JPH10153581A - Inspection method for high-frequency welded steel pipe, and its manufacturing equipment - Google Patents

Inspection method for high-frequency welded steel pipe, and its manufacturing equipment

Info

Publication number
JPH10153581A
JPH10153581A JP8311569A JP31156996A JPH10153581A JP H10153581 A JPH10153581 A JP H10153581A JP 8311569 A JP8311569 A JP 8311569A JP 31156996 A JP31156996 A JP 31156996A JP H10153581 A JPH10153581 A JP H10153581A
Authority
JP
Japan
Prior art keywords
steel pipe
welded steel
frequency welded
frequency
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8311569A
Other languages
Japanese (ja)
Other versions
JP2905157B2 (en
Inventor
Hirotaka Tanaka
博孝 田中
Hide Sasaki
秀 佐々木
Kenichiro Umehana
賢一郎 梅花
Takao Ichinohe
崇雄 一戸
Masayasu Nishino
正保 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKINKOU KOKAN KK
Nippon Metal Industry Co Ltd
Original Assignee
NITSUKINKOU KOKAN KK
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKINKOU KOKAN KK, Nippon Metal Industry Co Ltd filed Critical NITSUKINKOU KOKAN KK
Priority to JP8311569A priority Critical patent/JP2905157B2/en
Publication of JPH10153581A publication Critical patent/JPH10153581A/en
Application granted granted Critical
Publication of JP2905157B2 publication Critical patent/JP2905157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method for a high-frequency welded steel pipe, in which a welding defect in an electric resistance welded pipe is detected in-line, and in which the quality of a welded part in product can be guaranteed one hundred %. SOLUTION: In a production line for stainless steel electric resistance welded pipe, a flat strain at a flatness ratio of 30 to 60% is given, by a flat roll 5, to the stainless steel electric resistance welded pipe obtained by welding butt parts, the pipe is returned to a true circle by using a correction roll 6, and a crack in a welded part is detected by an ultrasonic flaw detecting apparatus 7.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は高周波溶接鋼管の検
査方法及びその製造装置に関し、特にステンレス鋼高周
波溶接管の分野における溶接欠陥の検出及び品質保証を
同時に行いつつステンレス鋼高周波溶接管(以下ステン
レス電縫管と称す)を製造する場合に用いて有用なもの
である。 【0002】 【従来の技術】従来、ステンレス電縫管を含む高周波溶
接鋼管(以下電縫管と称す)の検査方法としては、抜き
取りによる確性検査及びインライン若しくはオフライン
での渦流探傷法,超音波探傷法等による検査が知られて
いる。これらのうち確性検査とは、抜き取った電縫管に
所定の偏平率の偏平歪みを与え、この状態で溶接部を目
視することによりその良否を検査する方法である。一
方、渦流探傷法は溶接部に流す渦電流の変化を検出する
ことにより、また超音波探傷法は溶接部に入射させる超
音波の反射状態を検出することによりそれぞれ溶接部の
良否を検査する方法である。これら渦流探傷法,超音波
探傷法では電縫管に偏平歪みは与えていない。 【0003】また、特開昭63−249050号公報に
おいては、溶接部に対して垂直方向に25%以下の偏平
歪みを付加した後真円に戻し、溶接部の非破壊検査を行
なう検査方法が開示されている。 【0004】 【発明が解決しようとする課題】上述の如き渦流探傷法
及び超音波探傷法では、高周波溶接鋼管特有の冷接欠陥
(コールドウエルド)、ペネトレイト欠陥は検出が難し
く、通常は抜き取りによる確性検査によって確認され
る。 【0005】ところが、確性検査は抜き取りで行うので
電縫管の全長を検査することはできず、検査方法として
は信頼性に欠ける一面がある。すなわち、100%品質
保証された電縫管を製造するには、その全長を対象とし
た、より確実な検査方法を確立する必要がある。 【0006】また、溶接部に対して垂直方向に管径の2
5%以下の偏平歪みを付加する特開昭63−24905
0号公報に開示する検査方法では、与える偏平歪みの量
がステンレス電縫管に対しては不十分であるばかりでな
く、特にフェライト系ステンレス鋼を用いたステンレス
電縫管では溶接部の脆性遷移温度を考慮する必要があ
り、偏平歪みを与える時の温度を制御する必要がある。 【0007】本発明は、上記従来技術に鑑み、電縫管の
溶接欠陥をインラインで検出し、製品の溶接部の品質を
100%保証することができる高周波溶接鋼管の検査方
法及びその製造装置を提供することを目的とする。 【0008】 【課題を解決するための手段】上記目的を達成する本発
明は次の各種の実験に基づく知見を基礎するものであ
る。 【0009】ペネトレータ・コールドウエルド等、溶接
欠陥を内在する溶接部は引張りの歪を与えることにより
溶接欠陥から開口して破壊に至る。造管ラインにおいて
電縫管の溶接部に対し引張歪を与えるためには、溶接部
に対し90度方向から圧縮偏平加工を施せば溶接部に十
分な引張歪を付与することができる。かくして、ステン
レス電縫管の溶接欠陥率と偏平率との関係について調査
