JPH0581365B2 - - Google Patents

Info

Publication number
JPH0581365B2
JPH0581365B2 JP1227612A JP22761289A JPH0581365B2 JP H0581365 B2 JPH0581365 B2 JP H0581365B2 JP 1227612 A JP1227612 A JP 1227612A JP 22761289 A JP22761289 A JP 22761289A JP H0581365 B2 JPH0581365 B2 JP H0581365B2
Authority
JP
Japan
Prior art keywords
coating
tool
cemented carbide
cutting
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1227612A
Other languages
Japanese (ja)
Other versions
JPH0392204A (en
Inventor
Akira Katayama
Masayuki Hashimura
Hiroto Imamura
Tetsuo Sawajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Nippon Steel Corp
Nittetsu Choko KK
Original Assignee
Toho Kinzoku Co Ltd
Nippon Steel Corp
Nittetsu Choko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd, Nippon Steel Corp, Nittetsu Choko KK filed Critical Toho Kinzoku Co Ltd
Priority to JP22761289A priority Critical patent/JPH0392204A/en
Priority to DE69010293T priority patent/DE69010293T3/en
Priority to EP90309550A priority patent/EP0416824B2/en
Priority to US07/576,950 priority patent/US5123934A/en
Publication of JPH0392204A publication Critical patent/JPH0392204A/en
Publication of JPH0581365B2 publication Critical patent/JPH0581365B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は衝撃荷重の負荷する切削用工具に関わ
るものである。 [従来の技術及び発明が解決しようとする課題] 従来の被覆超硬合金切削工具は、炭化タングス
テン基超硬合金の表面に化学蒸着法または物理蒸
着法により結晶状あるいは非晶質状セラミツクス
を被覆してある。セラミツクス被膜の厚さは数μ
mで出来る限りボイド、クラツクまどの欠陥を内
在させないように製造されている。一般に、物理
蒸着法により被覆した工具の性能は耐摩耗性、耐
欠損性ともに中位であるが、化学蒸着法により被
覆した工具の性能は耐摩耗性に著しく優れるが、
耐欠損性は劣り、それぞれの方法には一長一短が
ある。 化学蒸着法により被覆した工具の欠損性を改善
出来れば優れた性能の切削工具が得られる。化学
蒸着法の場合、耐摩耗性は大幅に向上するが耐欠
損性が低下する理由として以下のように説明され
ている。超硬合金工具はカタサの大きい炭化物と
カタサの小さいコバルト金属とからなる2相合金
であるため、鋼を切削する場合には鋼とコバルト
が凝着して摩耗しやすい。この欠点を補うため
に、鋼と凝着しにくいセラミツクスを超硬合金表
面に被覆すると耐摩耗性は著しく向上するが、蒸
着ままの結晶状あるいは非晶質状セラミツクスの
破壊強度が小さいために被膜が起点となつて破壊
が起こり欠損し易くなる。文献「超硬合金と焼結
硬質材料」(丸善(株)、P218)によると、被膜を被
覆することにより破壊強度は50%低下することが
報告されている。被膜の破壊強度を向上させるた
めに、被膜の厚さ、結晶粒径、結晶構造に及ぼす
成膜条件、成膜後の熱処理法など種々検討されて
いるが十分な効果をあげるに至つていない。その
ために、フライス加工、溝付き材料の施削加工等
の継続的荷重の負荷する切削の場合、工具が欠損
しやすく工具寿命の変動が大きい。機械の自動化
技術の進歩に見合つた耐欠損性の高い表面被覆超
硬合金切削工具の開発が望まれている。 [課題を解決するための手段] そこで、本発明者等は耐欠損性の一層優れた被
覆工具を開発すべく研究が行つた結果、被膜に微
細なクラツクを付与することにより切削工具の耐
摩耗性を損なうことなく、耐欠損性を著しく向上
させることが出来ることを見出した。 この発明は上記の知見の基ずくものであつて、
その対象とする工具は、炭化タングステン基超硬
合金の表面に化学蒸着法により被覆した厚さ2μ
m以上、10μm以下の被膜を有し、該被膜がその
表面から炭化タングステン基超硬合金内まで貫通
した以下A〜Cに示す微細クラツクを有すること
を特徴とする耐欠損性に優れる表面被膜超硬合金
切削工具に関するものである。(A) クラツク長さ
の平均値:被膜表面から垂直方向に被膜厚以
上、被覆厚+5μm以下、 (B) クラツク幅の平均値:5μm以下、 (C) クラツク間隔の平均値:10μm以上、200μm
以下 [作用] 成膜法は化学蒸着法である。被膜はTiC、
TiN、Ti(C、N)、Al2O3のいずれか1種の層ま
たは2種以上を積層したものである。被膜の厚み
は耐摩耗性を確保するために2μm以上必要であ
る。また、被膜厚みが大きくなると耐欠損性が低
下するので最大厚みを10μmとしなければならな
い。 通常、タングクステン基超硬合金の表面にセラ
ミツクスをCVD法により被覆すると、こ被覆合
金製の工具の機械強度が低下し、欠損しやすくな
ることが知られている。その原因は、被膜と基材
の熱膨張係数に差異があり、高温でのCVD被覆
後の冷却過程において被膜に発生する引張残留応
力にあると考えられ、この残留応力は55Kgf/mm2
にも達することが確認されている。このような引
張残留応力を有する工具を用いて断続切削する
と、工具表面には切削作業によりさらに引張応力
が作用し、これが前記の引張残留応力に加算され
るため、曲げ破壊強度を弱め、耐欠損性を低下さ
せることになる。 本発明は、この耐欠損性を向上させるために被
膜に微細クラツクを付与するものである。この長
さ、幅および間隔を前述のごとく規定した微細ク
ラツクは、前述した冷却過程において被膜に発生
する引張残留応力を開放することになり、従つ
て、工具表層に負荷される応力の総和は、微細ク
ラツクを付与しない場合に生じる応力の総和より
軽減され、その結果工具破壊につながるクラツク
の伝播が抑制され、耐欠損性が向上するものと考
えられる。つまり、本発明の微細クラツクは被膜
に残留する引張応力を開放するためにのみ付与す
るものである。 クラツク長さの平均値は被膜表面から垂直方向
に被膜厚さ以上、被膜厚さ+5μm以下でなけれ
ばならない。それはクラツクが被膜内にとどまる
と耐欠損性が向上しないためであり、超硬合金内
の長さが5μmを超えると耐欠損性が急激に低下
するためである。クラツク幅の平均値は5μm以
下でなければならない。その理由はクラツク幅が
大きくなると耐欠損性は向上するが耐摩耗性が著
しく低下するためである。クラツク間隔の平均値
を10μm以上、200μm以下としたのは、10μm未
満になるとクラツク密度が高くなりすぎて耐摩耗
性が低下するためであり、200μmを超えるとク
ラツク密度が小さくなりすぎて耐欠損性の向上が
十分に得られないためである。 このような微細クラツクを導入する方法として
被膜表面に鋳鉄等を噴射する方法あるいは、被膜
表面ダイアモンド研削、機械的あるいは超音波振
動加圧する方法等を適用することが出来る。クラ
