JPH1015307A - Coagulating filtration method of water and water treatment device - Google Patents

Coagulating filtration method of water and water treatment device

Info

Publication number
JPH1015307A
JPH1015307A JP18880996A JP18880996A JPH1015307A JP H1015307 A JPH1015307 A JP H1015307A JP 18880996 A JP18880996 A JP 18880996A JP 18880996 A JP18880996 A JP 18880996A JP H1015307 A JPH1015307 A JP H1015307A
Authority
JP
Japan
Prior art keywords
water
differential pressure
turbidity
filtration device
coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18880996A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nishimura
由明 西村
Kenichi Kaneko
健一 金子
Kensho Watanabe
憲昭 渡辺
Masahiro Kuwata
政博 桑田
Chikakazu Murata
周和 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Organo Corp
Original Assignee
Tohoku Electric Power Co Inc
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Organo Corp, Japan Organo Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP18880996A priority Critical patent/JPH1015307A/en
Publication of JPH1015307A publication Critical patent/JPH1015307A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coagulating filtration method by which filtered water is flowed out in a stable state and to provide an execution device thereof. SOLUTION: In the coagulating filtration method of water, raw water is clarified by adding a flocculant of set amount to raw water and passing the raw water through a coagulating filtration device 14 to perform coagulating filtration. When it is detected that differential pressure between inlet pressure and output pressure of a filter layer is measured by a differential manometer 36 at time for passing raw water and ascending speed of the measured differential pressure is lower than the ascending speed of standard differential pressure, the the amount of the flocculant to be added is increased so that the ascending speed of differential pressure at time for passing water nearly concides with the ascending speed of standard differential pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の凝集濾過方法
及びそれを実施する水処理装置に関し、更に詳細には、
懸濁物を含む河川水、湖沼水、工業用水、下排水処理水
等を原水として、懸濁物を含まない工業用水、水道用水
等の浄水、或いは純水、超純水等の原料水を安定して製
造できる水の凝集濾過方法及びその実施装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coagulating and filtering water and a water treatment apparatus for implementing the method.
River water, lake water, industrial water, sewage treatment water, etc. containing suspended matter is used as raw water, and purified water such as industrial water, tap water, etc. containing no suspended matter, or raw water such as pure water, ultrapure water, etc. The present invention relates to a method of coagulating and filtering water that can be stably produced and an apparatus for implementing the method.

【0002】[0002]

【従来の技術】河川水、湖沼水等を原水とし、その原水
を除濁する水処理装置には、凝集濾過装置と精密濾過膜
や限外濾過膜等を使用した膜濾過装置とを原水の流れに
沿って直列に接続し、凝集濾過装置で先ず原水の除濁を
行い、次いで膜濾過装置で残留する懸濁物を除去する、
例えば特開平5−285478号公報に開示されている
ような水処理装置がある。図10に示すように、前掲公
報に開示されている水処理装置(以下、従来の水処理装
置と言う)では、原水を原水タンク12に導入して凝集
剤を添加した後、凝集濾過装置14に通水し、原水中の
懸濁物を凝集濾過して一次濾過水を得る。この一次濾過
水を膜濾過装置18にて濾過して、凝集濾過装置14で
除去できなかった微細な懸濁物を除去し、除濁処理水を
得る。このように、従来の水処理装置では、凝集濾過装
置14の上流で原水に凝集剤を添加して凝集濾過装置1
4で凝集濾過を行うことにより、一次濾過水中の懸濁物
の量を少なくし、膜濾過装置18の負荷を低減してい
る。尚、24は、凝集剤注入設備である。
2. Description of the Related Art River water, lakes and marsh water are used as raw water, and a water treatment apparatus for clarifying the raw water includes a coagulation filtration apparatus and a membrane filtration apparatus using a microfiltration membrane or an ultrafiltration membrane. Connected in series along the flow, firstly dewatering the raw water with a coagulation filter, and then removing the remaining suspension with a membrane filter,
For example, there is a water treatment apparatus as disclosed in Japanese Patent Application Laid-Open No. 5-285478. As shown in FIG. 10, in the water treatment apparatus disclosed in the above-mentioned publication (hereinafter, referred to as a conventional water treatment apparatus), raw water is introduced into a raw water tank 12 and a coagulant is added thereto. , And the suspension in the raw water is subjected to coagulation filtration to obtain primary filtered water. This primary filtered water is filtered by a membrane filter 18 to remove fine suspensions that could not be removed by the aggregating filter 14 to obtain turbidity-treated water. As described above, in the conventional water treatment apparatus, the coagulant is added to the raw water upstream of the coagulation filter
By performing the coagulation filtration in 4, the amount of the suspension in the primary filtered water is reduced, and the load on the membrane filtration device 18 is reduced. 24 is a coagulant injection equipment.