を行なった結果、溶接欠陥率と偏平率との関係を明らか
にすることができた。 【0010】ここで溶接欠陥率は、図2に示す網点領域
であるコールドウエルド域の面積をs、突き合わせ部の
面積(肉厚t×長さL)をSとするとき、次式(1)で
表される。 溶接欠陥率=(s/S)×100 (%)・・・・・・・・(1) 【0011】また偏平率は、図3(a)に示すように偏
平歪みを与える前のステンレス電縫管の外径D1 と、図
3(b)に示すように偏平歪みを与えた後のステンレス
電縫管の短径側の外径D2 とを用いて次式(2)で表さ
れる。 偏平率=(D1 −D2 )/D1 ×100 (%)・・・・・(2) 【0012】調査は次のような態様で行った。先ず、試
料となる多数のステンレス電縫管のそれぞれに、溶接部
から左右に90度の位置でこのステンレス電縫管を挟ん
で径方向中心に向かう力に基づく偏平歪みを徐徐に付与
する。これを溶接部の割れが目視により確認できる時点
まで継続する。このようにして溶接部に割れを生起した
時点の式(2)で定義される偏平率を記録しておく。そ
の後試料を完全に潰し、溶接部を開いて顕微鏡で観察す
ることにより式(1)で定義される溶接欠陥率を求め
る。 【0013】上述の如き調査により求めた溶接欠陥率と
偏平率との関係を図4に示す。同図に示す結果から、溶
接欠陥率が2〜3%でも偏平率が30%までは溶接部の
割れを目視できない試料があることが分かる(図4の試
料参照)。すなわち偏平率が25%だと溶接欠陥があ
っても溶接部が割れない場合がある。この逆に、偏平率
が30%以上の偏平歪みを与えれば、溶接欠陥を内在し
た溶接部は全て割れが生じることを確認した。一方、J
IS規格では溶接欠陥率の如何にかかわらず偏平率が5
7%までは割れを生起しないことを要求している。した
がって、偏平率が30%乃至60%の偏平歪みを付与し
て割れが検出されない場合、実用上溶接欠陥のない良品
であると判断することができる。 【0014】かかる知見に基づく本発明の構成は次の点
を特徴とする。 【0015】1) 高周波溶接鋼管の製造ライン内にお
いて、高周波溶接鋼管の溶接部から左右に90度の位置
でこの高周波溶接鋼管を挟んで径方向中心に向かう力を
付与することによりこの高周波溶接鋼管に偏平率30%
乃至60%の偏平歪みを与え、その後矯正ロールにより
真円に戻し、渦流探傷若しくは超音波探傷により溶接部
の割れを検出すること。 【0016】2) アンコイラーから巻き戻した鋼板を
管状に成形するとともに突合せ部を高周波溶接し、その
後冷却することにより高周波溶接鋼管を得る高周波溶接
鋼管の製造装置において、冷却した高周波溶接鋼管にそ
の溶接部から左右に90度の位置でこの高周波溶接鋼管
を挟んで径方向中心に向かう力を付与することによりこ
の高周波溶接鋼管に偏平率30%乃至60%の偏平歪み
を与える歪付与手段と、偏平歪みを付与した高周波溶接
鋼管を元の真円に戻す矯正手段と、真円に戻した高周波
溶接鋼管の溶接部の割れを検出する検査手段とを有する
こと。 【0017】フェライト系ステンレス鋼は溶接部の脆性
遷移温度を考慮する必要があり、偏平歪みを与える時の
温度を制御する必要がある。この点を明らかにするため
に健全な溶接部、すなわち上述の如き偏平試験により割
れを生起しなかった溶接部にメカニカルにノッチを形成
し、かかる溶接部を有する試料を恒温室で種々の温度に
保持し、この状態で各試料に対するシャルビー衝撃試験
を行った。この結果を図6に示す。同図に示すように、
温度が110℃以上では常に大きな衝撃を与えなければ
割れが進展しないことが分かった。すなわち温度が11
0℃以上では溶接欠陥を含んでいても延性を示す(11
0℃近傍に脆性遷移温度がある)ので、インラインで偏
平歪みを付与する時には溶接部の温度を110℃以下に
制御する必要があることが明らかとなった。 【0018】かかる知見に基づく本発明の他の構成は次
の点を特徴とする。 【0019】3) 上記1)の高周波溶接鋼管の検査方
法において、高周波溶接鋼管がフェライト系ステンレス
鋼である場合において、この高周波溶接鋼管が110℃
以下になるように温度制御をした後、高周波溶接管に偏
平歪みを付与するようにしたこと。 【0020】4) 上記2)の高周波溶接鋼管の製造装
置において、歪付与手段に供給する高周波溶接鋼管の温
度制御を行いその温度が110℃以下になるように冷却
する冷却手段を歪付与手段の前段に配設したこと。 【0021】 【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。 【0022】図1は本発明の実施の形態に係る高周波溶
接鋼管の製造装置を示す概略構成図である。本形態に係
る装置はステンレス電縫管の場合について説明するが、
これに限定するものではない。一般に電縫管の製造装置
として適用し得る。図1に示すように、本製造装置は、
アンコイラー1、成形ロール2、高周波溶接機3、クー
リング装置4、偏平ロール5、矯正ロール6、超音波探
傷装置7、走行切断機8及びランナアウトテーブル9を
有し、アンコイラー1から巻き戻したステンレス鋼板を
成形ロール2で成形して管状部材とし、その後高周波溶
接機3で突き合わせ部を高周波溶接してステンレス電縫
管を形成する。クーリング装置4は高周波溶接直後のス
テンレス電縫管を冷却するものであり、本形態ではこの
クーリング装置4の出口におけるステンレス電縫管の温
度が110℃以下になるように冷却する。このときの温
度は110℃以下であれば何度でもよいが、冷却効率及
び脆性遷移温度を併せて考慮すれば110℃以下でこの
近傍の温度が好適である。 【0023】歪付与手段である偏平ロール5は、特にこ
の部分を抽出・拡大して図2に示すように、垂直軸5
a、5b回りに回転可能に形成した相対向するオーバル
ロール5c、5d間に冷却したステンレス電縫管を通
し、その溶接部から左右に90度の位置でこのステンレ
ス電縫管を挟んで径方向中心に向かう力を付与すること
によりこのステンレス電縫管に偏平率30%の偏平歪み
を与えるものである。本形態では二段で所定の歪を付与
しているが、この段数に特別な制限はない。 【0024】矯正ロール6は偏平歪みを付与したステン
レス電縫管を元の形状に戻すとともに真円に成形するも
のである。超音波探傷装置7は真円に戻したステンレス
電縫管の溶接部の割れを検出する検査手段である。これ
は渦電流探傷装置であっても勿論良い。超音波探傷装置
7で所定の検査を終えたステンレス電縫管は走行切断機
8で所定寸法に切断してランナアウトテーブル9に搬入
する。ランナアウトテーブル9では超音波探傷装置7に
よる検査の結果を受けてステンレス電縫管の良品と不良
品の仕分けも行う。 【0025】図3は本形態の効果を確認するための試験
の結果を示す特性図である。図3中、黒丸のプロット点
は本実施の形態にかかる方法、すなわち所定のインライ
ン偏平歪みを付与した場合に超音波探傷装置7の探傷値
と溶接欠陥率との関係を調べたものである。同図中、白
丸のプロット点は他の条件は同じで、インライン偏平歪
みを付与しなかった場合に超音波探傷装置7の探傷値と
溶接欠陥率との関係を調べたものである。この試験はそ
れぞれの場合に探傷値を記録しておき、その後試料であ
る各ステンレス電縫管を完全に潰し、溶接部を開いて顕
微鏡で観察することにより上記式(1)で定義される溶
接欠陥率を求め、探傷値と対応させてプロットしたもの
である。この場合、探傷値が80%とは出射した超音波
の80%が透過して受信部で受信されたことを表してお
り、良品であると判定し得る。一方、探傷値が40%以
