JPH0581366B2 - - Google Patents

Info

Publication number
JPH0581366B2
JPH0581366B2 JP1227613A JP22761389A JPH0581366B2 JP H0581366 B2 JPH0581366 B2 JP H0581366B2 JP 1227613 A JP1227613 A JP 1227613A JP 22761389 A JP22761389 A JP 22761389A JP H0581366 B2 JPH0581366 B2 JP H0581366B2
Authority
JP
Japan
Prior art keywords
coating
tool
cermet
cutting
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1227613A
Other languages
Japanese (ja)
Other versions
JPH0392205A (en
Inventor
Akira Katayama
Masayuki Hashimura
Hiroto Imamura
Tetsuo Sawajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Nippon Steel Corp
Nittetsu Choko KK
Original Assignee
Toho Kinzoku Co Ltd
Nippon Steel Corp
Nittetsu Choko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd, Nippon Steel Corp, Nittetsu Choko KK filed Critical Toho Kinzoku Co Ltd
Priority to JP22761389A priority Critical patent/JPH0392205A/en
Priority to DE69010293T priority patent/DE69010293T3/en
Priority to EP90309550A priority patent/EP0416824B2/en
Priority to US07/576,950 priority patent/US5123934A/en
Publication of JPH0392205A publication Critical patent/JPH0392205A/en
Publication of JPH0581366B2 publication Critical patent/JPH0581366B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は衝撃荷重の負荷する切削用工具に関わ
るものである。 [従来の技術及び発明が解決しようとする課題] サーメツト工具は高速仕上げ切削、フライス切
削用工具として広く使用されている。サーメツト
合金の化学成分は鋼との濡れ性の小さい炭化物、
窒化物、炭窒化物などの硬質化合物、およびこれ
らを結合させるコバルト、ニッケルなどである。
サーメツト工具はそ主成分である硬質化合物が鋼
と凝着しにくいので、仕上げ面粗さの点で優れて
いるが、硬質化合物は結合材であるコバルト、ニ
ッケルとの結合強度が小さいために耐欠損性に劣
る。 この合金に化学蒸着法によりセラミツクスを被
覆すれば、仕上げ面粗さおよび耐摩耗性は一段と
向上することが期待されるが、耐欠損性が劣化す
るので問題がある。蒸着ままの結晶状あるいは非
晶質状セラミツクス被膜の破壊強度を向上させる
ために、被膜の厚さ、結晶粒径、結晶構造に及ぼ
す成膜条件、成膜後の熱処理法など種々検討され
ているが十分な効果をあげるに至つていない。セ
ラミツクスを被覆したサーメツト合金の破壊強度
を高めることができればさらに優れた切削工具の
供給が可能となり、その使用範囲はフライス加
工、溝付き材料の旋削加工等の断続的荷重の負荷
する高速切削など一層広がることが期待される。 [課題を解決するための手段] そこで、本発明者等は耐欠損性の一層優れた被
覆工具を開発すべく研究を行つた結果、被覆に微
細なクラツクを付与することにより切削工具の耐
摩耗性を損なうことなく、耐欠損性を著しく向上
させることが出来ることを見出した。 この発明は上記の知見の基ずくものであつて、
その対象とする工具は、炭窒化チタン基サーメツ
ト合金の表面に化学蒸着法により被覆した厚さ
2μm以上、10μm以下の被膜を有し、該被膜がそ
の表面から炭窒化チタン基サーメツト内まで貫通
した以下A〜Cに示す微細クラツクを有すること
を特徴とする耐欠損性に優れる表面被膜サーメツ
ト切削工具。 (A) クラツク長さの平均値:被膜表面から垂直方
向に被膜厚以上、被覆厚+5μm以下、 (B) クラツク幅の平均値:4μm以下、 (C) クラツク間隔の平均値:10μm以上、200μm
以下 [作用] 成膜法は化学蒸着法である。被膜はTic、
TiN、Ti(C、NF)、Al2O3のいずれか1種の層
または2種以上を積層したものである。被膜の厚
みは耐摩耗性を確保するために2μm以上必要で
ある。また、被膜厚みが大きくなると耐欠損性が
低下するので最大厚みを10μmとしなければなら
ない。 通常、サーメツト合金の表面にセラミツクスを
CVD法により被覆すると、この被覆合金製の工
具の機械強度が低下し、欠損しやすくなることが
知られている。その原因は、被膜と基材の熱膨張
係数に差異があり、高温でのCVD被覆後の冷却
過程において被膜に発生する引張残留応力にある
と考えられ、この残留応力は55Kgf/mm2にも達
することが確認されている。このような引張残留
応力を有する工具を用いて断続切削すると、工具
表面には切削作業によりさらに引張応力が作用
し、これが前記の引張残留応力に加算されるた
め、曲げ破壊強度を弱め、耐欠損性を低下させる
ことになる。 本発明は、この耐欠損性を向上させるために被
膜に微細クラツクを付与するものである。この長
さ、幅および間隔を前述のごとく規定した微細ク
ラツクは、前述した冷却過程において被膜に発生
する引張残留応力を開放することになり、従つ
て、工具表層に負荷される応力の総和は、微細ク
ラツクを付与しない場合に生じる応力の総和より
軽減され、その結果工具破壊につながるクラツク
の伝播が抑制され、耐欠損性が向上するものと考
えられる。つまり、本発明の微細クラツクは被膜
に残留する引張応力を開放するためにのみ付与す
るものである。 クラツク長さの平均値は被膜表面から垂直方向
に被膜厚さ以上、被膜厚さ+5μm以下でなけれ
ばならない。それはクラツクが被膜内にとどまる
と耐欠損性が向上しないためであり、サーメツト
内の長さが5μmを超えると耐欠損性が急激に低
下するためである。クラツク幅の平均値は4μm
以下でなければならない。その理由はクラツク幅
が大きくなると耐欠損性は向上するが耐摩耗性が
著しく低下するためである。クラツク間隔の平均
値を10μm以上、200μm以下としたのは、10μm
未満になるとクラツク密度が高くなりすぎて耐摩
耗性が低下するためであり、200μmを超えると
クラツク密度が小さくなりすぎて耐欠損性の向上
が十分に得られないためである。 このような微細クラツクを導入する方法として
被膜表面に鋳鉄等を噴射する方法あるいは、被膜
表面ダイアモンド研削、機械的あるいは超音波振
動加圧する方法等を適用することが出来る。クラ