【0003】このような水処理装置では、凝集剤の添加
量は、一般に、原水中の懸濁物が凝集剤の作用により凝
集してマイクロフロックを形成できる程度の低い添加量
で良く、濁質成分を凝集沈殿装置により除去する場合の
ような高い添加量で凝集剤を添加する必要はない。尚、
本明細書で、凝集剤の添加量又は凝集剤添加量とは、原
水量の単位体積当たりに添加する凝集剤の重量であっ
て、 凝集剤の添加量又は凝集剤添加量=(凝集剤重量)/
(原水量) で定義される。例えば、凝集剤としてPAC(ポリ塩化
アルミニウム)を使用する場合、添加量は一般に3〜1
0mg/lの範囲であり、他方凝集沈殿装置では、これ
に対して20〜60mg/lの範囲の場合が多い。ま
た、原水水質もそれ程大きく変動しないので、年間を通
してほぼ一定の添加量で運転される場合が多い。
[0003] In such a water treatment apparatus, the amount of the flocculant to be added is generally low enough to allow the suspension in the raw water to aggregate by the action of the flocculant to form micro flocs. It is not necessary to add a flocculant in a high addition amount as in the case where components are removed by a flocculation settling apparatus. still,
In this specification, the added amount of the coagulant or the added amount of the coagulant is the weight of the coagulant added per unit volume of the raw water amount, and the added amount of the coagulant or the added amount of the coagulant = (coagulant weight ) /
(Raw water volume). For example, when PAC (polyaluminum chloride) is used as a coagulant, the amount of addition is generally 3 to 1
It is in the range of 0 mg / l, whereas in the case of coagulating sedimentation equipment, it is often in the range of 20 to 60 mg / l. Further, since the quality of raw water does not fluctuate so much, it is often operated with a substantially constant addition amount throughout the year.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来の水処理装置では、膜濾過装置において規則的な又は
定期的な通常の膜間差圧の上昇とは別に、膜間差圧が不
規則的でしかも急激に上昇し、そのため透過水の流量が
突然に低下すると言う現象が年に数回程度起こるという
問題があった。本発明者は、膜濾過装置の膜間差圧が不
規則でしかも急激に上昇する問題を調べたところ、その
原因は、凝集濾過装置から流出する一次濾過水中の懸濁
物の量が何らかの理由により急激に増え、その多量の懸
濁物が一次濾過水と共に膜濾過装置に流入するために、
濾過膜が閉塞して透過水の流量が低下することが判っ
た。しかも、濾過膜の閉塞はオペレータによって気づか
れない場合が多いために、透過水の流量が低下して始め
て水処理装置の不良を検知することができた。これで
は、水処理装置を安定した状態で運転することが難し
く、所定の流量の透過水を定常的に送水することができ
なかった。以上の説明では、従来技術として特開平5−
285478号公報に開示されている水処理装置を例に
挙げているが、上述した凝集濾過装置から流出する一次
濾過水の懸濁物の急激な増加は、他の凝集濾過装置の場
合でも同様である。
In the above-mentioned conventional water treatment apparatus, apart from the regular or regular increase of the normal transmembrane pressure in the membrane filtration device, the transmembrane pressure is irregular. However, there is a problem that the phenomenon that the flow rate of the permeated water suddenly decreases and the flow rate of the permeated water suddenly decreases occurs several times a year. The present inventor investigated the problem that the transmembrane pressure of the membrane filtration device was irregular and rapidly increased, and the cause was that the amount of the suspended matter in the primary filtered water flowing out of the coagulation filtration device was for some reason. And the large amount of the suspension flows into the membrane filtration device together with the primary filtered water,
It was found that the filtration membrane was blocked and the flow rate of the permeated water decreased. In addition, since the blocking of the filtration membrane is often not noticed by the operator, the failure of the water treatment device can be detected only when the flow rate of the permeated water decreases. In this case, it was difficult to operate the water treatment apparatus in a stable state, and it was not possible to constantly supply permeated water at a predetermined flow rate. In the above description, Japanese Patent Application Laid-Open No.
Although the water treatment apparatus disclosed in Japanese Patent No. 285478 is taken as an example, the rapid increase in the suspension of the primary filtered water flowing out of the above-mentioned coagulation filtration apparatus is the same in the case of other coagulation filtration apparatuses. is there.

