐
食性・反応性がある有機薄膜材料は使用できない。
(A) The evaporation source container 101 is formed of metal,
Heating by direct energization to evaporate the thin film material (Fig. 8
(a): Direct resistance heating type) This method is excellent in temperature stability in a temperature range in which a metal melts, but is poor in stability and controllability in a temperature range in which an organic thin film material evaporates. Therefore, the generation rate of the organic compound vapor (vapor of the organic thin film material) becomes unstable. Some of the organic thin film materials corrode or react with the metal. However, an organic thin film material having such a corrosive and reactive property with respect to the metal constituting the container cannot be used.

【0015】(B) 蒸発源容器111、121廻りに抵
抗加熱体112、122を置き、通電加熱することによ
って間接的に加熱し、薄膜材料を蒸発させる方式(同図
(b):コニカルバスケットタイプ、同図(c):Kセルタ
イプ)。 この方式は、金属が融解する温度域では温度安定性に優
れているが、有機薄膜材料が蒸発する温度域では安定性
・制御性が悪い。従って、有機化合物蒸気の発生速度が
不安定となる。また、この方式の抵抗加熱体112は、
裸の金属線材を用いるのが普通であるが、有機薄膜材料
は、無機薄膜材料に比べ、廻り込み現象を生じ易い。有
機薄膜材料中に金属キレート等が含まれている場合に
は、抵抗加熱体112間が短絡してしまうことがある。
また、Kセルタイプの蒸発源は構造が複雑であるため、
内部清掃がしにくく、薄膜材料を完全には除去できな
い。従って、蒸発源容器111、121内の薄膜材料を
異なる種類のものに交換したとき、前の薄膜材料のコン
タミが生じる可能性がある。
(B) A method in which the resistance heating elements 112 and 122 are placed around the evaporation source containers 111 and 121 and indirectly heated by applying electric current to evaporate the thin film material.
(b): Conical basket type, (c): K cell type). This method has excellent temperature stability in a temperature range in which the metal melts, but has poor stability and controllability in a temperature range in which the organic thin film material evaporates. Therefore, the generation speed of the organic compound vapor becomes unstable. Also, the resistance heating element 112 of this type
It is common to use a bare metal wire, but an organic thin film material is more likely to cause a wraparound phenomenon than an inorganic thin film material. When a metal chelate or the like is contained in the organic thin film material, a short circuit may occur between the resistance heating elements 112.
In addition, since the K-cell type evaporation source has a complicated structure,
Internal cleaning is difficult and the thin film material cannot be completely removed. Therefore, when the thin film material in the evaporation source containers 111 and 121 is replaced with a different type, there is a possibility that contamination of the previous thin film material occurs.

【0016】(C) 石英等の光透過性材料から成る蒸発
源容器131を用い、赤外線ランプ133によって薄膜
材料を輻射加熱して蒸発させる方式(同図(d):ランプ
ヒーター型蒸発源)。 この方式は、低温での温度制御性は優れているが、蒸発
源容器131の比熱容量が大きいため、制御温度と実際
の薄膜材料の温度との間に温度差が生じてしまう。他
方、薄膜材料自体の温度を測定して制御を行う場合、温
度オーバーシュートを起こし易く、有機薄膜材料では分
解してしまう虞がある。また、赤外線ランプ133から
射出された熱線を透過させるため、蒸発源容器131は
石英等の透明材料で構成する必要があるが、透明材料は
清掃や交換の際に破損が生じ易い。更に、蒸発源容器1
31が長期の使用によって曇ってしまい、赤外線の透過
強度が位置によって異なるようになると、熱伝導率の悪
い有機薄膜材料では局部過熱を起こしてしまう虞があ
る。また、有機薄膜材料のうちには、特定の波長の光に
より変質してしまうものがあるが、そのような有機薄膜
材料は、この方式で蒸気を発生させられない。
(C) A method in which a thin film material is radiatively heated and evaporated by an infrared lamp 133 using an evaporation source container 131 made of a light transmissive material such as quartz (FIG. 3D: lamp heater type evaporation source). This method has excellent temperature controllability at low temperatures, but the specific heat capacity of the evaporation source container 131 is large, so that a temperature difference occurs between the control temperature and the actual temperature of the thin film material. On the other hand, when controlling by measuring the temperature of the thin film material itself, temperature overshoot is likely to occur, and the organic thin film material may be decomposed. Further, in order to transmit the heat rays emitted from the infrared lamp 133, the evaporation source container 131 needs to be made of a transparent material such as quartz, but the transparent material is easily damaged during cleaning or replacement. Further, the evaporation source container 1
If the material 31 becomes fogged by long-term use and the transmission intensity of infrared rays varies depending on the position, the organic thin film material having poor thermal conductivity may cause local overheating. In addition, some organic thin-film materials are deteriorated by light of a specific wavelength, but such organic thin-film materials cannot generate vapor by this method.

【0017】(D) 電子ビーム145を薄膜材料に照射
し、蒸発させる方式(同図(e):E/Bガン)。 電子ビーム145を照射すると有機薄膜材料は分解して
しまうため、用いることができない。
(D) A method of irradiating the thin film material with the electron beam 145 and evaporating it (FIG. 3E: E / B gun). Irradiation with the electron beam 145 decomposes the organic thin film material and cannot be used.

【0018】以上説明したように、無機系薄膜材料を蒸
発させる従来技術の(A)〜(D)の方式は、有機薄膜材料
に適用するためには不完全なものである。特に、有機薄
膜材料の温度オーバーシュートによる分解の問題や、有
機薄膜材料の加熱の困難性については、無機系薄膜材料
では見られなかった問題であり、その解決が望まれてい
た。
As described above, the prior art methods (A) to (D) for evaporating an inorganic thin film material are incomplete for application to an organic thin film material. In particular, the problem of decomposition of the organic thin film material due to the temperature overshoot and the difficulty of heating the organic thin film material are problems that have not been observed with inorganic thin film materials, and their solutions have been desired.

【0019】[0019]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたもので、その目的
は、昇温の際の温度オーバーシュートが生じず、有機薄
膜材料の主成分を熱分解させる事なく短時間で所望温度
まで温度変化させることができる技術を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned disadvantages of the prior art, and has as its object to prevent the occurrence of temperature overshoot at the time of temperature rise and the main component of the organic thin film material. It is an object of the present invention to provide a technique capable of changing a temperature to a desired temperature in a short time without thermally decomposing the compound.

【0020】また、蒸着時以外の有機化合物蒸気の発生
を抑え、有機薄膜材料を有効に利用できる技術を提供す
ることにある。
It is another object of the present invention to provide a technique capable of suppressing the generation of organic compound vapor other than during vapor deposition and effectively utilizing an organic thin film material.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明装置は、真空排気可能に構成さ
れた真空槽と、有機薄膜材料が納められた有機蒸発源と
を有し、前記有機薄膜材料の温度を制御してその蒸気を
発生させると前記真空槽内に配置された成膜対象物表面
に有機薄膜を形成できるように構成された蒸着装置であ
って、前記真空槽にはガス導入口が設けられ、前記真空
槽内に不活性ガスを導入できるように構成されたことを
特徴とする。
According to a first aspect of the present invention, there is provided an apparatus having a vacuum chamber configured to be evacuable and an organic evaporation source containing an organic thin film material. A vapor deposition apparatus configured to form an organic thin film on the surface of a film-forming target disposed in the vacuum chamber by controlling the temperature of the organic thin film material to generate a vapor thereof; The tank is provided with a gas inlet so that an inert gas can be introduced into the vacuum tank.