ツク寸法および分布の確認は工具を破断してその
断面を電子顕微鏡(SEM)により観察すること
により行つた。破断面を10視野、倍率1000で撮影
した10枚の写真からクラツク長さの平均値、クラ
ツク幅の平均値およびクラツク間隔を測定した。 次に、この発明の耐欠損性に優れる表面被覆サ
ーメツト切削工具を実施例により具体的に説明す
る。 [実施例] 第1表に供試工具のクラツク寸法と分布、およ
びその切削性能を示す。供試工具のサーメツト合
金成分は炭窒化チタン(Ti(C、N)):47.0wt
%、炭化モリブデン(Mo2C):7.5wt%、タング
ステン炭化物:16.5wt%、タンタル炭化物:
10.0wt%、ニオブ炭化物:5.0wt%、ニッケル
(Ni):5.0wt%、Co:9.0wt%である。粉砕―混
合―造粒―焼結―研削工程を経て、一辺12.7mmの
正方形サーメツト合金を製造した。このサーメツ
ト合金にCVDに法によりTiC/Ti(C、N)/
Al2O3をこの順序に10μm、および20μmm厚さ被覆
してスローアウエイ工具とした。この工具に平均
粒径200μmの鋳鉄球を速度10〜80m/sec、角度
70〜90度の条件で投射して微細クラツクを導入し
た。 クラツクの寸法と分布は工具を破断してその断
面を電子顕微鏡(SEM)により観察して測定し
た。破断面を10視野、倍率1000で撮影した10枚の
写真からクラツク長さの平均値、およびクラツク
幅の平均値を測定した。クラツク間隔は相隣合う
クラツク間隔の平均値である。 本発明被覆工具と比較工具について切削による
性能評価を行つた。その条件は以下の通りであ
る。 (1) 断続切削 被削材:JIS S38C、直径60mmの丸棒に圧延方
向と平行に幅10mmの溝を等間隔に5本つけ
た。 切削速度:170m/min 送り:0.15mm/rev 切込み:1.0mm 工具寿命判定基準:工具刃先の欠損 (2) 連続切削 被削材:JIS S38C、直径60mmの丸棒 切削速度:200m/min 送り:0.15mm/rev 切込み:1.0mm 工具寿命判定基準:工具すくい面摩耗深さ Kt=50μm 工具の耐欠損性の良否は断続切削において工具
が欠損して寿命となるまでの溝との衝突回数をも
つて評価した。工具の耐摩耗性の良否は連続切削
において工具すくい面摩耗深さKtが50μmに達す
るまでの切削時間により評価した。本発明工具の
耐欠損性は比較工具のそれと比較すると著しく優
れている。断続切削における工具寿命は10倍以上
である。また耐摩耗性は比較工具のそれとほぼ同
じである。微細クラツクの効果は極めて顕著であ
ることがわかる。
[Industrial Field of Application] The present invention relates to a cutting tool that is subjected to an impact load. [Prior Art and Problems to be Solved by the Invention] Cermet tools are widely used as tools for high-speed finishing cutting and milling. The chemical composition of cermet alloys is carbides with low wettability with steel;
Hard compounds such as nitrides and carbonitrides, and cobalt, nickel, etc. that bind these together.
Cermet tools are superior in terms of finished surface roughness because the hard compound that is their main component does not easily adhere to steel. Less defective. If this alloy is coated with ceramics by chemical vapor deposition, it is expected that the finished surface roughness and wear resistance will be further improved, but there is a problem in that the chipping resistance will deteriorate. In order to improve the fracture strength of as-deposited crystalline or amorphous ceramic films, various studies have been conducted, including film thickness, crystal grain size, film formation conditions that affect the crystal structure, and post-formation heat treatment methods. has not yet achieved sufficient effect. If the fracture strength of cermet alloys coated with ceramics can be increased, it will be possible to supply even better cutting tools, which will be used in applications such as milling, turning of grooved materials, and other high-speed cutting with intermittent loads. It is expected that it will spread. [Means for Solving the Problems] Therefore, the present inventors conducted research to develop a coated tool with even better fracture resistance. As a result, the wear resistance of cutting tools was improved by adding minute cracks to the coating. It has been found that fracture resistance can be significantly improved without impairing properties. This invention is based on the above knowledge, and
The target tool is a titanium carbonitride-based cermet alloy whose surface is coated with a chemical vapor deposition method.