【0005】そこで、本発明の目的は、懸濁物を含まな
い濾過水を安定した状態で流出できる凝集濾過方法を提
供することであり、またその実施装置を提供することで
ある。
Accordingly, an object of the present invention is to provide a flocculation filtration method capable of stably discharging filtered water containing no suspended matter, and to provide an apparatus for implementing the method.

【0006】[0006]

【課題を解決するための手段】本発明者は、先ず、一次
濾過水の懸濁物の量の増加の原因を調べた結果、原水の
濁度又は懸濁物の量と一次濾過水の懸濁物量の増加とは
必ずしも直接的な関係は無く、原水中で或る成分(特定
するのは難しいので、以下、X成分と言う)が増加する
と膜間差圧の急激な上昇が生じることを突き止めた。そ
れは、一定の添加量で凝集剤を原水に添加して水処理装
置を運転している際に、例えば台風時の懸濁物の多い河
川水を原水とした時には、必ずしも膜間差圧の上昇が生
じないのに対して、上記河川水中に雪解け水が多量に混
入した時には、懸濁物の量がそれ程多くないにもかかわ
らず膜間差圧の急激な上昇が生じることから判ったので
ある。
The present inventor first investigated the cause of the increase in the amount of suspended matter in the primary filtered water, and as a result, determined the turbidity or the amount of suspended matter in the raw water and the suspended amount of the primary filtered water. It is not necessarily directly related to the increase in the amount of turbid matter, and the fact that an increase in a certain component (hereinafter referred to as X component) in raw water causes a sudden increase in transmembrane pressure will occur. I found it. This is because when the water treatment equipment is operated with a fixed amount of coagulant added to the raw water and the river water with many suspended matters during the typhoon is used as the raw water, for example, the transmembrane pressure difference necessarily increases. Is not produced, but when a large amount of snowmelt is mixed into the river water, the transmembrane pressure rises sharply, despite the fact that the amount of suspended matter is not so large. .

【0007】更に、研究を進めたところ、X成分が原水
中に混入すると、原水中の懸濁物が凝集不良を引き起こ
し、その結果、原水は、懸濁物凝集不良の状態で凝集濾
過装置に導入され、凝集濾過装置での懸濁物除去率が低
下して未凝集の懸濁物を多量に含む一次濾過水が凝集濾
過装置から流出すると共に、このような凝集不良が生じ
た時には、凝集濾過装置で懸濁物が捕捉されないため
に、凝集濾過装置の入口と出口との間の差圧の上昇速度
が、図3に示すように、正常に凝集している時の差圧上
昇速度に比べて低下することを突き止めた。
Further research has shown that when the X component is mixed into raw water, the suspended matter in the raw water causes poor coagulation, and as a result, the raw water is suspended in the coagulation filtration device in a state of poor coagulation. When the primary filtration water containing a large amount of unagglomerated suspension flows out from the coagulation filtration device when the suspended matter removal rate in the coagulation filtration device is reduced, and such coagulation failure occurs, the coagulation Since the suspension is not trapped by the filtration device, the rising speed of the differential pressure between the inlet and the outlet of the coagulation filtration device is, as shown in FIG. I found that it was lower than that.