下の場合は不良品であると判定する。この基準に依る場
合、インライン偏平歪みを付与しなかった場合には溶接
欠陥率が15%程度でも探傷値は80%(良品)となる
場合があり(試料参照)、溶接部の100%の品質保
証はできないのに対し、本形態の如く所定のインライン
偏平歪みを付与した場合には溶接欠陥率が数%でも探傷
値は20%程度(不良品)となり(試料参照)、溶接
部の100%の品質保証が可能となることが分かる。 【0026】なお、インライン偏平歪みを付与しなかっ
た場合でも試料、の如く探傷値が小さい、すなわち
不良品であると判定し得る領域にプロットされる場合も
あるが、これは矯正ロール6による矯正時に付与される
矯正歪みにより溶接部に割れを生起したものであると考
えられる。このように不良品であると判定される場合は
問題はないが、試料の如く溶接欠陥が内在するにもか
かわらず、超音波探傷では不良品であることを検出し得
ない場合が問題である。品質保証の精度が劣るからであ
る。 【0027】 【発明の効果】以上実施の形態とともに詳細に説明した
通り、本発明によれば電縫管の製造中にインラインでそ
の溶接部の良否を完全に検出することができ、電縫管の
完全な品質保証を行うことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a high-frequency welded steel pipe and an apparatus for producing the same, and more particularly to a method for simultaneously detecting a weld defect and assuring quality in the field of a high-frequency welded stainless steel pipe. It is useful when manufacturing a stainless steel high frequency welded pipe (hereinafter referred to as a stainless steel electric resistance welded pipe) while performing. Conventionally, high-frequency welded steel pipes (hereinafter referred to as "electrically welded pipes") including stainless steel electric resistance welded pipes have been inspected by a method such as reliability inspection by extraction, in-line or off-line eddy current flaw detection, and ultrasonic flaw detection. Inspection by the law is known. Among these, the accuracy test is a method of giving a flat strain of a predetermined flat rate to the extracted electric resistance welded tube, and visually inspecting the welded portion in this state to check the quality. On the other hand, the eddy current flaw detection method detects the change of eddy current flowing in the welded part, and the ultrasonic flaw detection method detects the quality of the welded part by detecting the reflection state of the ultrasonic wave incident on the welded part. It is. In the eddy current inspection method and the ultrasonic inspection method, no flat strain is given to the ERW pipe. Further, Japanese Patent Application Laid-Open No. 63-249050 discloses an inspection method in which a flattened strain of 25% or less is added to a welded portion in a vertical direction, and then the welded portion is returned to a perfect circle to perform a nondestructive inspection of the welded portion. It has been disclosed. [0004] In the eddy current flaw detection method and the ultrasonic flaw detection method as described above, it is difficult to detect a cold welding defect (penetrate defect) and a penetrate defect peculiar to a high-frequency welded steel pipe. Confirmed by inspection. However, since the accuracy inspection is performed by sampling, the entire length of the ERW tube cannot be inspected, and there is one aspect of the inspection method that lacks reliability. That is, in order to manufacture an electric resistance welded pipe with 100% quality assurance, it is necessary to establish a more reliable inspection method for the entire length. In addition, a pipe diameter of 2 mm
Japanese Patent Application Laid-Open No. 63-24905 in which a flat distortion of 5% or less is added.
