JPH1015709A - Surface coating cutting tool - Google Patents

Surface coating cutting tool

Info

Publication number
JPH1015709A
JPH1015709A JP19138696A JP19138696A JPH1015709A JP H1015709 A JPH1015709 A JP H1015709A JP 19138696 A JP19138696 A JP 19138696A JP 19138696 A JP19138696 A JP 19138696A JP H1015709 A JPH1015709 A JP H1015709A
Authority
JP
Japan
Prior art keywords
substrate
layer
cutting
vickers hardness
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19138696A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueda
広志 植田
Hiroaki Inoue
洋明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP19138696A priority Critical patent/JPH1015709A/en
Publication of JPH1015709A publication Critical patent/JPH1015709A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce abrasion due to plastic deformation of a tip edge and obtain a favorablel life in high speed intermittent cutting by containing specified weight % Zr and/or Hf in a substrate. SOLUTION: A cemented carbide to be used is obtained by adding 0.05-0.5wt% Zr and/or Hf to a substrate. Thus, Zr and/or Hf is added to mostly penetrate into B-1 type solid solution phase and binder phase of the cemented carbide, thereby preventing plastic deformation of a tip edge especially affected by cutting heat during cutting. The surface part of the substrate has a Vickers hardness 70-90% of the Vickers hardness of the enough inner side of the substrate, Zr an/or Hf is dissolved and/or dispersed in the substrate surface layer part, and B-1 type solid solution phase is dispersed, decreased and/or made zero to compensate for the defective resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、切削工具に適した被覆
超硬合金に関し、耐欠損性、耐摩耗性に優れた表面被覆
超硬合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cemented carbide suitable for cutting tools, and more particularly to a surface-coated cemented carbide having excellent fracture resistance and wear resistance.

【0002】[0002]

【従来の技術】切削加工の高能率化の為、超硬合金にC
VD法による硬質被膜を被覆した工具が広く用いられて
いる。この種の工具の刃先の耐欠損性を向上させるため
に結合相富化層、表面軟化層、脱β層等と呼ばれる改質
層を基体表面に設けた工具も、例えば特開平8−141
1号公報に示されるように、広く実用に供されている。
さらに高温での合金強度を向上する、ためにZrやHf
等を基体に添加することが、例えば特開平6−9347
3号公報に示されている。
2. Description of the Related Art Cemented carbide is used to improve cutting efficiency.
Tools coated with a hard coating by the VD method are widely used. A tool provided with a modified layer called a binder phase enriched layer, a surface softened layer, a β-removed layer, etc. on the substrate surface in order to improve the chipping resistance of the cutting edge of this type of tool is also disclosed in, for example, JP-A-8-141.
As shown in Japanese Patent Publication No. 1 (Kokai) No. 1 (Kokai), it is widely used practically.
In order to further improve the alloy strength at high temperatures, Zr or Hf
Can be added to the substrate, for example, as described in JP-A-6-9347.
No. 3 discloses this.

【0003】[0003]

【発明が解決しようとする課題】上記技術によって提供
される工具は、長時間の断続切削を含む高速切削に耐え
るため切削加工の高能率化、無人化に好まれて採用され
てきた。しかし、近年のニアネットシェイプの技術の進
歩により部品素材の形状は益々複雑なものとなってきて
いる。従って、切削工具にかかる衝撃力、衝撃回数は増
加の一途をたどっており、工具の欠損が深刻な問題とな
っている。しかしながら、高温における基体の耐塑性変
形性を改善するために少量のZrおよび/またはHfを
基体に添加した場合、添加しない場合と比較して高速断
続切削時に刃先に欠損を生じやすくなる。本発明の目的
は、このような現状に鑑み更に耐欠損性を向上させつ
つ、更に耐塑性変形性も向上させる工具を提供すること
です。
The tool provided by the above technique has been adopted because it can withstand high-speed cutting including intermittent cutting for a long time, and is highly efficient and unmanned in cutting. However, due to recent advances in near-net-shape technology, the shapes of component materials have become increasingly complex. Therefore, the impact force and the number of impacts applied to the cutting tool are steadily increasing, and the loss of the tool is a serious problem. However, when a small amount of Zr and / or Hf is added to the substrate in order to improve the plastic deformation resistance of the substrate at high temperatures, chipping is more likely to occur in the cutting edge during high-speed intermittent cutting than when no Zr and / or Hf are added. SUMMARY OF THE INVENTION An object of the present invention is to provide a tool that further improves fracture resistance and plastic deformation resistance in view of the current situation.