【0008】上述のような水質変動による懸濁物の凝集
不良発生を予知することは、凝集不良の原因が不明であ
るために技術的に困難であるから、通常は、懸濁物の凝
集不良を防止するために、定期的に原水をサンプリング
してジャーテストや凝集濾過テストを行って凝集剤の最
適添加量を決定し、その都度、凝集剤の添加量を増減す
ることが必要になる。しかし、原水をサンプリングして
凝集剤の最適添加量を決定し、その都度、凝集剤の添加
量を増減する作業を定期的に行うのは、煩わしく、しか
も定期的に作業を行っていても予期せぬ時に原水中で懸
濁物の凝集不良が発生することもある。そこで、本発明
者は、懸濁物の凝集不良が生じていることを速やかに、
かつ確実に検知する方法について鋭意研究を重ねた結
果、懸濁物の凝集不良が生じている時には凝集濾過装置
の差圧上昇速度が正常時より小さく、かつ一次濾過水の
濁度が著しく多くなるという、本発明者の見い出した上
記のような現象を利用することによって凝集不良が生じ
ていることを検知できるのではないかと考えるに至っ
た。
[0008] It is technically difficult to predict the occurrence of poor coagulation of a suspension due to the fluctuation of water quality as described above, and the cause of the poor coagulation is unknown. In order to prevent this, it is necessary to periodically sample raw water and perform a jar test or a coagulation filtration test to determine the optimum amount of coagulant to be added, and to increase or decrease the amount of coagulant added each time. However, it is cumbersome to sample the raw water to determine the optimal amount of flocculant to be added and to periodically increase or decrease the amount of flocculant to be added. Poor aggregation of the suspension may occur in the raw water when not performed. Then, the present inventor promptly states that poor aggregation of the suspension has occurred,
As a result of intensive research on a method for reliably and reliably detecting, when the flocculation of the suspension is poor, the differential pressure rise rate of the flocculation filtration device is smaller than normal, and the turbidity of the primary filtered water is significantly increased. That is, the inventors have come to think that it is possible to detect the occurrence of poor aggregation by utilizing the above-described phenomenon found by the present inventors.

【0009】本発明者は、更に上述のような凝集不良が
生じた場合は、凝集剤の添加量を増加させることによっ
て正常に凝集させることができることを見い出すと共
に、ある原水に対して、凝集剤の添加量を種々変化させ
た時の凝集剤の添加量と凝集濾過装置の入口と出口との
間の差圧との関係を調べた結果、正常に凝集している時
には、図4に示すように凝集剤の添加量を増やすにつれ
てそれに比例して差圧の上昇速度(即ち、単位時間当た
りに上昇する差圧の大きさ)が大きくなることを見い出
した。以上のことから、予め処理対象の原水に対して図
4のような関係を求めておけば、凝集不良が生じた時に
凝集剤の添加量をどの程度まで増加させれば正常に凝集
させることができるかを知ることができる。すなわち、
凝集剤の添加量を、凝集不良が生じた時点の添加量より
も増加させた結果、凝集濾過装置の差圧上昇速度が例え
ば図4の関係図から求めた差圧上昇速度(基準差圧上昇
速度)とほぼ一致すれば凝集不良は解消されたと判断す
ることができ、測定された差圧上昇速度が基準差圧上昇
速度より小さければ、まだ凝集不良の状態が解消されて
いないので凝集剤の添加量を更に増加させる必要がある
と判断することができるのである。
The present inventor has found that when the above-mentioned coagulation failure occurs, the coagulation agent can be normally coagulated by increasing the amount of the coagulant added. As a result of examining the relationship between the amount of the coagulant added and the pressure difference between the inlet and the outlet of the coagulation filtration device when the addition amount of the coagulant was variously changed, it was shown in FIG. It has been found that as the amount of the coagulant added increases, the rate of increase of the differential pressure (that is, the magnitude of the differential pressure that increases per unit time) increases in proportion thereto. From the above, if the relationship as shown in FIG. 4 is obtained in advance with respect to the raw water to be treated, when the coagulation failure occurs, the amount of the coagulant to be added can be increased to what extent to coagulate normally. Know what you can do. That is,
As a result of increasing the addition amount of the coagulant from the addition amount at the time when the coagulation failure occurs, the differential pressure increase speed of the coagulation filtration device is, for example, the differential pressure increase speed (reference differential pressure increase) obtained from the relationship diagram of FIG. If the measured differential pressure rise rate is smaller than the reference differential pressure rise rate, it can be determined that the coagulation failure has not been eliminated yet. It can be determined that it is necessary to further increase the amount added.