In the inspection method disclosed in Japanese Patent Publication No. 0, the amount of flat strain to be given is not only insufficient for stainless steel ERW pipes, but also particularly in stainless steel ERW pipes made of ferritic stainless steel, the brittle transition of the welded portion. It is necessary to consider the temperature, and it is necessary to control the temperature at which the flat strain is applied. In view of the above prior art, the present invention provides a method for inspecting a high-frequency welded steel pipe capable of detecting welding defects in an ERW pipe in-line and guaranteeing the quality of a welded part of a product by 100%, and an apparatus for manufacturing the same. The purpose is to provide. The present invention, which achieves the above object, is based on knowledge based on the following various experiments. [0009] A weld having a welding defect, such as a penetrator or cold weld, is opened from the welding defect by applying tensile strain, leading to fracture. In order to apply tensile strain to the welded portion of the ERW pipe in the pipe making line, sufficient tensile strain can be applied to the welded portion by subjecting the welded portion to compression flattening from a direction of 90 degrees. Thus, as a result of investigating the relationship between the welding defect rate and the flattening rate of the stainless steel ERW pipe, the relationship between the welding defect rate and the flattening rate was able to be clarified. The welding defect rate is expressed by the following equation (1), where s is the area of the cold weld area, which is the halftone dot area shown in FIG. 2, and S is the area of the butted portion (thickness t × length L). ). Weld defect rate = (s / S) × 100 (%) (1) The flattening rate is shown in FIG. 3 (a). the outer diameter D 1 of the sewing tube, with an outer diameter D 2 of the short diameter side of the stainless steel seam welded pipe after giving a flat distortions as shown in FIG. 3 (b) represented by the following formula (2) You. Flatness = (D 1 −D 2 ) / D 1 × 100 (%) (2) The investigation was conducted in the following manner. First, flat strain based on a force directed toward the center in the radial direction across the stainless steel ERW pipe is gradually applied to each of a large number of stainless steel ERW pipes serving as samples at 90 degrees to the left and right from the welded portion. This is continued until a crack in the weld can be visually confirmed. The flattening rate defined by the equation (2) at the time when the crack occurs in the welded portion in this way is recorded. Thereafter, the sample is completely crushed, the weld is opened, and the sample is observed with a microscope to determine the weld defect rate defined by the equation (1). FIG. 4 shows the relationship between the welding defect rate and the flattening rate obtained by the above-mentioned investigation. From the results shown in the figure, it can be seen that there is a sample in which cracks in the welded portion cannot be visually observed until the flattening ratio reaches 30% even if the welding defect ratio is 2 to 3% (see the sample in FIG. 4). That is, if the flatness is 25%, the weld may not crack even if there is a welding defect. Conversely, it was confirmed that if a flattening rate of 30% or more was given, cracks were generated in all the welded parts containing welding defects. Meanwhile, J
In IS standard, flattening rate is 5 regardless of welding defect rate.