【0022】請求項2記載の発明装置は、有機薄膜材料
が配置される蒸発源容器を有し、前記有機薄膜材料の温
度を制御してその蒸気を発生させ、放出口から真空槽内
に放出できるように構成された有機蒸発源であって、前
記蒸発源容器と放出口の間にガスバルブが設けられ、前
記ガスバルブを閉じると、前記蒸発源容器内は、真空雰
囲気にも不活性ガス雰囲気にも置けるように構成された
ことを特徴とする。
According to a second aspect of the present invention, there is provided an evaporation source container in which an organic thin film material is disposed, wherein the vapor is generated by controlling the temperature of the organic thin film material, and discharged from a discharge port into a vacuum chamber. An organic evaporation source configured so that a gas valve is provided between the evaporation source container and the discharge port, and when the gas valve is closed, the inside of the evaporation source container becomes a vacuum atmosphere or an inert gas atmosphere. It is also characterized by being configured to be able to be placed.

【0023】他方、請求項3記載の発明方法は、有機蒸
発源内に配置された有機薄膜材料を蒸着させる有機薄膜
形成方法であって、有機薄膜の蒸着開始ならびに終了を
不活性ガスの導入に基づく真空度の変化により行うこと
を特徴とする。
On the other hand, the method according to the present invention is an organic thin film forming method for depositing an organic thin film material disposed in an organic evaporation source, wherein the start and the end of the organic thin film deposition are based on the introduction of an inert gas. It is characterized in that it is performed by changing the degree of vacuum.

【0024】また、請求項4記載の発明方法は、有機蒸
発源内に配置された有機薄膜材料を所定温度まで温度変
化させて前記有機薄膜材料の蒸気を発生させ、前記有機
薄膜材料の蒸気を真空槽内に放出させ、前記真空槽内に
配置された成膜対象物上に有機薄膜を形成する有機薄膜
製造方法であって、前記有機薄膜材料の温度変化を不活
性ガス雰囲気中で行うことを特徴とする。
According to a fourth aspect of the present invention, in the method of the present invention, the temperature of the organic thin-film material disposed in the organic evaporation source is changed to a predetermined temperature to generate vapor of the organic thin-film material, and the vapor of the organic thin-film material is vacuum A method for producing an organic thin film, wherein the organic thin film material is discharged in a tank and an organic thin film is formed on a film formation target disposed in the vacuum tank, wherein the temperature change of the organic thin film material is performed in an inert gas atmosphere. Features.

【0025】この請求項4記載の有機薄膜製造方法につ
いては、請求項5記載の発明方法のように、前記不活性
ガス雰囲気を、13.3Pa以上の圧力にするとよい。
In the method for producing an organic thin film according to the fourth aspect, as in the method according to the fifth aspect, the inert gas atmosphere is preferably set to a pressure of 13.3 Pa or more.

【0026】また、請求項4又は請求項5のいずれか1
項記載の有機薄膜製造方法については、請求項6記載の
発明方法のように、前記有機薄膜材料が所定温度まで温
度変化した後、真空雰囲気に置き、前記成膜対象物上へ
の有機薄膜の形成を開始することができる。
Further, any one of claims 4 and 5
As for the method for producing an organic thin film described in the above item, the organic thin film material is placed in a vacuum atmosphere after the temperature of the organic thin film material is changed to a predetermined temperature, and the organic thin film is Formation can begin.

【0027】請求項4乃至請求項6のいずれか1項記載
の有機薄膜製造方法については、請求項7記載の発明方
法のように、前記有機薄膜材料を不活性ガス雰囲気に置
く前に、真空雰囲気に置き、脱ガスを行うことができ
る。
In the method of manufacturing an organic thin film according to any one of claims 4 to 6, as in the method of the invention described in claim 7, before the organic thin film material is placed in an inert gas atmosphere, a vacuum is applied. It can be placed in an atmosphere and degassed.

【0028】請求項4乃至請求項7のいずれか1項記載
の有機薄膜製造方法については、請求項8記載の発明方
法のように、前記成膜対象物上への有機薄膜の形成後、
前記有機薄膜材料を降温させる際、前記有機薄膜材料を
不活性ガス雰囲気に置くことができる。
According to a fourth aspect of the present invention, there is provided a method of manufacturing an organic thin film, comprising the steps of:
When lowering the temperature of the organic thin film material, the organic thin film material can be placed in an inert gas atmosphere.

【0029】以上説明した請求項4乃至請求項8のいず
れか1項記載の有機薄膜製造方法については、請求項9
記載の発明方法のように、前記有機薄膜材料に粉体を用
いると効果的である。
The method for producing an organic thin film according to any one of claims 4 to 8 described above is described in claim 9.
It is effective to use a powder for the organic thin film material as in the method of the invention described.

【0030】上述の本発明の蒸着装置の構成によれば、
真空槽内を真空排気した後、不活性ガスを導入して有機
蒸発源内の有機薄膜材料を不活性ガス雰囲気に置くこと
ができるので、有機薄膜材料の温度制御をする際に、不
活性ガスが対流を生じ、昇温速度や降温速度を早めるこ
とができる。
According to the configuration of the vapor deposition apparatus of the present invention described above,
After evacuating the vacuum chamber, an inert gas can be introduced and the organic thin film material in the organic evaporation source can be placed in an inert gas atmosphere, so when controlling the temperature of the organic thin film material, the inert gas is removed. Convection is generated, and the rate of temperature rise and temperature can be increased.

【0031】特に、有機薄膜材料が粉体の場合には、粉
体の粒子間に不活性ガスが侵入して熱媒体として働くの
で、有機薄膜材料の局所的過熱や温度オーバーシュート
が生じなくなり、有機薄膜材料の分解を防止できる。
In particular, when the organic thin film material is a powder, an inert gas penetrates between the particles of the powder and acts as a heat medium, so that local overheating and temperature overshoot of the organic thin film material do not occur. Decomposition of the organic thin film material can be prevented.

【0032】一般に、有機化合物蒸気の発生量は、真空
雰囲気中よりも不活性ガス雰囲気中の方が少ないので、
有機薄膜材料の加熱・冷却を不活性ガス雰囲気中で行う
と、その間は、有機化合物蒸気の発生が抑制されるの
で、薄膜形成に用いられない無駄な蒸気が発生しなくな
り、有機薄膜材料の使用効率を高め、製造コストを低下
させることができる。
Generally, the amount of organic compound vapor generated is smaller in an inert gas atmosphere than in a vacuum atmosphere.
When the heating and cooling of the organic thin film material is performed in an inert gas atmosphere, the generation of organic compound vapor is suppressed during that time, so that useless vapor that is not used for forming the thin film is not generated. Efficiency can be increased and manufacturing costs can be reduced.

【0033】特に、昇温の際に不活性ガス雰囲気に置く
と、温度均一性も向上するので、不活性ガス雰囲気から
真空雰囲気に変更し、有機化合物蒸気を発生させる場合
に、有機化合物蒸気の発生速度が安定するまでの時間が
短くなり、蒸着作業を早く開始できる。
In particular, if the temperature is raised in an inert gas atmosphere, the temperature uniformity is improved. Therefore, when the inert gas atmosphere is changed to a vacuum atmosphere to generate the organic compound vapor, the organic compound vapor The time required for the generation rate to stabilize becomes shorter, and the vapor deposition operation can be started earlier.

【0034】他方、降温の際に有機薄膜材料を不活性ガ
ス雰囲気に置くと、冷却速度が速くなるばかりでなく、
有機化合物蒸気が発生しなくなるので、蒸発の「きれ」
が良くなり、高価な有機蒸発材料の無駄がなくなる。
On the other hand, when the organic thin film material is placed in an inert gas atmosphere at the time of cooling, not only the cooling rate is increased, but also the
Evaporation of organic compounds is stopped, so the evaporation is “clean”
And the waste of expensive organic evaporation materials is eliminated.