【0004】[0004]

【課題を解決するための手段】本発明者等は従来の工具
の、基体の硬さおよび硬質皮膜の内、基体に接する第1
層の関係に着目し、切削試験を検討した結果、次の知見
を得た。基体表層部の硬さを適切に調整し、さらに、硬
質皮膜の第1層をTiNとし、TiN層の厚さを適切に
設定することで耐欠損性は向上し、しかも、Zr/Hf
等の添加による切削時の高温における刃先の耐塑性変形
性も維持できる。本発明はこれらの知見に基づいてなさ
れたもので、次の構成を有する。基体はZrおよび/ま
たはHfを0.05〜0.5重量%含み、該基体の表層
部にヴィッカース硬さが該基体の十分内部のヴィッカー
ス硬さの70〜90%である表面軟化層を有し、該硬質
皮膜を構成する被覆層の内、該基体に接する第1層をT
iNとする。好ましくは第1層を厚さ0.2〜1.2μ
mのTiNとし、該表面軟化層の厚さを5〜25μmと
する。
Means for Solving the Problems The inventors of the present invention have proposed a conventional tool, which has the first hardness and the first hard coating of the substrate which are in contact with the substrate.
As a result of examining the cutting test paying attention to the relationship between the layers, the following findings were obtained. By appropriately adjusting the hardness of the surface layer portion of the base material, further setting the first layer of the hard film to TiN, and appropriately setting the thickness of the TiN layer, the fracture resistance is improved, and Zr / Hf
The plastic deformation resistance of the cutting edge at a high temperature during cutting can be maintained by the addition of the like. The present invention has been made based on these findings, and has the following configuration. The substrate contains 0.05 to 0.5% by weight of Zr and / or Hf, and has a surface softening layer having a Vickers hardness of 70 to 90% of the Vickers hardness sufficiently inside the substrate in the surface layer portion of the substrate. Of the coating layers constituting the hard coating, the first layer which is in contact with the base is T
iN. Preferably, the first layer has a thickness of 0.2 to 1.2 μm.
m of TiN, and the thickness of the surface softening layer is 5 to 25 μm.

【0005】[0005]

【作用】基体に、Zrおよび/またはHfを0.05〜
0.5重量%添加した超硬合金を用いる。Zrおよび/
またはHfを添加することにより、それらは大部分が超
硬合金のB−1型固溶体相、結合相中に溶け込み、特
に、切削中の切削熱の影響がでる刃先の塑性変形を防ぐ
のに効果がある。0.05重量%未満では効果が薄く、
0.5重量%を越えると合金が脆化するのでこの添加量
の範囲とした。但し、Zrおよび/またはHfを添加す
ると、切削中の衝撃によって刃先が欠けやすくなる傾向
が見られるので、基体表層部と第1層は以下のようにし
てこれを補う必要がある。基体の表層部にヴィッカース
硬さが該基体の十分内部のヴィッカース硬さの70〜9
0%であり、この基体表層部中には、Zrおよび/また
はHfが固溶及び/または分散しており、及びB−1型
固溶体相を分散、減少及び/又はゼロとすることによ
り、耐欠損性を補うことが出来る。更に、その厚さを5
〜25μmとする事により刃先に耐塑性変形性と靱性が
付与される。
The substrate has a Zr and / or Hf content of 0.05 to
A cemented carbide added with 0.5% by weight is used. Zr and / or
Or, by adding Hf, most of them dissolve into the B-1 type solid solution phase and cemented phase of cemented carbide, and are particularly effective in preventing plastic deformation of the cutting edge, which is affected by cutting heat during cutting. There is. If less than 0.05% by weight, the effect is thin,
If the content exceeds 0.5% by weight, the alloy becomes brittle. However, when Zr and / or Hf is added, the edge of the blade tends to be chipped by the impact during cutting, so that the surface layer portion of the base and the first layer must compensate for this as follows. The Vickers hardness of the surface layer of the substrate is 70 to 9 of the Vickers hardness sufficiently inside the substrate.
0%, and Zr and / or Hf are solid-solved and / or dispersed in the surface layer portion of the base material. Deficiency can be compensated. Furthermore, the thickness is 5
By setting the thickness to 2525 μm, plastic deformation resistance and toughness are imparted to the cutting edge.