ツク寸法および分布の確認は工具を破断してその
断面を電子顕微鏡(SEM)により観察すること
により行つた。破断面を10視野、倍率1000で撮影
した10枚の写真からクラツク長さの平均値、クラ
ツク幅の平均値およびクラツク間隔を測定した。 次に、この発明の耐欠損性の優れる表面被覆超
硬合金切削工具を実施例により具体的に説明す
る。 [実施例] 第1表に供試工具のクラツク寸法と分布、及び
その切削性能を示す。供試工具の超硬合金成分は
炭化タングステン(WC):84wt%、炭化チタン
(TiC):7wt%、炭化タンタル(TaC):5wt%、
Co:4%である。純粋−混合−造粒−焼結−研
削工程を経て、一辺12.7mmの正方形超硬合金を製
造した。この超硬合金にCVD法によりTiC/Ti
(C、N)/Al2O3をこの順序に8μm、及び4μm
厚さ被覆してスローアウエイ工具とした。この工
具に平均粒径200μmの鋳鉄球を速度10〜80m/
sec、角度70〜90度の条件で投射して微細クラツ
クを導入した。 クラツクの寸法と分布は工具を破断してその断
面を電子顕微鏡(SEM)により観察して測定し
た。破断面を10視野、倍率1000で撮影した10枚の
写真からクラツク長さの平均値、及びクラツク幅
の平均値を測定した。クラツク間隔は相隣合うク
ラツク間隔の平均値である。 本発明被覆工具と比較工具について切削による
性能評価を行つた。その条件は以下の通りであ
る。 (1) 断続切削 被削材:JIS S45C、直径60mmの丸棒に圧延方
向と平行に幅10mmの溝を等間隔に5本つけ
た。 切削速度:150m/min 送り:0.25mm/rev 切込み:2.0mm 工具寿命判定基準:工具刃先の欠損 (2) 連続切削 被削材:JIS S45C、直径60mmの丸棒 切削速度:30m/min 送り:0.25mm/rev 切込み:2.0mm 工具寿命判定基準:工具すくい面摩耗深さkt=
50μm 工具の耐欠損性の良否は断続切削において工具
が欠損して寿命となるまでの溝との衝突回数をも
つて評価した。工具の耐摩耗性の良否は連続切削
において工具すくい面摩耗深さktが50μmに達す
るまでの切削時間により評価した。本発明工具の
耐欠損性は比較工具のそれと比較すると著しく優
れている。断続切削における工具寿命は10倍以上
である。また耐摩耗性は比較工具のそれとほぼ同
じである。微細クラツクの効果は極めて顕著であ
ることがわかる。
[Industrial Field of Application] The present invention relates to a cutting tool that is subjected to an impact load. [Prior art and problems to be solved by the invention] Conventional coated cemented carbide cutting tools coat a tungsten carbide-based cemented carbide surface with crystalline or amorphous ceramics by chemical vapor deposition or physical vapor deposition. It has been done. The thickness of the ceramic coating is several microns.
It is manufactured to avoid defects such as voids and cracks as much as possible. In general, tools coated by physical vapor deposition have moderate wear resistance and chipping resistance, while tools coated by chemical vapor deposition have significantly superior wear resistance.
Fracture resistance is poor, and each method has its advantages and disadvantages. If the chipping properties of tools coated by chemical vapor deposition can be improved, cutting tools with excellent performance can be obtained. In the case of chemical vapor deposition, the reason why the wear resistance is greatly improved but the chipping resistance is decreased is explained as follows. A cemented carbide tool is a two-phase alloy consisting of a carbide with a large bulge and a cobalt metal with a small bulge, so when cutting steel, the steel and cobalt adhere to each other and easily wear out. To compensate for this drawback, coating the cemented carbide surface with ceramics that do not easily adhere to steel significantly improves wear resistance, but since the fracture strength of as-deposited crystalline or amorphous ceramics is low, becomes the starting point, causing breakage and making it more likely to be damaged. According to the literature "Cemented Carbide and Sintered Hard Materials" (Maruzen Co., Ltd., p. 218), it is reported that the fracture strength decreases by 50% by coating. In order to improve the fracture strength of the film, various studies have been conducted, including the film thickness, crystal grain size, film formation conditions that affect the crystal structure, and post-formation heat treatment methods, but no sufficient effect has been achieved. . For this reason, in the case of cutting where continuous loads are applied, such as milling or machining of grooved materials, the tool tends to break and the tool life fluctuates greatly. It is desired to develop surface-coated cemented carbide cutting tools with high fracture resistance that are commensurate with advances in machine automation technology. [Means for solving the problem] Therefore, the present inventors conducted research to develop a coated tool with even better fracture resistance, and as a result, the wear resistance of the cutting tool was improved by adding fine cracks to the coating. It has been found that fracture resistance can be significantly improved without impairing properties. This invention is based on the above knowledge, and