【0035】次に、上述の本発明の有機蒸着源の構成に
よれば、有機薄膜材料を蒸発源容器内に納め、所定温度
まで昇温させてその蒸気を発生させ、放出口から真空槽
内に放出させる前に、蒸発源容器と放出口の間に設けら
れたガスバルブを閉じた状態で蒸発源容器内を一旦真空
状態にし、次いで不活性ガスを導入して有機薄膜材料を
不活性ガス雰囲気に置くことができる。
Next, according to the structure of the organic vapor deposition source of the present invention described above, the organic thin film material is placed in the vaporization source container, heated up to a predetermined temperature to generate the vapor, and discharged from the discharge port into the vacuum chamber. Before releasing the organic thin film material into an inert gas atmosphere, the inside of the evaporation source container is once evacuated with the gas valve provided between the evaporation source container and the discharge port closed, and then an inert gas is introduced. Can be put on.

【0036】その不活性雰囲気の状態で、真空雰囲気に
おいては有機化合物蒸気が発生する温度まで有機薄膜材
料を加熱すると、容積の大きい真空槽内に不活性ガスを
導入しなくても無駄な有機化合物蒸気を発生させずに済
む。真空槽内に不活性ガスを導入する場合に比べると、
不活性ガスの使用量を減らすことができ、また、不活性
ガス雰囲気の圧力が安定するまでの時間や、真空槽内を
真空排気する時間が短くなり、作業時間が短縮する。
When the organic thin film material is heated to a temperature at which an organic compound vapor is generated in a vacuum atmosphere in the state of the inert atmosphere, wasteful organic compounds are introduced without introducing an inert gas into a vacuum chamber having a large volume. No need to generate steam. Compared to the case where inert gas is introduced into the vacuum chamber,
The amount of inert gas used can be reduced, and the time required for the pressure of the inert gas atmosphere to stabilize and the time required to evacuate the vacuum chamber are shortened, thereby shortening the working time.

【0037】また、蒸着の開始ならびに終了を不活性ガ
スの導入に基づく真空度の変化によって行う(蒸着を開
始するときは不活性ガスの導入を停止して真空度上げ、
蒸着を終了するときは蒸発しない圧力まで不活性ガスを
導入する)ことにより、真空度の変化のみで蒸着をON
(開始)、OFF(停止)することができる。これにより高
価な有機蒸発材料の無駄がなくなる。
The start and end of the vapor deposition are performed by changing the degree of vacuum based on the introduction of the inert gas (when the vapor deposition is started, the introduction of the inert gas is stopped and the degree of vacuum is increased.
At the end of vapor deposition, an inert gas is introduced to a pressure that does not evaporate), thereby turning on vapor deposition only by changing the degree of vacuum.
(Start) and OFF (stop). This eliminates waste of expensive organic evaporation materials.

【0038】このような不活性ガス雰囲気の圧力は、実
験によれば、高圧力側では2.0×103Pa(15To
rr)、低圧力側では13.3Pa(0.1Torr)の
範囲で効果が確認されているが、圧力を高くしすぎると
不活性ガス使用量が増え、また、真空排気に要する時間
が長くなるので、66.5Pa(0.5Torr)以下の
圧力が望ましい。
According to experiments, the pressure of such an inert gas atmosphere is 2.0 × 10 3 Pa (15 To
rr), an effect of 13.3 Pa (0.1 Torr) has been confirmed on the low pressure side, but if the pressure is too high, the amount of inert gas used increases, and the time required for evacuation increases. Therefore, a pressure of 66.5 Pa (0.5 Torr) or less is desirable.

【0039】また、不活性雰囲気で有機薄膜材料を所定
温度まで昇温させた後、真空雰囲気にして成膜対象物上
への有機薄膜の形成を開始する際には、真空雰囲気の圧
力は、1.33×10-4Pa(1.0×10-6Torr)
以下の圧力、望ましくは1.33×10-5Pa(1.0
×10-7Torr)以下の圧力にすると有機薄膜の膜質
が向上する。
When the organic thin film material is heated to a predetermined temperature in an inert atmosphere, and then the vacuum atmosphere is started to form an organic thin film on a film-forming target, the pressure of the vacuum atmosphere is 1.33 × 10 −4 Pa (1.0 × 10 −6 Torr)
The following pressure, desirably 1.33 × 10 −5 Pa (1.0
When the pressure is equal to or less than × 10 −7 Torr, the quality of the organic thin film is improved.

【0040】なお、有機薄膜材料の脱ガスを行うために
は、有機薄膜材料を不活性ガス雰囲気に置いて昇温させ
る前に、一旦真空雰囲気に置いて蒸発温度よりも低い温
度で加熱することが望ましい。
In order to degas the organic thin film material, it is necessary to place the organic thin film material in a vacuum atmosphere and heat it at a temperature lower than the evaporation temperature before the organic thin film material is heated in an inert gas atmosphere. Is desirable.

【0041】[0041]

【発明の実施の形態】図1の符号10は、本発明の一例
の蒸着装置であり、図示しない真空ポンプ(クライオポ
ンプが望ましい)によって真空排気可能に構成された真
空槽11を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference numeral 10 in FIG. 1 denotes a vapor deposition apparatus according to an example of the present invention, which has a vacuum chamber 11 which can be evacuated by a vacuum pump (preferably a cryopump) not shown. .

【0042】真空槽11の底壁には、有機蒸発源が複数
設けられており、ここでは2個の有機蒸発源121、1
2を示すものとする。その有機蒸発源121、12
2は、それぞれ放出口141、142を有しており、有機
蒸発源121、122内にそれぞれ有機薄膜材料を納めて
所定温度に加熱すると、放出口141、142から、有機
薄膜材料を構成する有機化合物蒸気を真空槽11内に放
出できるように構成されている。
A plurality of organic evaporation sources are provided on the bottom wall of the vacuum chamber 11, and here, two organic evaporation sources 12 1 , 1
It denotes the 2 2. The organic evaporation sources 12 1 , 12
2 has discharge ports 14 1 and 14 2 , respectively. When the organic thin film material is placed in each of the organic evaporation sources 12 1 and 12 2 and heated to a predetermined temperature, the organic thin films are discharged from the discharge ports 14 1 and 14 2 . The organic compound vapor constituting the thin film material can be released into the vacuum chamber 11.

【0043】有機蒸発源121、122の上方には、基板
ホルダー30が設けられており、その表面には、成膜し
たい面が放出口141、142に向けられて成膜対象物1
3(ガラス基板)が保持されている。
A substrate holder 30 is provided above the organic evaporation sources 12 1 and 12 2 , and a surface on which a film is to be formed is directed to the discharge ports 14 1 and 14 2 . 1
3 (glass substrate) is held.

【0044】この真空槽11には、ガスパイプ28が接
続されており、ガスボンベ22内に充填された不活性ガ
ス(ここでは窒素ガス)を、バルブ241、マスフローコ
ントローラ23、バルブ242を介して流量制御しなが
らガスパイプ28内を流し、その不活性ガスをガス導入
口29から真空槽11内に導入できるように構成されて
いる。
[0044] The vacuum chamber 11, gas pipes 28 are connected, the inert gas filled in the gas cylinder 22 (a nitrogen gas in this case), the valve 24 1, the mass flow controller 23, via the valve 24 2 The gas flows through the gas pipe 28 while controlling the flow rate, and the inert gas can be introduced into the vacuum chamber 11 from the gas inlet 29.

【0045】成膜対象物13表面近傍には、開閉自在な
基板シャッター35が設けられ、他方、有機蒸発源12
1、122の放出口141、142近傍には、開閉自在な蒸
発源シャッター331、332が設けられており、放出口
141、142から有機化合物蒸気が放出される場合で
も、基板シャッター35や蒸発源シャッター331、3
2を閉じておけば、成膜対象物13表面には有機化合
物蒸気が到達できないようにされている。
An openable and closable substrate shutter 35 is provided in the vicinity of the surface of the film forming object 13, while the organic evaporation source 12 is
1, the 12 second outlet 14 1, 14 2 near openable evaporation source shutters 33 1, 33 2 are provided, even if the organic compound vapor is discharged from the discharge port 14 1, 14 2 , The substrate shutter 35 and the evaporation source shutters 33 1 , 3
If Close 3 2, organic compound vapor is prevented reach the film-forming target 13 surface.