【0006】一般に、表面被覆超硬工具の使用において
は、その使用目的により超硬基体のグレードを変えるの
で、本発明では表面軟化層の硬さを基体の十分内部の硬
さとの相対値で規定したが、通常、基体の十分内部のヴ
ィッカース硬さは1400〜1700程度である。表面
軟化層のヴィッカース硬さが70%未満である場合およ
び厚さが25μmを越える場合では切削時に刃先が塑性
変形し工具が寿命となってしまう。ヴィッカース硬さが
90%を越える場合および厚さが5μm未満の場合では
靱性が不十分であり欠けやすくなる。尚、以上のヴィッ
カース硬さはいずれも室温にて測定した値である。
In general, when a surface-coated carbide tool is used, the grade of the cemented carbide substrate is changed depending on the purpose of use. Therefore, in the present invention, the hardness of the surface softening layer is defined by a relative value to the hardness sufficiently inside the substrate. However, the Vickers hardness inside the substrate is usually about 1400 to 1700. If the Vickers hardness of the surface softened layer is less than 70% or if the thickness exceeds 25 μm, the cutting edge is plastically deformed during cutting and the tool has a long life. When the Vickers hardness exceeds 90% and when the thickness is less than 5 μm, the toughness is insufficient and chipping easily occurs. The above Vickers hardness values are all measured at room temperature.

【0007】次いで、硬質皮膜を構成する被覆層は、基
体に接する第1層をTiNとする。各チタン化合物をヴ
ィッカース硬さで比較するとTiCは3300〜380
0、TiCNは2300〜2800であるのに対しTi
Nは1800〜2200と軟らかく、衝撃に対して適度
な緩衝作用を有しZr、Hf添加の欠点を補う。また、
比較的低温で成膜できるので、基体成分の拡散が少なく
基体と第1層の界面に脱炭層が発生するのを防ぐ、基体
と皮膜との熱膨張率の差に起因する応力の発生が少な
い、等の効果もある。第1層の厚さは0.2〜1.2μ
mがよく、この程度の厚さであれば第1層の変形が問題
になることはない。0.2μm未満では緩衝作用が不足
するばかりでなく、基体からの鉄属金属の拡散のため、
第2層以降の膜質を劣化させる恐れがある。1.2μm
を越えるとTiNの粒子が粗大化し第2層以降の結晶形
態に悪影響を与える場合がある。
Next, the first layer in contact with the base of the coating layer constituting the hard coating is made of TiN. When each titanium compound is compared by Vickers hardness, TiC is 3300 to 380.
0, TiCN is 2300-2800, whereas TiCN
N is as soft as 1800 to 2200, has an appropriate buffering action against impact, and makes up for the drawbacks of adding Zr and Hf. Also,
Since the film can be formed at a relatively low temperature, the diffusion of the base component is small, the decarburized layer is prevented from being generated at the interface between the base and the first layer, and the stress generated due to the difference in the coefficient of thermal expansion between the base and the coating is small. , Etc. The thickness of the first layer is 0.2 to 1.2 μm
m is good, and with this thickness, deformation of the first layer does not pose a problem. If the thickness is less than 0.2 μm, not only does the buffering effect become insufficient, but also because of the diffusion of iron group metals from the substrate,
The quality of the second and subsequent layers may be degraded. 1.2 μm
If it exceeds, the TiN particles may become coarse and adversely affect the crystal morphology of the second and subsequent layers.