The target tool is a tungsten carbide-based cemented carbide surface coated with a thickness of 2μ by chemical vapor deposition.
A surface coating film with excellent chipping resistance characterized by having a coating with a diameter of 10 μm or more and 10 μm or less, and having microcracks as shown in A to C below that penetrate from the surface to the inside of the tungsten carbide-based cemented carbide. This invention relates to hard metal cutting tools. (A) Average crack length: More than the coating thickness in the vertical direction from the coating surface, coating thickness + 5 μm or less, (B) Average crack width: 5 μm or less, (C) Average crack spacing: 10 μm or more, 200 μm
[Function] The film forming method is a chemical vapor deposition method. The coating is TiC,
It is a layer of one type or a stack of two or more of TiN, Ti (C, N), and Al 2 O 3 . The thickness of the coating must be 2 μm or more to ensure wear resistance. Furthermore, as the coating thickness increases, the fracture resistance decreases, so the maximum thickness must be 10 μm. It is known that when the surface of a tungsten-based cemented carbide is coated with ceramics using the CVD method, the mechanical strength of tools made of the coated alloy decreases, making them more likely to break. The cause is thought to be the difference in thermal expansion coefficient between the coating and the base material, and the tensile residual stress generated in the coating during the cooling process after CVD coating at high temperatures.This residual stress is 55Kgf/mm 2
It has also been confirmed that this can be achieved. When a tool with such tensile residual stress is used for interrupted cutting, additional tensile stress acts on the tool surface due to the cutting operation, and this is added to the tensile residual stress, which weakens the bending fracture strength and improves chipping resistance. This will lead to a decline in sexuality. The present invention provides fine cracks to the coating in order to improve this fracture resistance. These fine cracks whose length, width, and spacing are defined as described above release the tensile residual stress generated in the coating during the cooling process described above, and therefore, the total stress applied to the tool surface layer is: It is thought that the stress is reduced compared to the sum total of the stress that would occur when no microcracks are provided, and as a result, the propagation of cracks that lead to tool breakage is suppressed, and fracture resistance is improved. In other words, the fine cracks of the present invention are provided only to relieve the tensile stress remaining in the coating. The average crack length must be greater than the coating thickness and less than coating thickness + 5 μm in the vertical direction from the coating surface. This is because if the crack remains within the coating, the fracture resistance will not improve, and if the length within the cemented carbide exceeds 5 μm, the fracture resistance will drop sharply. The average crack width must be less than 5 μm. The reason for this is that as the crack width increases, fracture resistance