Cutting of surface-coated cermet with excellent fracture resistance, characterized by having a coating of 2 μm or more and 10 μm or less, and having fine cracks as shown in A to C below that penetrate from the surface to the inside of the titanium carbonitride-based cermet. tool. (A) Average crack length: More than the coating thickness in the vertical direction from the coating surface, coating thickness + 5 μm or less, (B) Average crack width: 4 μm or less, (C) Average crack spacing: 10 μm or more, 200 μm
[Function] The film forming method is a chemical vapor deposition method. The coating is Tic,
It is a layer of any one of TiN, Ti (C, NF), and Al 2 O 3 or a stack of two or more of them. The thickness of the coating must be 2 μm or more to ensure wear resistance. Furthermore, as the coating thickness increases, the fracture resistance decreases, so the maximum thickness must be 10 μm. Usually, ceramics are applied to the surface of cermet alloy.
It is known that when coated using the CVD method, the mechanical strength of tools made of this coated alloy decreases, making them more likely to break. The cause is thought to be the difference in thermal expansion coefficient between the coating and the base material, and the tensile residual stress generated in the coating during the cooling process after CVD coating at high temperatures.This residual stress can be as high as 55Kgf/ mm2 . It has been confirmed that this can be achieved. When a tool with such tensile residual stress is used for interrupted cutting, additional tensile stress acts on the tool surface due to the cutting operation, and this is added to the tensile residual stress, which weakens the bending fracture strength and improves chipping resistance. This will lead to a decline in sexuality. The present invention provides fine cracks to the coating in order to improve this fracture resistance. These fine cracks whose length, width, and spacing are defined as described above release the tensile residual stress generated in the coating during the cooling process described above, and therefore, the total stress applied to the tool surface layer is: It is thought that the stress is reduced compared to the sum total of the stress that would occur when no microcracks are provided, and as a result, the propagation of cracks that lead to tool breakage is suppressed, and fracture resistance is improved. In other words, the fine cracks of the present invention are provided only to relieve the tensile stress remaining in the coating. The average crack length must be greater than the coating thickness and less than coating thickness + 5 μm in the vertical direction from the coating surface. This is because if the crack remains within the coating, the fracture resistance will not improve, and if the length within the cermet exceeds 5 μm, the fracture resistance will drop sharply. The average crack width is 4μm
Must be less than or equal to The reason for this is that as the crack width increases, fracture resistance improves, but wear resistance significantly decreases. The average value of crack spacing is 10 μm or more and 200 μm or less.