【0008】第1層に接する第2層として、特に推奨で
きるのはTiCNである。このTiCN層は、MT−C
VD法を用いて柱状結晶に成長させる。TiCNは、チ
タン化合物の中でTiNとTiCの中間の硬さを持ち、
同一の結晶構造であり、TiNに接する被膜として好ま
しい。TiCN膜の柱状結晶においては切削中の力が1
つの粒子に粒界を介さずに伝わるため、垂直方向の力に
非常に強いものとなる。また、摩耗に関しては、方向性
の無い粒状の結晶では結晶粒子が粒界より脱落すること
により摩耗が進行するが、垂直方向に長い柱状晶では脱
落することがなく、耐摩耗性に対して優れている。第3
層以降の層構造については工具の用途に応じてTiC、
TiN、Al23等を適宜用いればよい。以下、本願発
明を実施例に基づいて詳細に説明する。
As a second layer that is in contact with the first layer, TiCN is particularly recommended. This TiCN layer is made of MT-C
The columnar crystal is grown using the VD method. TiCN has an intermediate hardness between TiN and TiC among titanium compounds,
It has the same crystal structure and is preferred as a coating in contact with TiN. In the columnar crystal of TiCN film, the force during cutting is 1
Since it is transmitted to two particles without passing through a grain boundary, it is very strong against vertical force. Regarding abrasion, in the case of granular crystals having no direction, abrasion progresses due to the crystal grains falling off from the grain boundaries, but in the case of columnar crystals that are long in the vertical direction, they do not fall off and have excellent wear resistance. ing. Third
Regarding the layer structure after the layer, TiC,
TiN, Al 2 O 3 or the like may be used as appropriate. Hereinafter, the present invention will be described in detail based on examples.

【0009】[0009]

【実施例】本発明例1として、Zrを2.0重量%含
み、ヴィッカース硬さが基体の十分内部において155
0、表面軟化層において1350、表面軟化層の厚さが
15μmであるCNMG120408形状の超硬合金の
表面に、公知のCVD法により第1層TiNを0.3μ
m成膜、アセトニトリルを用いたMT−CVD法により
第2層TiCNを6.0μm成膜、第3層にCVD法で
TiCを1.0μm成膜、第4層CVD法でアルミナを
1.5μm成膜、最外層にCVD法でTiNを0.5μ
m成膜した。比較例2として、表面軟化層が無い以外は
本発明例1と同様の超硬基体を用い、同一の被膜を被覆
した。本発明例3としてZrを0.25重量%含み、ヴ
ィッカース硬さが基体の十分内部において1530、表
面軟化層において1220、表面軟化層の厚さが15μ
mであるCNMG120408形状の超硬合金の表面に
公知のCVD法により第1層TiNを0.3μm成膜、
アセトニトリルを用いたMT−CVD法により第2層T
iCNを10.0μm成膜、第3層にCVD法でTiC
を1.0μm成膜、第4層にCVD法でアルミナを1.
0μm成膜、最外層にCVD法でTiNを0.5μm成
膜した。比較例4として、Zrを含まないこと以外は本
発明例3と同様の組成でありヴィッカース硬さが基体の
十分内部において1520、表面軟化層において120
0、表面軟化層の厚さが15μmであるCNMG120
408形状の超硬基体に本発明例1と同様の皮膜を被覆
した。比較例5は表面軟化層の無いこと以外は本発明例
3と同様とした。比較例6は第1層のTiNをTiCに
変えた以外は本発明例3と同様とした。
EXAMPLE As Example 1 of the present invention, Zr was contained in an amount of 2.0% by weight, and the Vickers hardness was 155 in a sufficient inside of the substrate.
0, a first layer TiN of 0.3 μm was formed on the surface of a CNMG120408 shaped cemented carbide having a surface softening layer of 1350 and a surface softening layer thickness of 15 μm by a known CVD method.
m, a second layer TiCN of 6.0 μm by MT-CVD using acetonitrile, a third layer of 1.0 μm of TiC by CVD, and 1.5 μm of alumina by a fourth layer CVD. 0.5 μm of TiN is deposited on the outermost layer by CVD.
m was formed. As Comparative Example 2, the same coating was applied using the same superhard substrate as in Example 1 of the present invention except that there was no surface softening layer. Inventive Example 3 containing 0.25% by weight of Zr, Vickers hardness of 1530 sufficiently inside the substrate, 1220 of the surface softened layer, and 15 μm of the surface softened layer
The first layer TiN is formed to a thickness of 0.3 μm on the surface of a cemented carbide having a shape of CNMG120408 by a known CVD method.
Second layer T by MT-CVD using acetonitrile
iCN is deposited to a thickness of 10.0 μm, and TiC is deposited on the third layer by CVD.
Was formed in a thickness of 1.0 μm, and alumina was applied to the fourth layer by CVD method.
A 0 μm film was formed, and a 0.5 μm TiN film was formed on the outermost layer by a CVD method. Comparative Example 4 has the same composition as that of Inventive Example 3 except that it does not contain Zr, and has Vickers hardness of 1520 sufficiently inside the substrate and 120 Vickers hardness in the surface softened layer.
0, CNMG120 having a surface softening layer thickness of 15 μm
A 408-shaped super-hard substrate was coated with the same coating as in Example 1 of the present invention. Comparative Example 5 was the same as Inventive Example 3 except that there was no surface softening layer. Comparative Example 6 was the same as Example 3 of the present invention except that TiN in the first layer was changed to TiC.