【0010】以上の知見に基づき、上記目的を達成する
ために、本発明に係る水の凝集濾過方法(以下、第1発
明方法と言う)は、設定添加量で凝集剤を添加した原水
を濾過層に通水して凝集濾過することにより、原水を除
濁する方法であって、原水通水時の濾過層の入口圧力と
出口圧力との差圧の上昇速度が基準差圧上昇速度より低
いことを検出した場合に、通水時の差圧上昇速度が基準
差圧上昇速度とほぼ一致するように凝集剤の添加量を増
加させることを特徴としている。
[0010] Based on the above findings, in order to achieve the above object, the method for coagulating and filtering water according to the present invention (hereinafter referred to as the first invention method) is to filter raw water to which a coagulant is added in a set amount. A method for removing raw water by passing water through the bed and performing coagulation filtration, wherein the rising speed of the differential pressure between the inlet pressure and the outlet pressure of the filtration layer during passing of the raw water is lower than the reference differential pressure rising speed. When this is detected, the amount of the coagulant added is increased so that the rate of rise in differential pressure at the time of passing water substantially matches the reference rate of rise in differential pressure.

【0011】第1発明方法を実施するための本発明に係
る凝集濾過装置は、設定添加量で凝集剤を添加した原水
を濾過層に通水して凝集濾過することにより原水を除濁
する凝集濾過装置において、凝集剤の添加量を調節する
調節手段と、凝集濾過装置の入口圧力と出口圧力との差
圧を検出する差圧検出手段と、差圧検出手段により検出
した通水時の差圧の時間的変化により差圧の上昇速度を
算出する算出手段と、予め設定されている基準差圧上昇
速度と算出手段により算出した差圧の上昇速度とを比較
して、算出差圧上昇速度が基準差圧上昇速度より低いと
きは算出差圧上昇速度が基準差圧上昇速度とほぼ一致す
るように凝集剤の添加量を増量すべき旨の指令を調節手
段に発する制御手段とを備えることを特徴としている。
The coagulation filtration apparatus according to the present invention for carrying out the method of the first invention is a coagulation filter for removing raw water by passing a raw water to which a coagulant is added in a set amount through a filtration layer and performing coagulation filtration. In the filtration device, adjusting means for adjusting the addition amount of the flocculant, differential pressure detecting means for detecting the differential pressure between the inlet pressure and the outlet pressure of the flocculant filtration device, and the difference in water flow detected by the differential pressure detecting means A calculating means for calculating a differential pressure rising rate based on a temporal change in pressure, and a preset reference differential pressure rising rate and a differential pressure rising rate calculated by the calculating means are compared to calculate a calculated differential pressure rising rate. Control means for issuing a command to the adjusting means that the amount of coagulant to be added should be increased so that the calculated differential pressure rise rate substantially coincides with the reference differential pressure rise rate when is smaller than the reference differential pressure rise rate. It is characterized by.