This is because if it is less than 200 μm, the crack density becomes too high and the wear resistance decreases, and if it exceeds 200 μm, the crack density becomes too small and a sufficient improvement in fracture resistance cannot be obtained. As a method for introducing such fine cracks, a method of injecting cast iron or the like onto the coating surface, a method of diamond grinding the coating surface, a method of applying mechanical or ultrasonic vibration pressure, etc. can be applied. The crack size and distribution were confirmed by breaking the tool and observing its cross section using an electron microscope (SEM). The average value of crack length, average value of crack width, and crack interval were measured from 10 photographs of the fracture surface taken at 10 fields of view and a magnification of 1000. Next, the surface-coated cermet cutting tool of the present invention having excellent fracture resistance will be specifically described with reference to Examples. [Example] Table 1 shows the crack dimensions and distribution of the test tools, as well as their cutting performance. The cermet alloy composition of the test tool is titanium carbonitride (Ti(C,N)): 47.0wt
%, molybdenum carbide ( Mo2C ): 7.5wt%, tungsten carbide: 16.5wt%, tantalum carbide:
10.0wt%, niobium carbide: 5.0wt%, nickel (Ni): 5.0wt%, Co: 9.0wt%. A square cermet alloy with a side of 12.7 mm was manufactured through a process of crushing, mixing, granulation, sintering, and grinding. TiC/Ti(C,N)/TiC/Ti(C,N)/
The indexable tool was coated with Al 2 O 3 in this order to a thickness of 10 μm and 20 μm. A cast iron ball with an average grain size of 200 μm is inserted into this tool at a speed of 10 to 80 m/sec and at an angle of
Fine cracks were introduced by projecting at an angle of 70 to 90 degrees. The size and distribution of cracks were measured by breaking the tool and observing its cross section using an electron microscope (SEM). The average value of the crack length and the average value of the crack width were measured from 10 photographs taken of the fracture surface in 10 fields of view and at a magnification of 1000. The crack interval is the average value of adjacent crack intervals. The performance of the coated tool of the present invention and the comparative tool was evaluated by cutting. The conditions are as follows. (1) Intermittent cutting Work material: JIS S38C, a round bar with a diameter of 60 mm. Five grooves with a width of 10 mm were made at equal intervals parallel to the rolling direction. Cutting speed: 170m/min Feed: 0.15mm/rev Depth of cut: 1.0mm Tool life judgment criteria: Tool edge loss (2) Continuous cutting Work material: JIS S38C, round bar with a diameter of 60mm Cutting speed: 200m/min Feed: 0.15mm/rev Depth of cut: 1.0mm Tool life judgment criteria: Tool rake face wear depth Kt = 50μm The quality of tool fracture resistance is determined by the number of collisions with the groove until the tool breaks during interrupted cutting and reaches the end of its life. It was evaluated. The wear resistance of the tool was evaluated by the cutting time until the tool rake face wear depth Kt reached 50 μm in continuous cutting. The fracture resistance of the tool of the present invention is significantly superior to that of comparative tools. Tool life in interrupted cutting is more than 10 times longer. Also, the wear resistance is almost the same as that of the comparative tool. It can be seen that the effect of fine cracks is extremely significant.