Up to 7% requires no cracking. Therefore, when a flattening rate of 30% to 60% is applied and no crack is detected, it can be determined that the product is practically free from welding defects. The configuration of the present invention based on such knowledge has the following features. 1) In the production line of the high-frequency welded steel pipe, by applying a force toward the center in the radial direction across the high-frequency welded steel pipe at a position 90 degrees to the left and right from the welded portion of the high-frequency welded steel pipe, 30% flatness
A flattening strain of about 60% is given, and thereafter, the circle is returned to a perfect circle by a straightening roll, and cracks in the welded portion are detected by eddy current testing or ultrasonic testing. 2) In a high-frequency welded steel pipe manufacturing apparatus for forming a steel sheet unwound from an uncoiler into a tube, welding the butt portion by high-frequency welding, and then cooling to obtain a high-frequency welded steel pipe, welding the cooled high-frequency welded steel pipe to the steel pipe A strain applying means for applying a flattening rate of 30% to 60% to the high-frequency welded steel pipe by applying a force toward the center in the radial direction across the high-frequency welded steel pipe at a position 90 degrees to the left and right from the portion; A straightening means for returning the strained high-frequency welded steel pipe to an original perfect circle, and an inspection means for detecting a crack in a welded portion of the high-frequency welded steel pipe returned to a perfect circle. In ferritic stainless steel, it is necessary to consider the brittle transition temperature of the weld, and it is necessary to control the temperature at which flat strain is applied. In order to clarify this point, a notch was mechanically formed in a sound weld, that is, a weld that did not cause cracks in the flat test as described above, and the sample having such a weld was subjected to various temperatures in a constant temperature chamber. The sample was held, and a Charby impact test was performed on each sample in this state. The result is shown in FIG. As shown in the figure,
It was found that when the temperature was 110 ° C. or higher, cracking did not progress unless a large impact was always applied. That is, if the temperature is 11
At 0 ° C. or higher, it shows ductility even if it contains welding defects (11
(There is a brittle transition temperature near 0 ° C.), and it has become clear that it is necessary to control the temperature of the welded portion to 110 ° C. or less when imparting flat strain in-line. Another configuration of the present invention based on such knowledge has the following features. 3) In the method for inspecting a high-frequency welded steel pipe described in 1) above, when the high-frequency welded steel pipe is ferritic stainless steel, the high-frequency welded steel pipe is heated to 110 ° C.
After performing temperature control as follows, flat strain is applied to the high-frequency welded pipe. 4) In the apparatus for manufacturing a high-frequency welded steel pipe of the above 2), the cooling means for controlling the temperature of the high-frequency welded steel pipe to be supplied to the strain applying means and cooling it so that the temperature becomes 110 ° C. or less is provided by the strain applying means. That it was arranged in the previous stage. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing a high-frequency welded steel pipe according to an embodiment of the present invention. Although the device according to the present embodiment will be described in the case of a stainless steel ERW pipe,
It is not limited to this. Generally, the present invention can be applied as an electric resistance welded tube manufacturing apparatus. As shown in FIG.
A stainless steel having an uncoiler 1, a forming roll 2, a high frequency welding machine 3, a cooling device 4, a flat roll 5, a straightening roll 6, an ultrasonic flaw detector 7, a traveling cutter 8 and a runner out table 9; A steel plate is formed by a forming roll 2 into a tubular member, and then the butted portion is high-frequency welded by a high-frequency welding machine 3 to form a stainless steel welded tube. The cooling device 4 cools the stainless steel ERW pipe immediately after the high-frequency welding. In this embodiment, the cooling is performed so that the temperature of the stainless steel ERW pipe at the outlet of the cooling device 4 becomes 110 ° C. or less. The temperature at this time may be any number as long as it is 110 ° C. or less, but considering the cooling efficiency and the brittle transition temperature together, a temperature in the vicinity of 110 ° C. or less is suitable. The flat roll 5, which is a means for imparting distortion, particularly extracts and enlarges this portion, as shown in FIG.