【0046】また、蒸発源シャッター331、332の上
方位置には、放出口141、142から放出された有機化
合物蒸気の成膜対象物13への到達を妨げないように、
膜厚モニター361、362が配置されており、蒸発源シ
ャッター331、332を開けると膜厚モニター361
362に有機化合物蒸気がそれぞれ付着し、成膜対象物
13上の有機薄膜形成速度を測定できるように構成され
ている。
The position above the evaporation source shutters 33 1 , 33 2 is determined so that the organic compound vapor discharged from the discharge ports 14 1 , 14 2 does not reach the film formation target 13.
The film thickness monitors 36 1 and 36 2 are arranged, and when the evaporation source shutters 33 1 and 33 2 are opened, the film thickness monitors 36 1 and 36 2
36 2 organic compound vapor adheres respectively, and is configured so as to measure an organic thin film formation rate on the film formation object 13.

【0047】成膜対象物13の周囲と真空槽11の底壁
には、液体窒素容器であるLN2シュラウド31、32
がそれぞれ配置されており、真空槽11内が真空状態に
された後、液体窒素が導入されると、真空槽11内に存
在する水分子が各LN2シュラウド31、32に効率よ
く吸着されるように構成されている。
The LN 2 shrouds 31 and 32, which are liquid nitrogen containers, are provided around the film formation target 13 and the bottom wall of the vacuum chamber 11.
When liquid nitrogen is introduced after the inside of the vacuum chamber 11 is evacuated, water molecules existing in the vacuum chamber 11 are efficiently adsorbed to the respective LN 2 shrouds 31 and 32. It is configured as follows.

【0048】このLN2シュラウド31、32は、蒸着
中は、真空槽11の壁面方向に向かった有機化合物蒸気
をトラップし、壁面に吸着された有機化合物蒸気が再離
脱して成膜対象物13表面に形成される有機薄膜中に混
入しないように構成されている。
During the vapor deposition, the LN 2 shrouds 31 and 32 trap the organic compound vapor directed toward the wall surface of the vacuum chamber 11, and the organic compound vapor adsorbed on the wall surface is released again to form the film forming object 13. It is configured not to be mixed into the organic thin film formed on the surface.

【0049】他方、基板ホルダー30内にはパイプ37
が引き回されており、そのパイプ37内に熱媒体を循環
させると、有機薄膜形成中の成膜対象物13を50℃〜
100℃の温度範囲で制御性よく加熱できるように構成
されており、成膜対象物13の温度制御を行うことで、
その表面に密着性のよい有機薄膜を形成できるように構
成されている。
On the other hand, a pipe 37 is provided in the substrate holder 30.
When the heat medium is circulated in the pipe 37, the film formation target 13 during the formation of the organic thin film is heated to 50 ° C.
It is configured to be capable of heating with good controllability in a temperature range of 100 ° C. By controlling the temperature of the film formation target 13,
It is configured so that an organic thin film having good adhesion can be formed on the surface.

【0050】有機蒸発源121、122は、図2に示すよ
うフランジ59とOリング58によって真空槽11底壁
に気密に取り付けられるように構成されており、ケーシ
ング51上部の放出口141、142が真空槽11内に向
けられるように構成されている。
The organic evaporation sources 12 1, 12 2 is configured to attach hermetically to the vacuum chamber 11 the bottom wall by a flange 59 and O-ring 58 as shown in FIG. 2, a casing 51 upper portion of the discharge port 14 1 is configured to 14 2 is directed into the vacuum chamber 11.

【0051】ケーシング51内には、蒸発源容器50が
配置されており、蒸発源容器50の周囲には、有底円筒
状の均熱板55が配置されており、その均熱板55に
は、マイクロヒーター52が巻回されている。
An evaporating source container 50 is arranged in the casing 51, and a bottomed cylindrical soaking plate 55 is arranged around the evaporating source container 50. , A micro heater 52 is wound.

【0052】均熱板55の底部には、熱電対56が設け
られており、熱電対56によって均熱板55の温度が所
定温度になるように監視しながら、真空槽11外部に配
置された電源からマイクロヒーター52に通電して発熱
させると、蒸発源容器50内に納められた有機薄膜材料
54を、150℃〜400℃の温度範囲の所望温度で維
持できるように構成されている。
A thermocouple 56 is provided at the bottom of the soaking plate 55, and is disposed outside the vacuum chamber 11 while monitoring the temperature of the soaking plate 55 to a predetermined temperature by the thermocouple 56. When the micro heater 52 is energized from a power source to generate heat, the organic thin film material 54 contained in the evaporation source container 50 can be maintained at a desired temperature in a temperature range of 150 ° C. to 400 ° C.

【0053】マイクロヒーター52周囲には、リフレク
タ53が配置されており、マイクロヒーター52からケ
ーシング51に向かう熱輻射を反射して、ケーシング5
1の温度上昇を抑え、蒸発源容器52が効率よく加熱さ
れるように構成されている。
A reflector 53 is arranged around the micro-heater 52, and reflects heat radiation from the micro-heater 52 toward the casing 51 so as to reflect the heat radiation.
1, so that the evaporation source container 52 is efficiently heated.

【0054】なお、マイクロヒーター52の巻き付け密
度は、放出口141、142側で密に、蒸発源容器52の
底面側で疎にされており、放出口141、142の温度が
蒸発源容器52や有機物54の温度よりも高くなるよう
に構成されており、その結果、発生した有機化合物蒸気
は放出口141、142付近には付着しないようにされて
いる。
The winding density of the micro-heater 52 is dense on the discharge ports 14 1 and 14 2 and is sparse on the bottom side of the evaporation source container 52, and the temperature of the discharge ports 14 1 and 14 2 is reduced. source is configured to be higher than the temperature of the vessel 52 and organic matter 54, as a result, generated organic compound vapor in the vicinity of discharge port 14 1, 14 2 are prevented from adhering.

【0055】このような有機蒸発源121、122の、一
方の有機蒸発源121内に下記化学式、
[0055] the following chemical formula such organic evaporation sources 12 1, 12 2, one of the organic evaporation sources 12 1,

【0056】[0056]

【化1】 Embedded image

【0057】で示される昇華性有機薄膜材料であるAl
3[Tris(8-hydroxyquinoline) aluminium, sublime
d]を有機薄膜材料として配置した。
Al which is a sublimable organic thin film material represented by
q 3 [Tris (8-hydroxyquinoline ) aluminium, sublime
d] was arranged as an organic thin film material.

【0058】先ず、前述の真空ポンプを起動し、真空槽
11内を真空雰囲気にし、その状態で成膜対象物13を
搬入した。真空槽11内を更に真空排気し、成膜対象物
13と、有機蒸発源121内のAlq3を1.0×10-6
Torrの真空雰囲気に置いた(図4:S1)。
First, the above-described vacuum pump was started, the inside of the vacuum chamber 11 was set in a vacuum atmosphere, and the object 13 for film formation was carried in that state. The vacuum chamber 11 further evacuated, the film forming object 13, the Alq 3 in the organic evaporation sources 12 1 1.0 × 10 -6
It was placed in a vacuum atmosphere of Torr (FIG. 4: S 1 ).

【0059】その状態で有機蒸発源121内のマイクロ
ヒーター52に通電し、Alq3を100℃〜200℃
に加熱した。この温度ではAlq3からの蒸気発生量は
少なく、吸着ガスが放出される。20分〜30分間の脱
ガスを行い(S2)、次いで、真空槽11内を真空排気し
ながらガス導入口29から窒素ガスを不活性ガスとして
導入した(S3)。
[0059] energized in this state to the micro heater 52 of the organic evaporation sources 12 1, the Alq 3 100 ℃ ~200 ℃
Heated. At this temperature, the amount of steam generated from Alq 3 is small, and the adsorbed gas is released. For 20 minutes to 30 minutes degassing (S 2), then introducing nitrogen gas as an inert gas from the gas inlet 29 while evacuating the vacuum chamber 11 (S 3).