【表】 [発明の効果] 本発明は従来のサーメツト工具の欠点である耐
欠損性を改善したもので、産業上の効果は極めて
顕著なものがある。
[Table] [Effects of the Invention] The present invention improves fracture resistance, which is a drawback of conventional cermet tools, and has extremely significant industrial effects.

Claims (1)

【特許請求の範囲】 1 炭窒化チタン基サーメツト合金の表面に化学
蒸着法により被覆した厚さ2μm以上、10μm以下
の被膜を有し、該被覆がその表面から炭窒化チタ
ン基サーメツト内まで貫通した以下A〜Cに示す
微細クラツクを有することを特徴とする耐欠損性
に優れる表面被覆サーメツト切削工具。 (A) クラツク長さの平均値:被膜表面から垂直方
向に被膜厚以上、被膜厚+5μm以下、 (B) クラツク幅の平均値:4μm以下、 (C) クラツク間隔の平均値:10μm以上、200μm
以下。
[Scope of Claims] 1. A titanium carbonitride-based cermet alloy having a coating with a thickness of 2 μm or more and 10 μm or less coated by chemical vapor deposition on the surface of the titanium carbonitride-based cermet, and the coating penetrates from the surface to the inside of the titanium carbonitride-based cermet. A surface-coated cermet cutting tool with excellent fracture resistance characterized by having fine cracks as shown in A to C below. (A) Average crack length: Above the coating thickness in the vertical direction from the coating surface, coating thickness + 5 μm or less, (B) Average crack width: 4 μm or less, (C) Average crack spacing: 10 μm or more, 200 μm
below.
JP22761389A 1989-09-04 1989-09-04 Surface coated cermet cutting tool with excellent chipping resistance Granted JPH0392205A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22761389A JPH0392205A (en) 1989-09-04 1989-09-04 Surface coated cermet cutting tool with excellent chipping resistance
DE69010293T DE69010293T3 (en) 1989-09-04 1990-08-31 Ceramic-coated cemented carbide tool with high breaking resistance.
EP90309550A EP0416824B2 (en) 1989-09-04 1990-08-31 Ceramics coated cemented carbide tool with high fracture resistance
US07/576,950 US5123934A (en) 1989-09-04 1990-09-04 Ceramics coated cemented-carbide tool with high-fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22761389A JPH0392205A (en) 1989-09-04 1989-09-04 Surface coated cermet cutting tool with excellent chipping resistance

Publications (2)

Publication Number Publication Date
JPH0392205A JPH0392205A (en) 1991-04-17
JPH0581366B2 true JPH0581366B2 (en) 1993-11-12

Family

ID=16863681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22761389A Granted JPH0392205A (en) 1989-09-04 1989-09-04 Surface coated cermet cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JPH0392205A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985444B2 (en) * 2000-10-17 2007-10-03 日新電機株式会社 Method for forming carbon film on soft substrate surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615717B2 (en) * 1987-07-28 1994-03-02 東芝タンガロイ株式会社 High toughness coating material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0392205A (en) 1991-04-17

Similar Documents

Publication Publication Date Title
JP4680932B2 (en) Surface coated cutting tool
RU2071869C1 (en) Cutting tool
JP4739235B2 (en) Surface coated cutting tool
JP4739236B2 (en) Surface coated cutting tool
JP2009028894A (en) Coated cutting tool
US7435486B2 (en) Insert for metal cutting
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JPH05177411A (en) Cover cutting tool and its manufacture
JPH10225804A (en) Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JP3087503B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JPH0581365B2 (en)
JP3360339B2 (en) Coated cutting tool
JPH0581366B2 (en)
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP5062541B2 (en) Cutting edge replacement type cutting tool
JP2011031318A (en) Surface coated cutting tool with hard coated layer having excellent anti-chipping property
JP2001310202A (en) Surface covered cermet made cutting tool on which hard covered layer displays excellent chipping resistance
JP3358530B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP2002239807A (en) Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance
JPH076066B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance and fracture resistance
JPH01252305A (en) Surface coated hard alloy cutting tip with tungsten carbide base
JPS6343453B2 (en)
JPH0749165B2 (en) Coated cemented carbide tool with excellent impact resistance

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 16

EXPY Cancellation because of completion of term