a, a cooled stainless ERW pipe is passed between opposing oval rolls 5c, 5d formed to be rotatable about 5b, and the stainless steel ERW pipe is sandwiched at 90 degrees to the left and right from the welded portion. By applying a force toward the center, a flat strain having a flat rate of 30% is applied to the stainless steel ERW pipe. In the present embodiment, the predetermined distortion is applied in two stages, but there is no particular limitation on the number of stages. The straightening roll 6 is used to return the stainless steel electric resistance welded tube having the flat strain to its original shape and to form it into a perfect circle. The ultrasonic flaw detector 7 is an inspection means for detecting a crack in the welded portion of the stainless steel ERW pipe that has been returned to a perfect circle. This may of course be an eddy current flaw detector. The stainless steel ERW pipe having undergone a predetermined inspection by the ultrasonic flaw detector 7 is cut into a predetermined size by the traveling cutter 8 and is carried into the runner out table 9. The runner out table 9 sorts non-defective and non-defective stainless steel ERW pipes based on the results of the inspection by the ultrasonic flaw detector 7. FIG. 3 is a characteristic diagram showing the results of a test for confirming the effect of the present embodiment. In FIG. 3, the plot points indicated by black circles are obtained by examining the relationship between the flaw detection value of the ultrasonic flaw detector 7 and the welding defect rate when a predetermined in-line flat strain is applied according to the present embodiment. In the same figure, the plotted points of white circles are the same as the other conditions, and are obtained by examining the relationship between the flaw detection value of the ultrasonic flaw detector 7 and the welding defect rate when no in-line flat strain is applied. In this test, the flaw detection value was recorded in each case, and then each stainless steel ERW tube as a sample was completely crushed, and the weld was opened and observed with a microscope to obtain a weld defined by the above equation (1). The defect rate is obtained and plotted in correspondence with the flaw detection value. In this case, a flaw detection value of 80% indicates that 80% of the emitted ultrasonic wave has been transmitted and received by the receiving unit, and it can be determined that the ultrasonic wave is non-defective. On the other hand, if the flaw detection value is 40% or less, it is determined to be defective. According to this standard, when the in-line flat strain is not applied, the flaw detection value may be 80% (good product) even if the welding defect rate is about 15% (see the sample), and the quality of the welded portion is 100%. While it cannot be guaranteed, when a predetermined in-line flat strain is applied as in this embodiment, the flaw detection value is about 20% (defective product) even if the welding defect rate is several% (see the sample), and 100% of the welded portion It can be seen that the quality assurance can be achieved. In some cases, even when no in-line flat distortion is applied, the flaw detection value is plotted in a small area such as a sample, that is, in a region where it can be determined to be defective. It is considered that cracking occurred in the welded portion due to the correction strain sometimes given. There is no problem when it is determined to be defective as described above, but there is a problem when it is not possible to detect a defective product by ultrasonic flaw detection despite the presence of a welding defect such as a sample. . This is because the accuracy of quality assurance is inferior. As described above in detail with the embodiments, according to the present invention, the quality of the welded portion can be completely detected in-line during the production of the ERW pipe, and the ERW pipe can be detected. A complete quality assurance can be made.

【図面の簡単な説明】 【図1】本発明の実施の形態に係る高周波溶接鋼管の製
造装置を示す概略構成図 【図2】図1の偏平ロール5の部分を抽出・拡大して示
す構成図。 【図3】本発明の実施の形態の効果を確認するための試
験の結果を示す特性図。 【図4】溶接欠陥率の定義を説明するための説明図。 【図5】偏平率の定義を説明するための説明図。 【図6】溶接欠陥率と偏平率との関係を示す特性図。 【図7】フェライト系ステンレス鋼の溶接部の脆性遷移