【0010】以上のチップを用いて切削試験を行った。
まず、耐摩耗性の評価をテスト1、2の旋削で行った。
工具のフランク摩耗が0.3mmに達するまでの時間を
評価した。テスト1の条件は、被削材:S45C、切削
速度:200m/min、送り:0.3mm/rev、
切り込み:2.0mm、湿式切削とした。結果は、本発
明例1は55分、比較例2は48分、本発明例3は65
分、比較例4は47分、比較例5は、67分、比較例6
は66分であった。S45C切削の場合、本発明例1と
Zrを添加した比較例2との間で、寿命に対して大きな
差は見られない。表面軟化層によって、耐摩耗性の劣
化、耐塑性変形性の劣化は認められず、Zr添加の効果
が確認された。それに対してZr添加の無い比較例4は
寿命が短くなっている。
A cutting test was performed using the above chips.
First, the wear resistance was evaluated by turning in Tests 1 and 2.
The time until the flank wear of the tool reached 0.3 mm was evaluated. Test 1 conditions were: work material: S45C, cutting speed: 200 m / min, feed: 0.3 mm / rev,
Cut: 2.0 mm, wet cutting. The results were as follows: Inventive Example 1 was 55 minutes, Comparative Example 2 was 48 minutes, and Inventive Example 3 was 65 minutes.
Minutes, Comparative Example 4 is 47 minutes, Comparative Example 5 is 67 minutes, Comparative Example 6
Was 66 minutes. In the case of S45C cutting, there is no significant difference in the life between Example 1 of the present invention and Comparative Example 2 to which Zr was added. No deterioration of wear resistance and deterioration of plastic deformation resistance were observed by the surface softened layer, and the effect of Zr addition was confirmed. On the other hand, the comparative example 4 without the addition of Zr has a shorter life.