improves, but wear resistance significantly decreases. The reason why the average crack spacing is set to 10 μm or more and 200 μm or less is because if it is less than 10 μm, the crack density will become too high and the wear resistance will decrease.If it exceeds 200 μm, the crack density will become too small and the fracture resistance will decrease. This is because the sexual performance cannot be sufficiently improved. As a method for introducing such fine cracks, a method of injecting cast iron or the like onto the coating surface, a method of diamond grinding the coating surface, a method of applying mechanical or ultrasonic vibration pressure, etc. can be applied. The crack size and distribution were confirmed by breaking the tool and observing its cross section using an electron microscope (SEM). The average value of crack length, average value of crack width, and crack interval were measured from 10 photographs taken of the fracture surface at 10 fields of view and a magnification of 1000. Next, the surface-coated cemented carbide cutting tool of the present invention with excellent fracture resistance will be specifically described with reference to Examples. [Example] Table 1 shows the crack size and distribution of the test tool, as well as its cutting performance. The cemented carbide components of the test tool are tungsten carbide (WC): 84wt%, titanium carbide (TiC): 7wt%, tantalum carbide (TaC): 5wt%,
Co: 4%. A square cemented carbide with a side of 12.7 mm was manufactured through a pure-mixing-granulation-sintering-grinding process. TiC/Ti is added to this cemented carbide by CVD method.
(C, N)/Al 2 O 3 in this order 8μm and 4μm
It was coated thickly and made into a throw-away tool. This tool uses cast iron balls with an average grain size of 200μm at a speed of 10 to 80m/
sec, and projected at an angle of 70 to 90 degrees to introduce fine cracks. The size and distribution of cracks were measured by breaking the tool and observing its cross section using an electron microscope (SEM). The average value of the crack length and the average value of the crack width were measured from 10 photographs taken of the fracture surface in 10 fields of view and at a magnification of 1000. The crack interval is the average value of adjacent crack intervals. The performance of the coated tool of the present invention and the comparative tool was evaluated by cutting. The conditions are as follows. (1) Intermittent cutting Work material: JIS S45C, a round bar with a diameter of 60 mm. Five grooves with a width of 10 mm were made at equal intervals parallel to the rolling direction. Cutting speed: 150m/min Feed: 0.25mm/rev Depth of cut: 2.0mm Tool life criterion: Tool edge loss (2) Continuous cutting Work material: JIS S45C, round bar with a diameter of 60mm Cutting speed: 30m/min Feed: 0.25mm/rev Depth of cut: 2.0mm Tool life criterion: Tool rake face wear depth kt=
The fracture resistance of the 50μm tool was evaluated based on the number of collisions with the groove during interrupted cutting until the tool fractured and reached the end of its life. The wear resistance of the tool was evaluated by the cutting time until the tool rake face wear depth kt reached 50 μm in continuous cutting. The fracture resistance of the tool of the present invention is significantly superior to that of the comparative tool. Tool life in interrupted cutting is more than 10 times longer. Furthermore, the wear resistance is almost the same as that of the comparative tool. It can be seen that the effect of fine cracks is extremely significant.