温度を示す特性図。 【符号の説明】 1 アンコイラー 2 成形ロール 3 高周波溶接機 4 クーリング装置 5 偏平ロール 6 矯正ロール 7 超音波探傷装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing a high-frequency welded steel pipe manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a configuration in which a portion of a flat roll 5 in FIG. 1 is extracted and enlarged. FIG. FIG. 3 is a characteristic diagram showing results of a test for confirming effects of the embodiment of the present invention. FIG. 4 is an explanatory diagram for explaining a definition of a welding defect rate. FIG. 5 is an explanatory diagram for explaining the definition of the flattening rate. FIG. 6 is a characteristic diagram showing a relationship between a welding defect rate and a flattening rate. FIG. 7 is a characteristic diagram showing a brittle transition temperature of a weld portion of a ferritic stainless steel. [Description of Signs] 1 Uncoiler 2 Forming roll 3 High frequency welding machine 4 Cooling device 5 Flat roll 6 Straightening roll 7 Ultrasonic flaw detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅花 賢一郎 神奈川県相模原市大山町1番30号 日本金 属工業株式会社相模原製造所内 (72)発明者 一戸 崇雄 神奈川県相模原市大山町1番30号 日本金 属工業株式会社相模原製造所内 (72)発明者 西野 正保 大阪府松原市丹南1丁目410番地 日金工 鋼管株式会社内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kenichiro Umehana             1-30 Oyamacho, Sagamihara City, Kanagawa Prefecture             Sagamihara Factory (72) Inventor Takao Ichinohe             1-30 Oyamacho, Sagamihara City, Kanagawa Prefecture             Sagamihara Factory (72) Inventor Masaho Nishino             1 410 Tannan, Matsubara-shi, Osaka Nichikinko             Inside Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 高周波溶接鋼管の製造ライン内におい
て、 高周波溶接鋼管の溶接部から左右に90度の位置でこの
高周波溶接鋼管を挟んで径方向中心に向かう力を付与す
ることによりこの高周波溶接鋼管に偏平率30%乃至6
0%の偏平歪みを与え、その後矯正ロールにより真円に
戻し、渦流探傷若しくは超音波探傷により溶接部の割れ
を検出することを特徴とする高周波溶接鋼管の検査方
法。 【請求項2】 アンコイラーから巻き戻した鋼板を管状
に成形するとともに突合せ部を高周波溶接し、その後冷
却することにより高周波溶接鋼管を得る高周波溶接鋼管
の製造装置において、 冷却した高周波溶接鋼管にその溶接部から左右に90度
の位置でこの高周波溶接鋼管を挟んで径方向中心に向か
う力を付与することによりこの高周波溶接鋼管に偏平率
30%乃至60%の偏平歪みを与える歪付与手段と、偏
平歪みを付与した高周波溶接鋼管を元の真円に戻す矯正
手段と、真円に戻した高周波溶接鋼管の溶接部の割れを
検出する検査手段とを有することを特徴とする高周波溶
接鋼管の製造装置。 【請求項3】 〔請求項1〕の高周波溶接鋼管の検査方
法において、 高周波溶接鋼管がフェライト系ステンレス鋼である場合
において、この高周波溶接鋼管が110℃以下になるよ
うに温度制御をした後、高周波溶接鋼管に偏平歪みを付
与するようにしたことを特徴とする高周波溶接鋼管の検
査方法。 【請求項4】 〔請求項2〕の高周波溶接鋼管の製造装
置において、 歪付与手段に供給する高周波溶接鋼管の温度制御を行い
その温度が110℃以下になるように冷却する冷却手段
を歪付与手段の前段に配設したことを特徴とする高周波
溶接鋼管の製造装置。
Claims: 1. In a manufacturing line of a high-frequency welded steel pipe, a force directed toward the center in the radial direction with the high-frequency welded steel pipe sandwiched between the welded portions of the high-frequency welded steel pipe at 90 degrees to the left and right. Therefore, the flatness of this high-frequency welded steel pipe is 30% to 6%.
A method for inspecting a high-frequency welded steel pipe, wherein a flat strain of 0% is given, and thereafter, the circle is returned to a perfect circle by a straightening roll, and a crack in a welded portion is detected by eddy current testing or ultrasonic testing. 2. A high-frequency welded steel pipe manufacturing apparatus for forming a steel sheet unwound from an uncoiler into a tubular shape, welding the butt portion by high-frequency welding, and then cooling to obtain a high-frequency welded steel pipe. A strain applying means for applying a force toward the center in the radial direction across the high-frequency welded steel pipe at a position 90 degrees to the left and right from the portion to apply a flat strain of 30% to 60% to the high-frequency welded steel pipe; An apparatus for manufacturing a high-frequency welded steel pipe, comprising: a straightening means for returning a strained high-frequency welded steel pipe to an original perfect circle; and an inspection means for detecting a crack in a welded portion of the high-frequency welded steel pipe returned to a perfect circle. . 3. The method for inspecting a high-frequency welded steel pipe according to claim 1, wherein, when the high-frequency welded steel pipe is ferritic stainless steel, the temperature of the high-frequency welded steel pipe is controlled to 110 ° C. or less, An inspection method for a high-frequency welded steel pipe, wherein a flat strain is applied to the high-frequency welded steel pipe. 4. The apparatus for manufacturing a high-frequency welded steel pipe according to claim 2, wherein the cooling means for controlling the temperature of the high-frequency welded steel pipe to be supplied to the strain applying means and cooling it so that the temperature becomes 110 ° C. or less is provided. An apparatus for producing a high-frequency welded steel pipe, which is provided before the means.