【0011】テスト2の条件は、被削材:FCD70、
切削速度:150m/min、送り:0.3mm/re
v、切り込み:2.0mm、湿式切削とした。結果は、
本発明例1は、22分、比較例2は20分、本発明例3
は27分、比較例4は21分、比較例5は28分、比較
例6は28分であった。FCD70の切削の場合もS4
5Cと同様の傾向が見られた。特に、Zr添加の効果は
本発明例1で確認された。
The conditions of test 2 were as follows: work material: FCD70,
Cutting speed: 150m / min, feed: 0.3mm / re
v, depth of cut: 2.0 mm, wet cutting. Result is,
Invention Example 1 was 22 minutes, Comparative Example 2 was 20 minutes, Invention Example 3
Was 27 minutes, Comparative Example 4 was 21 minutes, Comparative Example 5 was 28 minutes, and Comparative Example 6 was 28 minutes. S4 also when cutting FCD70
A tendency similar to that of 5C was observed. In particular, the effect of Zr addition was confirmed in Inventive Example 1.

【0012】次に、耐欠損性をテスト3、4の断続切削
によって評価した。工具が欠損に至るまでの衝撃回数に
よって評価した。但し衝撃回数は1000回を上限とし
た。各工具それぞれ4コーナーについて試験した。テス
ト3の条件は被削材:4つ溝付SCM435丸棒、切削
速度:150m/min、送り:0.2mm/rev、
切り込み:2.0mm、乾式切削とした。結果は、本発
明例1は、1000回以上、1000回以上、800
回、1000回以上であった。比較例2は、630回、
820回、770回、670回であった。テスト4の条
件は、被削材:4つ溝付SCM435、切削速度:15
0m/min、送り:0.3mm/rev、切り込み:
2.0mm、乾式切削とした。結果は、本発明品3は1
000回以上、1000回以上、800回、1000回
以上、比較例4は1000回以上、1000回以上、1
000回以上、920回、比較例5は230回、540
回、310回、720回、比較例6は900回、740
回、150回、720回であった。本発明例1、3は表
面軟化層の無い比較例2、4、5よりも確実に耐欠損性
が向上していることが分かる。また、比較例6は比較例
4、5と較べて耐久衝撃回数のバラツキが大きく、欠損
状態も微小である点で異なっていた。
Next, the fracture resistance was evaluated by interrupted cutting in tests 3 and 4. The evaluation was made by the number of impacts until the tool was broken. However, the upper limit of the number of impacts was 1,000. Each tool was tested for four corners. Test 3 conditions were as follows: Work material: SCM435 round bar with four grooves, cutting speed: 150 m / min, feed: 0.2 mm / rev,
Cut: 2.0 mm, dry cutting. As a result, in the present invention example 1, 1000 times or more, 1000 times or more, 800
Times, 1000 times or more. Comparative Example 2 was 630 times,
820, 770 and 670 times. Test 4 conditions were as follows: Work material: SCM435 with four grooves, Cutting speed: 15
0 m / min, feed: 0.3 mm / rev, cut:
2.0 mm, dry cutting. As a result, the product 3 of the present invention was 1
000 times or more, 1000 times or more, 800 times, 1000 times or more, Comparative Example 4 is 1000 times or more, 1000 times or more, 1
000 times or more, 920 times, Comparative Example 5 230 times, 540 times
Times, 310 times, 720 times, Comparative Example 6 was 900 times, 740 times
Times, 150 times and 720 times. It can be seen that Examples 1 and 3 of the present invention have more reliably improved fracture resistance than Comparative Examples 2, 4 and 5 having no surface softening layer. Further, Comparative Example 6 was different from Comparative Examples 4 and 5 in that the variation in the number of endurance impacts was large and the defect state was minute.