【0060】真空槽11内と有機蒸発源121内が圧力
0.1Torrの不活性ガス雰囲気で安定したところ
で、マイクロヒーター52への通電量を増やし、蒸発源
121内のAlq3を蒸発温度(このAlq3では300℃
程度)まで昇温させた(S4)。この昇温の際には、Alq
3は不活性ガス雰囲気に置かれているので、Alq3粒子
間で熱が効率よく伝達され、温度のオーバーシュートは
発生せず、また、Alq3蒸気の発生は観察されなかっ
た。
[0060] When the vacuum chamber and an organic evaporation source 12 1 11 was stabilized at an inert gas atmosphere at a pressure 0.1 Torr, increasing the amount of current supplied to the micro heater 52, the evaporation temperature Alq 3 of the evaporation source 12 1 (In this Alq 3 300 ℃
(S 4 ). At the time of this temperature rise, Alq
Since 3 is placed in an inert gas atmosphere, the heat is efficiently transferred between Alq 3 particles, temperature overshoot does not occur, also, the occurrence of Alq 3 vapor was observed.

【0061】Alq3がその蒸発温度で安定したら、不
活性ガスの導入を停止し、真空槽11内を再度1.0×
10-6Torrの真空状態にした。真空槽11内がその
圧力で安定したところで、基板シャッター35は閉めた
ままの状態で、蒸発源シャッター331を開け、放出口
141からAlq3蒸気を放出させた。
When Alq 3 is stabilized at the evaporation temperature, the introduction of the inert gas is stopped, and the inside of the vacuum chamber 11 is again set to 1.0 ×
A vacuum of 10 -6 Torr was established. When the vacuum chamber 11 is stabilized at the pressure, while still closed substrate shutter 35 is opened evaporation source shutters 33 1, from outlet 14 1 to release the Alq 3 vapor.

【0062】Alq3蒸気は膜厚モニター361に到達
し、その表面に有機薄膜が形成されるので、その成長速
度を測定し、成長速度が安定したところで基板シャッタ
ー35を開け、成膜対象物13表面への有機薄膜(Al
3薄膜)の形成を開始する(S6)。
[0062] Alq 3 vapor reaches the film thickness monitor 36 1, the organic thin film is formed on the surface thereof, and measuring the growth rate, opening the substrate shutter 35 where the growth rate is stabilized, the film-forming target 13 Organic thin film (Al
q 3 to initiate the formation of a thin film) (S 6).

【0063】有機薄膜の形成を5分間行い、所定膜厚に
なったところで基板シャッター35と蒸発源シャッター
361とを閉じ、マイクロヒーター52への通電を停止
し、蒸着を終了する(S7)。
[0063] performs the formation of the organic thin film 5 min, closed and substrate shutter 35 and the evaporation source shutter 36 1 upon reaching a predetermined thickness, and stops energizing the micro heater 52, and ends the evaporation (S 7) .

【0064】次いで、ガス導入口29から真空槽11内
に不活性ガスを導入し、有機蒸発源121内のAlq3
圧力0.1Torrの不活性ガス雰囲気に置き、Alq
3蒸気の発生を停止させる。このとき、不活性ガスが熱
媒体となり、また、対流が生じるので、Alq3の冷却
が早められる。
[0064] Then, an inert gas is introduced from the gas inlet 29 into the vacuum chamber 11, place the Alq 3 in the organic evaporation source 12 1 to an inert gas atmosphere at a pressure 0.1 Torr, Alq
3 Stop generating steam. At this time, since the inert gas becomes a heat medium and convection occurs, cooling of Alq 3 is accelerated.

【0065】上述の有機薄膜形成工程での、不活性ガス
雰囲気下でのAlq3の昇温開始から、蒸着が終了し冷
却するまでの、Alq3の温度変化と蒸発速度の変化を
図5に示す。なお、真空雰囲気下でのAlq3と、下記
化学式、
FIG. 5 shows changes in the temperature and the evaporation rate of Alq 3 from the start of the temperature rise of Alq 3 in an inert gas atmosphere to the completion of the evaporation and cooling in the above-mentioned organic thin film forming step. Show. In addition, Alq 3 under a vacuum atmosphere is represented by the following chemical formula,

【0066】[0066]

【化2】 Embedded image

【0067】で示されるTPDの温度と蒸発速度の関係
を図6のグラフに示す。図6のグラフから、真空雰囲気
では、Alq3では300℃前後の温度で、TPDでは
230℃前後の温度で有機化合物蒸気が発生することが
分かる。他方、図5のグラフでは、真空雰囲気では有機
化合物蒸気が発生する温度までAlq3を昇温させて
も、不活性ガス雰囲気中ではAlq3蒸気は発生してい
ないことが分かる。従って、有機化合物蒸気の発生を、
不活性ガス雰囲気の圧力で制御できることが分かる。な
お、この図5のグラフから分かるように、不活性ガス雰
囲気中で有機薄膜材料を昇温させる場合、温度オーバー
シュートは観察されない。
FIG. 6 is a graph showing the relationship between the temperature of the TPD and the evaporation rate. From the graph of FIG. 6, it can be seen that in a vacuum atmosphere, organic compound vapor is generated at a temperature of about 300 ° C. for Alq 3 and at a temperature of about 230 ° C. for TPD. On the other hand, it can be seen from the graph of FIG. 5 that even when Alq 3 is heated to a temperature at which organic compound vapor is generated in a vacuum atmosphere, no Alq 3 vapor is generated in an inert gas atmosphere. Therefore, the generation of organic compound vapor
It can be seen that the pressure can be controlled by the pressure of the inert gas atmosphere. As can be seen from the graph of FIG. 5, when the temperature of the organic thin film material is raised in an inert gas atmosphere, no temperature overshoot is observed.

【0068】以上の有機薄膜形成方法と比較し、従来技
術のように、不活性ガスを用いずに有機薄膜を形成する
場合の、Alq3の温度変化と蒸発速度の変化を図7の
グラフに示す。昇温の際、Alq3は真空断熱されてい
るので、部分的過熱が生じ、温度オーバーシュートが観
察される。また、昇温の際と冷却の際にはAlq3蒸気
が発生しており、有機薄膜形成に寄与しないAlq3
気が多量に発生していることが分かる。
FIG. 7 is a graph showing changes in the temperature and evaporation rate of Alq 3 when an organic thin film is formed without using an inert gas, as in the prior art, in comparison with the above-described organic thin film forming method. Show. When the temperature is raised, Alq 3 is insulated in vacuum, so that partial overheating occurs and a temperature overshoot is observed. In addition, it can be seen that Alq 3 vapor is generated at the time of temperature rise and cooling, and a large amount of Alq 3 vapor that does not contribute to the formation of the organic thin film is generated.

【0069】次に、液体の有機薄膜材料の加熱・冷却に
適した有機蒸発源を説明する。図2を参照し、符号42
は液体状の熱媒体により有機薄膜材料の温度制御(加熱
・冷却)を行うオイルバス方式の有機蒸発源であり、特
に、−20℃〜180℃の温度域で有機薄膜材料の温度
を一定に維持し、有機化合物蒸気を発生させる場合に適
している。
Next, an organic evaporation source suitable for heating and cooling a liquid organic thin film material will be described. Referring to FIG.
Is an oil bath organic evaporation source that controls the temperature (heating / cooling) of the organic thin film material with a liquid heat medium, and in particular, keeps the temperature of the organic thin film material constant in the temperature range of -20 ° C to 180 ° C. Suitable for maintaining and generating organic compound vapors.