【表】【table】

【表】 [発明の効果] 本発明は従来の被覆超硬合金工具の欠点である
耐欠損性を改善したもので、産業上の効果は極め
て顕著なものがある。
[Table] [Effects of the Invention] The present invention improves fracture resistance, which is a drawback of conventional coated cemented carbide tools, and has extremely significant industrial effects.

Claims (1)

【特許請求の範囲】 1 炭化タングステン基超硬合金の表面に化学蒸
着法により被覆した厚さ2μm以上、10μm以下の
被膜を有し、該被膜がその表面から炭化タングス
テン基超硬合金内まで貫通した以下A〜Cに示す
微細クラツクを有することを特徴とする耐欠損性
に優れる表面被覆超硬合金切削工具。 (A) クラツク長さの平均値:被膜表面から垂直方
向に被膜厚以上、被覆厚+5μm以下、 (B) クラツク幅の平均値:5μm以下、 (C) クラツク間隔の平均値:10μm以上、200μm
以下。
[Scope of Claims] 1. A tungsten carbide-based cemented carbide having a coating coated on the surface of the tungsten carbide-based cemented carbide with a thickness of 2 μm or more and 10 μm or less by a chemical vapor deposition method, and the coating penetrates from the surface to the inside of the tungsten carbide-based cemented carbide. A surface-coated cemented carbide cutting tool having excellent fracture resistance, characterized by having fine cracks as shown in A to C below. (A) Average crack length: More than the coating thickness in the vertical direction from the coating surface, coating thickness + 5 μm or less, (B) Average crack width: 5 μm or less, (C) Average crack spacing: 10 μm or more, 200 μm
below.
JP22761289A 1989-09-04 1989-09-04 Surface coated cemented carbide cutting tool with excellent chipping resistance Granted JPH0392204A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22761289A JPH0392204A (en) 1989-09-04 1989-09-04 Surface coated cemented carbide cutting tool with excellent chipping resistance
DE69010293T DE69010293T3 (en) 1989-09-04 1990-08-31 Ceramic-coated cemented carbide tool with high breaking resistance.
EP90309550A EP0416824B2 (en) 1989-09-04 1990-08-31 Ceramics coated cemented carbide tool with high fracture resistance
US07/576,950 US5123934A (en) 1989-09-04 1990-09-04 Ceramics coated cemented-carbide tool with high-fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22761289A JPH0392204A (en) 1989-09-04 1989-09-04 Surface coated cemented carbide cutting tool with excellent chipping resistance

Publications (2)

Publication Number Publication Date
JPH0392204A JPH0392204A (en) 1991-04-17
JPH0581365B2 true JPH0581365B2 (en) 1993-11-12

Family

ID=16863665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22761289A Granted JPH0392204A (en) 1989-09-04 1989-09-04 Surface coated cemented carbide cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JPH0392204A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896756B2 (en) * 2007-02-08 2012-03-14 株式会社シブタニ Entrance unit mounting device
JP5736600B2 (en) 2011-09-22 2015-06-17 株式会社タンガロイ Coated cutting tool
CA2922827C (en) * 2013-08-21 2017-01-31 Tungaloy Corporation Coated cutting tool
AT15412U1 (en) * 2016-06-27 2017-08-15 Ceratizit Austria Gmbh Method for the mechanical annealing of functional hard metal or cermet surfaces

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615717B2 (en) * 1987-07-28 1994-03-02 東芝タンガロイ株式会社 High toughness coating material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0392204A (en) 1991-04-17

Similar Documents

Publication Publication Date Title
RU2071869C1 (en) Cutting tool
KR20120051045A (en) Coated cutting tools having a platinum group metal concentration gradient and related processes
US7435486B2 (en) Insert for metal cutting
JP6198006B2 (en) Surface coated cutting tool with excellent abnormal damage resistance
JP2001504550A (en) Method for producing diamond-coated member
Liu et al. Cutting performance and wear behavior of AlTiN-and TiAlSiN-coated carbide tools during dry milling of Ti–6Al–4V
US5123934A (en) Ceramics coated cemented-carbide tool with high-fracture resistance
JP3309507B2 (en) Cutting tools made of surface-coated cubic boron nitride-based ceramics with a hard coating layer with excellent adhesion
JP5839289B2 (en) Surface coated cutting tool
JP6198141B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JPH0581365B2 (en)
JPH05177411A (en) Cover cutting tool and its manufacture
JPS603921B2 (en) Surface-coated cemented carbide cutting tools
JPH10225804A (en) Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JP3360339B2 (en) Coated cutting tool
JPH0581366B2 (en)
JPH0818163B2 (en) Alumina coating tool and manufacturing method thereof
JPH076066B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance and fracture resistance
JPH10337602A (en) Cutting tool made of surface covering cemented carbide and having thick artificial diamond covering layer having superior peeling resistance
JP4518626B2 (en) Coated cutting tool
JPH048409A (en) Coated cemented carbide tool excellent in shock resistance
JPH01252305A (en) Surface coated hard alloy cutting tip with tungsten carbide base
JP2623508B2 (en) Coated cemented carbide with adjusted surface roughness
JPH1112736A (en) Surface covered cemented carbide cutting tool in which thickened artificial diamond coating layer has excellent peeling resistance
JPH1150254A (en) Surface-coated cemented carbide-cutting tool having excellent chipping resistance in thich-film artificial diamond coating layer

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 16

EXPY Cancellation because of completion of term