【0013】[0013]

【発明の効果】本発明品は従来の工具と較べて更に耐欠
損性が向上しており、塑性変形に起因する摩耗も少な
く、高速断続切削において良好な寿命を示すので、複雑
な形状の被削材の切削の高能率化、無人化に適するもの
である。
According to the present invention, the fracture resistance is further improved as compared with the conventional tool, the wear caused by plastic deformation is small, and a good life is exhibited in high-speed interrupted cutting. It is suitable for high efficiency and unmanned cutting of cutting materials.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金の基体表面に2層以上の多層か
らなる硬質皮膜を被覆した表面被覆切削工具において、
該基体はZrおよび/またはHfを0.05〜0.5重
量%含み、該基体の表層部がヴィッカース硬さで該基体
の十分内部のヴィッカース硬さの70〜90%である表
面軟化層であるとともに該Zrおよび/またはHfがB
−1型固溶体相及び/又は結合相中に溶け込み、該硬質
皮膜の該基体に接する第1層をTiNとしたことを特徴
とする表面被覆切削工具。
1. A surface-coated cutting tool in which a hard coating composed of two or more layers is coated on the surface of a cemented carbide substrate.
The substrate comprises a surface softening layer containing 0.05 to 0.5% by weight of Zr and / or Hf, wherein the surface layer of the substrate has a Vickers hardness of 70 to 90% of the Vickers hardness sufficiently inside the substrate. And the Zr and / or Hf is B
A surface-coated cutting tool, wherein the first layer of the hard coating that is dissolved in the type-1 solid solution phase and / or the binder phase and that is in contact with the substrate is TiN.
【請求項2】 請求項1に記載の表面被覆切削工具にお
いて、該第1層の厚さが0.2〜1.2μmであること
を特徴とする表面被覆切削工具。
2. The surface-coated cutting tool according to claim 1, wherein the thickness of the first layer is 0.2 to 1.2 μm.
【請求項3】 請求項1または2に記載の表面被覆切削
工具において、該表面軟化層の厚さが5〜25μmであ
ることを特徴とする表面被覆切削工具。
3. The surface-coated cutting tool according to claim 1, wherein the thickness of the surface softening layer is 5 to 25 μm.
JP19138696A 1996-07-01 1996-07-01 Surface coating cutting tool Withdrawn JPH1015709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19138696A JPH1015709A (en) 1996-07-01 1996-07-01 Surface coating cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19138696A JPH1015709A (en) 1996-07-01 1996-07-01 Surface coating cutting tool

Publications (1)

Publication Number Publication Date
JPH1015709A true JPH1015709A (en) 1998-01-20

Family

ID=16273744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19138696A Withdrawn JPH1015709A (en) 1996-07-01 1996-07-01 Surface coating cutting tool

Country Status (1)

Country Link
JP (1) JPH1015709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244955C5 (en) 2001-09-26 2021-12-23 Kyocera Corp. Cemented carbide, use of a cemented carbide and method for making a cemented carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244955C5 (en) 2001-09-26 2021-12-23 Kyocera Corp. Cemented carbide, use of a cemented carbide and method for making a cemented carbide

Similar Documents

Publication Publication Date Title
EP3298176B1 (en) Tool with multi-layer arc pvd coating
RU2071869C1 (en) Cutting tool
EP1798309B1 (en) Coated cutting tool insert
JP6386457B2 (en) TiAlN coated tool
US20020136933A1 (en) Method for manufacturing a workpiece with wear-protective coating
JP2008183708A (en) Coated insert for milling and its manufacturing method
US5325747A (en) Method of machining using coated cutting tools
US7435486B2 (en) Insert for metal cutting
JP4028368B2 (en) Surface coated cemented carbide cutting tool
US10655230B2 (en) Coated cutting tool
US6890632B2 (en) Coated cutting tool insert
JPS5952703B2 (en) Surface coated cemented carbide parts
JPH1015709A (en) Surface coating cutting tool
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3236910B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance with hard coating layer
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP2001310202A (en) Surface covered cermet made cutting tool on which hard covered layer displays excellent chipping resistance
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JPS6343453B2 (en)
JP2657235B2 (en) Coated super hard alloy tool
JPH11236672A (en) Throw away cutting tip made of surface-coated cemented carbide excellent in chipping resistance
JPS63274771A (en) Surface-treated cemented carbide alloy member
JP3341946B2 (en) High strength coated cemented carbide
JPH10237649A (en) Surface coated cutting tool excellent in chipping resistance
JPH0581366B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051102

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051118