【0070】この有機蒸発源42は、ケーシング71
と、蒸発源容器70と、加熱・冷却源60とを有してお
り、蒸発源容器70は、ケーシング71内にはめ込ま
れ、二重容器構造78となっている。加熱・冷却源60
は、オイルバス63と、ヒーター65と、クーラー64
とを有しており、オイルバス63内に貯えられたシリコ
ーンオイル61を加熱・冷却できるように構成されてい
る。
The organic evaporation source 42 includes a casing 71
, An evaporation source container 70, and a heating / cooling source 60. The evaporation source container 70 is fitted in a casing 71 to form a double container structure 78. Heating / cooling source 60
Are an oil bath 63, a heater 65, and a cooler 64
, So that the silicone oil 61 stored in the oil bath 63 can be heated and cooled.

【0071】シリコーンオイル61内には供給パイプ6
1先端が浸漬されており、供給パイプ661の途中に設
けられた循環ポンプ62を動作させると、オイルバス6
3内のシリコーンオイル61は吸い上げられ、供給パイ
プ661を通って二重容器構造78内に供給され、蒸発
源容器70を介して有機薄膜材料74と熱交換した後、
排出パイプ661を通ってオイルバス63に戻るように
構成されている。
The supply pipe 6 is provided in the silicone oil 61.
6 1 and the tip is immersed, operating the circulation pump 62 provided in the middle of the supply pipe 66 1, an oil bath 6
Silicone oil 61 in 3 sucked through the supply pipe 66 1 is supplied to the double container structure 78, after heat exchange with the organic thin film material 74 via the evaporation source container 70,
And it is configured to return to the oil bath 63 through the discharge pipe 66 1.

【0072】蒸発源容器70の上端には、蒸気放出管7
5の一端が気密に接続されており、他端の放出口44か
ら、蒸発源容器70内で発生した有機化合物蒸気を、図
示しない真空槽内に放出できるように構成されている。
At the upper end of the evaporation source container 70, a vapor discharge pipe 7
One end of 5 is airtightly connected, and is configured such that the organic compound vapor generated in the evaporation source container 70 can be discharged from a discharge port 44 at the other end into a vacuum chamber (not shown).

【0073】蒸気放出管75の途中には、ガスバルブ4
5が設けられており、蒸気放出管75の、ガスバルブ4
5と蒸発源容器70との間の位置にはガスパイプ43の
一端が接続されている。ガスパイプ43の他端には、窒
素ガスやアルゴンガス等の不活性ガスが充填されたガス
ボンベ46が設けられており、ガスパイプ43の途中に
は、ガスバルブ481、482が設けられている。ガスパ
イプ43は、ガスバルブ481、482の間で分岐してお
り、分岐部分の途中にはガスバルブ483が設けられ、
先端は真空ポンプ47に接続されている。
In the middle of the steam discharge pipe 75, the gas valve 4
5 is provided, and the gas valve 4 of the steam discharge pipe 75 is provided.
One end of a gas pipe 43 is connected to a position between the gas source 5 and the evaporation source container 70. The other end of the gas pipe 43, a gas cylinder 46 that inert gas such as nitrogen gas or argon gas is filled is provided with, in the middle of the gas pipe 43, gas valve 48 1, 48 2 are provided. Gas pipe 43 is branched between the gas valves 48 1, 48 2, gas valve 48 3 is provided in the middle of the branch portion,
The tip is connected to a vacuum pump 47.

【0074】蒸発源容器70内に有機薄膜材料74を納
めた状態で、蒸気放出管75に設けられたガスバルブ4
5、482を閉じ、ガスバルブ481、483を開け、真
空ポンプ47を動作させると蒸発源容器70内が真空排
気され、有機薄膜材料74は真空雰囲気に置かれる。
In a state where the organic thin film material 74 is contained in the evaporation source container 70, the gas valve 4
5,48 2 closed, opened gas valve 48 1, 48 3, the evaporation source vessel 70 and operates the vacuum pump 47 is evacuated, the organic thin film material 74 is placed in a vacuum atmosphere.

【0075】その状態で循環ポンプ62を動作させ、有
機薄膜材料74を真空雰囲気では有機化合物蒸気が発生
しない温度まで昇温させて脱ガスを行う。
In this state, the circulation pump 62 is operated, and the temperature of the organic thin film material 74 is raised to a temperature at which no organic compound vapor is generated in a vacuum atmosphere, and degassing is performed.

【0076】次いで、ガスバルブ483を閉じ、ガスバ
ルブ482を開けると、ガスボンベ46内の不活性ガス
がガスパイプ43を通って蒸発源容器70内に導入さ
れ、有機薄膜材料74が不活性ガス雰囲気に置かれる。
[0076] Then, close the gas valve 48 3, opened the gas valve 48 2, inert gas in the gas cylinder 46 is introduced into the evaporation source vessel 70 through the gas pipe 43, the organic thin film material 74 in an inert gas atmosphere Is placed.

【0077】蒸発源容器70内を0.1〜15.0To
rr程度の圧力にし、有機薄膜材料74を不活性ガス雰
囲気に置いた状態でガスバルブ481、482を閉じ、次
いで、シリコーンオイル61の温度を上げ、有機薄膜材
料74を、真空雰囲気下では有機化合物蒸気が発生する
蒸発温度まで昇温させる。このとき、有機薄膜材料74
は不活性ガス雰囲気に置かれているので、有機化合物蒸
気は発生しない。
The inside of the evaporation source container 70 is 0.1 to 15.0 To
to a pressure of about rr, close the gas valve 48 1, 48 2 in a state of placing the organic thin film material 74 in an inert gas atmosphere, then, raising the temperature of the silicone oil 61, the organic thin film material 74, the organic under vacuum The temperature is raised to the evaporation temperature at which the compound vapor is generated. At this time, the organic thin film material 74
Since is placed in an inert gas atmosphere, no organic compound vapor is generated.

【0078】有機薄膜材料74が、蒸発温度で安定した
ところで、ガスバルブ482を閉じ、ガスバルブ481
483を開け、真空ポンプ47によって蒸発容器70内
を真空排気すると有機化合物蒸気が発生し始める。
[0078] The organic thin film material 74, where stable at the evaporation temperature, close the gas valve 48 2, gas valve 48 1,
Open the 48 3, the evacuated organic compound vapor begins to occur within the evaporation vessel 70 by the vacuum pump 47.

【0079】蒸発源容器70内が所望圧力で安定したと
ころで、ガスバルブ45を開けると、有機化合物蒸気
は、蒸気放出管75を通って放出口44から真空槽内に
放出される。
When the inside of the evaporation source container 70 is stabilized at a desired pressure, when the gas valve 45 is opened, the organic compound vapor passes through the vapor discharge pipe 75 and is discharged from the discharge port 44 into the vacuum chamber.

【0080】蒸気放出管75にはマイクロヒーター72
が巻回されており、シリコーンオイル61とは別個に温
度制御ができるように構成されている。有機化合物蒸気
の放出の際、マイクロヒーター72に通電し、蒸気放出
管75の温度が有機薄膜材料74の温度より高くなるよ
うに加熱し、蒸発源容器70内で発生した有機化合物蒸
気が蒸気放出管75の途中に吸着したり、ガスバルブ4
5が閉塞しないようにされている。
A micro heater 72 is provided in the vapor discharge pipe 75.
Is wound so that the temperature can be controlled separately from the silicone oil 61. When discharging the organic compound vapor, the micro heater 72 is energized to heat the vapor discharge tube 75 so that the temperature of the vapor discharge tube 75 becomes higher than the temperature of the organic thin film material 74, and the organic compound vapor generated in the evaporation source container 70 is discharged as vapor. The gas may be adsorbed in the middle of the pipe 75 or the gas valve 4
5 is not blocked.