JP8311569A 1996-11-22 1996-11-22 Inspection method of high frequency welded steel pipe and its manufacturing apparatus Expired - Lifetime JP2905157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8311569A JP2905157B2 (en) 1996-11-22 1996-11-22 Inspection method of high frequency welded steel pipe and its manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8311569A JP2905157B2 (en) 1996-11-22 1996-11-22 Inspection method of high frequency welded steel pipe and its manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH10153581A true JPH10153581A (en) 1998-06-09
JP2905157B2 JP2905157B2 (en) 1999-06-14

Family

ID=18018818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8311569A Expired - Lifetime JP2905157B2 (en) 1996-11-22 1996-11-22 Inspection method of high frequency welded steel pipe and its manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2905157B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176543A (en) * 1998-12-09 2000-06-27 Kawasaki Steel Corp Detection and production of steel plate, and treating equipment for hot-rolled steel plate and producing equipment for cold-rolled steel plate
JP2009019887A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Method and device for inspecting weld zone defect of electric resistance welded steel pipe
JP2009018315A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Method and apparatus for inspecting defect in weld zone of electric resistance welded tube
CN100458436C (en) * 2007-02-14 2009-02-04 沈阳银捷机械装备制造有限责任公司 Multifunction electromagnetic flaw detection device
CN103105431A (en) * 2013-01-15 2013-05-15 沈玉琴 Eddy current high/low-frequency compound detection equipment for seamless steel tubes
CN103278559A (en) * 2013-04-25 2013-09-04 宁波金特信钢铁科技有限公司 Eddy current detecting device of seamless steel tubes
CN103357697A (en) * 2013-08-01 2013-10-23 山东胜利钢管有限公司 Manufacturing technology of longitudinal submerged arc welded pipe
JP2015085354A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Manufacturing method of electric resistance welded steel pipe excellent in characteristics of welded part
CN105057932A (en) * 2015-08-13 2015-11-18 山东水泊焊割设备制造有限公司 Opening positioning device of opening plate splicing machine
CN108645909A (en) * 2018-07-24 2018-10-12 湖州新兴汽车部件有限公司 A kind of plate rolling tube machine flaw detection processing system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176543A (en) * 1998-12-09 2000-06-27 Kawasaki Steel Corp Detection and production of steel plate, and treating equipment for hot-rolled steel plate and producing equipment for cold-rolled steel plate
CN100458436C (en) * 2007-02-14 2009-02-04 沈阳银捷机械装备制造有限责任公司 Multifunction electromagnetic flaw detection device
JP2009019887A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Method and device for inspecting weld zone defect of electric resistance welded steel pipe
JP2009018315A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Method and apparatus for inspecting defect in weld zone of electric resistance welded tube
CN103105431A (en) * 2013-01-15 2013-05-15 沈玉琴 Eddy current high/low-frequency compound detection equipment for seamless steel tubes
CN103278559A (en) * 2013-04-25 2013-09-04 宁波金特信钢铁科技有限公司 Eddy current detecting device of seamless steel tubes
CN103357697A (en) * 2013-08-01 2013-10-23 山东胜利钢管有限公司 Manufacturing technology of longitudinal submerged arc welded pipe
JP2015085354A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Manufacturing method of electric resistance welded steel pipe excellent in characteristics of welded part
CN105057932A (en) * 2015-08-13 2015-11-18 山东水泊焊割设备制造有限公司 Opening positioning device of opening plate splicing machine
CN108645909A (en) * 2018-07-24 2018-10-12 湖州新兴汽车部件有限公司 A kind of plate rolling tube machine flaw detection processing system

Also Published As

Publication number Publication date
JP2905157B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JP2905157B2 (en) Inspection method of high frequency welded steel pipe and its manufacturing apparatus
CN105842034A (en) Crack defect test piece manufacturing method
US4083223A (en) Nondestructive inspection method for spot-welded joints
CN108375581B (en) Double-beam laser welding process defect control method based on acousto-optic signal monitoring
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
KR20130089353A (en) Spot welding machine able to evaluate spot welding strength
JP5909874B2 (en) Welding defect detection system for ERW pipe and method for manufacturing ERW pipe
JP3314849B2 (en) Standard specimen for non-destructive inspection and its manufacturing method
JP2002071649A (en) Welding monitoring method
JP5082746B2 (en) Manufacturing equipment and manufacturing method of square steel pipe
JP2541078B2 (en) ERW pipe defect discrimination method
JP4210560B2 (en) Laser welding monitoring method and laser welding monitoring apparatus
US5466910A (en) Method of testing weld seams using an eddy-current technique
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
Addamani et al. Weld Bead Performance Assessment of P-GMAW Using Acoustic Emission (AE) Signals Through NDT Methods for MS ASTM A 106 B Grade Material
JP5258218B2 (en) Inspection method for weld defects in ERW pipe
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
SU1746248A1 (en) Method of estimating quality of butt joints of polyethylene tubes
JP5797375B2 (en) ERW steel pipe manufacturing method
Chertov et al. Determination of resistance spot weld quality in real time using reflected acoustic waves. Comparison with through-transmission mode
JP2009019887A (en) Method and device for inspecting weld zone defect of electric resistance welded steel pipe
Zhao et al. Research for ultrasonic fast-identification of the stick-weld defect
JP2022169938A (en) Method of evaluating butt-welded part of steel pipe
JPS63249050A (en) Non-destructive inspection for electric resistance welded pipe at time of manufacturing
CN114378542A (en) Method for manufacturing standard test block for nondestructive testing of crack defects

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term