【0081】真空槽内を1.0×10-6Torrの圧力
にした後、放出口44の上部に設けられた蒸発源シャッ
ターを開け、放出口44上部に配置された膜厚モニター
で有機化合物蒸気の発生が安定したことを確認したら、
基板シャッターを開け、成膜対象物表面への有機薄膜形
成を開始するのは図1の蒸着装置と同様である。
After the inside of the vacuum chamber was set to a pressure of 1.0 × 10 −6 Torr, the evaporation source shutter provided above the discharge port 44 was opened, and the organic compound was monitored by a film thickness monitor disposed above the discharge port 44. After confirming that the generation of steam has stabilized,
Opening the substrate shutter and starting the formation of the organic thin film on the surface of the film formation target is the same as in the vapor deposition apparatus of FIG.

【0082】蒸着終了後は、ガスバルブ45を閉じ、蒸
発源容器70内に不活性ガスを導入し、クーラー64を
動作させてシリコーンオイル63の温度を下げ、不活性
ガス70により有機化合物蒸気の発生を抑えた状態で有
機薄膜材料74の冷却を行う。他方、蒸着終了後は、有
機薄膜が形成された成膜対象物を搬出し、未処理の成膜
対象物を搬入し次の蒸着作業を開始する。
After the vapor deposition, the gas valve 45 is closed, an inert gas is introduced into the evaporation source container 70, the cooler 64 is operated to lower the temperature of the silicone oil 63, and the inert gas 70 generates organic compound vapor. The organic thin film material 74 is cooled in a state where the temperature is suppressed. On the other hand, after the evaporation is completed, the object on which the organic thin film is formed is carried out, the unprocessed object is carried in, and the next evaporation operation is started.

【0083】以上は、有機薄膜を一層だけ形成する場合
について説明したが、複数の有機蒸発源を用い、多層の
有機薄膜を形成する場合も、各有機蒸発源内の有機薄膜
材料の昇温・冷却の際に不活性ガス雰囲気に置くように
すればよい。
The case where only one organic thin film is formed has been described above. However, when a plurality of organic evaporation sources are used to form a multilayer organic thin film, the temperature rise and cooling of the organic thin film material in each organic evaporation source may be performed. In this case, it may be placed in an inert gas atmosphere.

【0084】有機薄膜材料は液体であっても固体であっ
てもよいが、特に、粉体状のものについては、粉体粒子
間に不活性ガスが侵入し、熱媒体となるので昇温・冷却
速度が早まり、有機薄膜材料の均熱性も向上させること
ができる。
The organic thin film material may be a liquid or a solid. In particular, in the case of a powdery material, an inert gas enters between the powder particles and becomes a heat medium. The cooling rate is increased, and the heat uniformity of the organic thin film material can be improved.

【0085】なお、上述の不活性ガスには窒素ガスを用
いたが、有機薄膜材料と反応しないガスであれば他のガ
スを用いることができる。
Although nitrogen gas is used as the above-mentioned inert gas, another gas can be used as long as it does not react with the organic thin film material.

【0086】[0086]

【発明の効果】昇温、冷却の際に無駄な有機化合物蒸気
が発生しなくなる。有機薄膜材料の昇温速度、冷却速度
が速くなる。温度制御性が向上し、温度オーバーシュー
トが発生しなくなる。有機薄膜材料の均熱性が向上し、
有機化合物蒸気の発生速度が安定するまでの時間が短く
なる。
According to the present invention, no wasteful organic compound vapor is generated during heating and cooling. The temperature rising rate and the cooling rate of the organic thin film material are increased. Temperature controllability is improved, and temperature overshoot does not occur. The thermal uniformity of the organic thin film material is improved,
The time required for the generation rate of the organic compound vapor to stabilize becomes shorter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蒸着装置の一例FIG. 1 shows an example of a vapor deposition apparatus of the present invention.

【図2】その蒸着装置に用いられる有機蒸発源の一例FIG. 2 shows an example of an organic evaporation source used in the vapor deposition apparatus.

【図3】本発明の有機蒸発源の一例FIG. 3 shows an example of the organic evaporation source of the present invention.

【図4】本発明方法の工程を説明するためのフローチャ
ート
FIG. 4 is a flowchart for explaining the steps of the method of the present invention.

【図5】本発明方法で有機薄膜を形成する場合の有機薄
膜材料の温度変化と蒸発速度の変化を説明するためのグ
ラフ
FIG. 5 is a graph for explaining temperature change and evaporation rate change of an organic thin film material when an organic thin film is formed by the method of the present invention.

【図6】Alq3とTPDの温度と蒸発速度の関係を説
明するためのグラフ
FIG. 6 is a graph for explaining the relationship between the temperature of Alq 3 and TPD and the evaporation rate.

【図7】従来技術で有機薄膜を形成する場合の有機薄膜
材料の温度変化と蒸発速度の変化を説明するためのグラ
FIG. 7 is a graph for explaining a change in temperature and a change in evaporation rate of an organic thin film material when an organic thin film is formed by a conventional technique.

【図8】(a)〜(e):従来技術の蒸発源を説明するため
の図
8 (a) to 8 (e) are diagrams for explaining a conventional evaporation source.

【符号の説明】[Explanation of symbols]

10……蒸着装置 11……真空槽 121、122
42……有機蒸発源 13……成膜対象物 29……ガス導入口 50、
70……蒸発源容器 54、74……有機薄膜材料
10: Vapor deposition device 11: Vacuum chamber 12 1 , 12 2 ,
42 organic evaporation source 13 film formation target 29 gas inlet 50
70: evaporation source container 54, 74 ... organic thin film material

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 真空排気可能に構成された真空槽と、 有機薄膜材料が納められた有機蒸発源とを有し、 前記有機薄膜材料の温度を制御してその蒸気を発生させ
ると前記真空槽内に配置された成膜対象物表面に有機薄
膜を形成できるように構成された蒸着装置であって、 前記真空槽にはガス導入口が設けられ、前記真空槽内に
不活性ガスを導入できるように構成されたことを特徴と
する蒸着装置。
A vacuum chamber configured to be capable of evacuating, and an organic evaporation source containing an organic thin film material, wherein the vacuum chamber is controlled by controlling a temperature of the organic thin film material to generate a vapor thereof. A vapor deposition apparatus configured to be able to form an organic thin film on the surface of a film formation target disposed therein, wherein a gas inlet is provided in the vacuum chamber, and an inert gas can be introduced into the vacuum chamber. A vapor deposition apparatus characterized by being configured as described above.
【請求項2】 有機薄膜材料が配置される蒸発源容器を
有し、 前記有機薄膜材料の温度を制御してその蒸気を発生さ
せ、放出口から真空槽内に放出できるように構成された
有機蒸発源であって、 前記蒸発源容器と放出口の間にガスバルブが設けられ、 前記ガスバルブを閉じると、前記蒸発源容器内は、真空
雰囲気にも不活性ガス雰囲気にも置けるように構成され
たことを特徴とする有機蒸発源。
2. An organic source having an evaporation source container in which an organic thin film material is disposed, wherein the organic thin film material is controlled so as to generate a vapor by controlling the temperature of the organic thin film material and discharge the vapor into a vacuum chamber from a discharge port. An evaporation source, wherein a gas valve is provided between the evaporation source container and the discharge port, and when the gas valve is closed, the inside of the evaporation source container can be placed in a vacuum atmosphere or an inert gas atmosphere. An organic evaporation source, characterized in that:
【請求項3】 有機蒸発源内に配置された有機薄膜材料
を蒸着させる有機薄膜形成方法であって、 有機薄膜の蒸着開始ならびに終了を不活性ガスの導入に
基づく真空度の変化により行うことを特徴とする有機薄
膜形成方法。
3. An organic thin film forming method for depositing an organic thin film material disposed in an organic evaporation source, wherein the start and the end of the deposition of the organic thin film are performed by changing the degree of vacuum based on the introduction of an inert gas. Organic thin film forming method.
【請求項4】 有機蒸発源内に配置された有機薄膜材料
を所定温度まで温度変化させて前記有機薄膜材料の蒸気
を発生させ、 前記有機薄膜材料の蒸気を真空槽内に放出させ、 前記真空槽内に配置された成膜対象物上に有機薄膜を形
成する有機薄膜製造方法であって、 前記有機薄膜材料の温度変化を不活性ガス雰囲気中で行
うことを特徴とする有機薄膜製造方法。
4. An organic thin-film material disposed in an organic evaporation source is changed in temperature to a predetermined temperature to generate vapor of the organic thin-film material, and the vapor of the organic thin-film material is discharged into a vacuum chamber. A method for manufacturing an organic thin film, wherein an organic thin film is formed on an object to be formed disposed therein, wherein the temperature of the organic thin film material is changed in an inert gas atmosphere.
【請求項5】 前記不活性ガス雰囲気は、13.3Pa
以上の圧力であることを特徴とする請求項4記載の有機
薄膜製造方法。
5. The inert gas atmosphere is 13.3 Pa.
5. The method for producing an organic thin film according to claim 4, wherein the pressure is the above pressure.
【請求項6】 前記有機薄膜材料が所定温度まで温度変
化した後、真空雰囲気に置き、前記成膜対象物上への有
機薄膜の形成を開始することを特徴とする請求項4又は
請求項5のいずれか1項記載の有機薄膜製造方法。
6. The method according to claim 4, wherein after the temperature of the organic thin film material is changed to a predetermined temperature, the organic thin film material is placed in a vacuum atmosphere to start forming an organic thin film on the film formation target. The method for producing an organic thin film according to claim 1.
【請求項7】 前記有機薄膜材料を不活性ガス雰囲気に
置く前に、真空雰囲気に置き、脱ガスを行うことを特徴
とする請求項4乃至請求項6のいずれか1項記載の有機
薄膜製造方法。
7. The method of manufacturing an organic thin film according to claim 4, wherein the organic thin film material is placed in a vacuum atmosphere and degassed before being placed in an inert gas atmosphere. Method.
【請求項8】 前記成膜対象物上への有機薄膜の形成
後、前記有機薄膜材料を降温させる際、前記有機薄膜材
料を不活性ガス雰囲気に置くことを特徴とする請求項4
乃至請求項7のいずれか1項記載の有機薄膜製造方法。
8. The method according to claim 4, wherein, after forming the organic thin film on the film-forming target, when the organic thin-film material is cooled, the organic thin-film material is placed in an inert gas atmosphere.
The method for producing an organic thin film according to claim 1.
【請求項9】 前記有機薄膜材料は粉体であることを特
徴とする請求項3乃至請求項8のいずれか1項記載の有
機薄膜製造方法。
9. The method for producing an organic thin film according to claim 3, wherein the organic thin film material is a powder.
JP34264996A 1996-12-06 1996-12-06 Organic thin film manufacturing method Expired - Lifetime JP3788835B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34264996A JP3788835B2 (en) 1996-12-06 1996-12-06 Organic thin film manufacturing method
TW87108447A TW409150B (en) 1996-12-06 1998-05-29 Evaporation apparatus, organic material evaporation source and method of manufacturing thin organic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34264996A JP3788835B2 (en) 1996-12-06 1996-12-06 Organic thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH10158820A true JPH10158820A (en) 1998-06-16
JP3788835B2 JP3788835B2 (en) 2006-06-21

Family

ID=18355414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34264996A Expired - Lifetime JP3788835B2 (en) 1996-12-06 1996-12-06 Organic thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3788835B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477546B1 (en) * 2002-07-24 2005-03-18 주식회사 소로나 Method for organic material deposition and the apparatus adopting the same
JP2005272969A (en) * 2004-03-25 2005-10-06 Tadahiro Omi Vacuum vapor deposition system and vacuum vapor deposition method
WO2005093120A1 (en) * 2004-03-29 2005-10-06 Tokyo Electron Limited Film-forming apparatus and film-forming method
JP2011522129A (en) * 2008-06-03 2011-07-28 アイクストロン、アーゲー Deposition method for depositing thin film polymers in low pressure gas phase
US8865258B2 (en) 2010-06-16 2014-10-21 Panasonic Corporation Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
US8877291B2 (en) 2010-06-16 2014-11-04 Panasonic Corporation Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
JPWO2015136859A1 (en) * 2014-03-11 2017-04-06 株式会社Joled Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477546B1 (en) * 2002-07-24 2005-03-18 주식회사 소로나 Method for organic material deposition and the apparatus adopting the same
JP4596803B2 (en) * 2004-03-25 2010-12-15 キヤノン株式会社 Vacuum deposition equipment
JP2005272969A (en) * 2004-03-25 2005-10-06 Tadahiro Omi Vacuum vapor deposition system and vacuum vapor deposition method
JP5191656B2 (en) * 2004-03-29 2013-05-08 忠弘 大見 Film forming apparatus and film forming method
JPWO2005093120A1 (en) * 2004-03-29 2008-02-14 大見 忠弘 Film forming apparatus and film forming method
WO2005093120A1 (en) * 2004-03-29 2005-10-06 Tokyo Electron Limited Film-forming apparatus and film-forming method
JP2011522129A (en) * 2008-06-03 2011-07-28 アイクストロン、アーゲー Deposition method for depositing thin film polymers in low pressure gas phase
US8865258B2 (en) 2010-06-16 2014-10-21 Panasonic Corporation Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
US8877291B2 (en) 2010-06-16 2014-11-04 Panasonic Corporation Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
JP5807217B2 (en) * 2010-06-16 2015-11-10 パナソニックIpマネジメント株式会社 Thin film manufacturing method
JP5807216B2 (en) * 2010-06-16 2015-11-10 パナソニックIpマネジメント株式会社 Thin film manufacturing method
JPWO2015136859A1 (en) * 2014-03-11 2017-04-06 株式会社Joled Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device manufacturing method
US9909205B2 (en) 2014-03-11 2018-03-06 Joled Inc. Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device production method

Also Published As

Publication number Publication date
JP3788835B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US6275649B1 (en) Evaporation apparatus
US6101316A (en) Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film
TWI428459B (en) Deposition source, deposition apparatus, and forming method of organic film
US8337959B2 (en) Method and apparatus to apply surface release coating for imprint mold
JP2011256427A (en) Method for evaporating/sublimating evaporation material in vacuum deposition apparatus and crucible device for vacuum deposition
US8336489B2 (en) Thermal evaporation apparatus, use and method of depositing a material
JP2009087931A (en) Film forming method, vapor deposition apparatus, and organic el manufacturing apparatus
JP2002146516A (en) Vapor deposition method for organic thin film
JP2013519787A (en) Heating system for vapor deposition sources
US6473564B1 (en) Method of manufacturing thin organic film
WO2012029260A1 (en) Deposition cell and vacuum deposition device provided with same
JP3788835B2 (en) Organic thin film manufacturing method
TW201842224A (en) Coating device and method for reactive gas phase deposition under vacuum on substrate
KR100518147B1 (en) Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film
TWI516622B (en) Device for evaporation
JP3691615B2 (en) Evaporation source for organic materials
EP1696049B1 (en) Vacuum evaporation apparatus
JP2005340225A (en) Organic el device
TW409150B (en) Evaporation apparatus, organic material evaporation source and method of manufacturing thin organic film
CN109599470B (en) Method for reducing resistivity of magnesium-doped zinc oxide film
JP3775909B2 (en) Organic thin film manufacturing method and organic vapor deposition apparatus
JP3817037B2 (en) Vacuum deposition apparatus and organic EL element forming method
JPH10195641A (en) Organic thin film forming apparatus
KR100503425B1 (en) Apparatus and method using cold wall type low vacuum organic vapor transport deposition for organic thin film and organic devices
KR100625966B1 (en) Method of vacuum evaporation for EL and appratus the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term