【0012】第1発明方法及び後述の第2発明方法を実
施する装置において使用する凝集濾過装置の濾材は、特
に限定はないが、好適には、例えば濾材として繊維束や
繊維塊を使用した高速繊維濾過装置が好ましい。凝集剤
の添加量を調節する調節手段は、既知の手段であって、
例えば、凝集剤を収容する凝集剤槽、凝集剤槽から凝集
剤を原水に注入する手段(例えば、配管とポンプとの組
合せ)、配管に設けられた流量調節弁から構成されてい
る。また、流量調節弁に代えて容量可変式の注入ポンプ
を使用しても良い。差圧の上昇速度は、差圧検出手段に
より検出された差圧の時間的変化曲線を時間で微分する
ことにより求めることができる。一方、基準差圧上昇速
度は、実機の凝集濾過装置又は凝集濾過実験装置を使用
し、凝集剤の添加量をパラメータとして正常時の原水
(換言すれば、長期間にわたる平均的な原水)を通水し
て差圧上昇速度を算出することにより求めたデータで、
例えば図4に示すようなデータがその一例である。測定
した差圧の上昇速度が基準差圧上昇速度より低いことは
凝集不良の発生を意味するので、凝集剤を増量して凝集
不良を解消する。
The filter medium of the coagulation filter used in the apparatus for carrying out the method of the first invention and the method of the second invention described later is not particularly limited, but is preferably a high-speed filter using, for example, a fiber bundle or a fiber mass as the filter medium. Fiber filtration devices are preferred. The adjusting means for adjusting the amount of the coagulant is a known means,
For example, it comprises a flocculant tank containing a flocculant, means for injecting the flocculant from the flocculant tank into raw water (for example, a combination of a pipe and a pump), and a flow control valve provided in the pipe. Further, a variable displacement injection pump may be used instead of the flow control valve. The rising speed of the differential pressure can be obtained by differentiating the time-dependent change curve of the differential pressure detected by the differential pressure detecting means with respect to time. On the other hand, the reference differential pressure rise rate is determined by using the actual coagulation filtration apparatus or coagulation filtration experimental apparatus, and using the amount of coagulant added as a parameter to pass the normal raw water (in other words, the average raw water over a long period of time). Data obtained by calculating the differential pressure rise rate by watering,
For example, data as shown in FIG. 4 is an example. If the measured rate of increase in the differential pressure is lower than the reference rate of increase in the differential pressure, it means that poor coagulation occurs. Therefore, the coagulant is increased to eliminate the poor coagulation.

【0013】また、本発明者は、凝集不良が発生して凝
集濾過装置で懸濁物の捕捉が不十分になると、凝集濾過
装置から流出する一次濾過水の濁度が高くなることも実
験により確認し、一次濾過水の濁度を監視し、濁度が高
くなると凝集不良が発生していると判定できることに着
目し、本第2発明を完成するに到った。よって、上記目
的を達成するために、本発明に係る別の水の凝集濾過方
法(以下、第2発明方法と言う)は、設定添加量で凝集
剤を添加した原水を濾過層に通水して凝集濾過すること
により、原水を除濁する方法であって、濾過層から流出
する濾過水の濁度が基準濁度より高くなったことを検出
した場合に、濾過水の濁度が基準濁度以下となるように
凝集剤の添加量を増加させることを特徴としている。
Further, the present inventor has also conducted experiments that the turbidity of the primary filtered water flowing out of the coagulation filtration device increases when the suspension is insufficiently captured by the coagulation filtration device due to poor coagulation. After confirming and monitoring the turbidity of the primary filtered water and paying attention to the fact that when the turbidity increases, it can be determined that coagulation failure has occurred, the present second invention has been completed. Therefore, in order to achieve the above object, another method of coagulating and filtering water according to the present invention (hereinafter referred to as the second invention method) is to pass raw water to which a coagulant has been added at a set addition amount through a filtration layer. Is a method for removing turbidity of raw water by coagulation filtration, wherein when it is detected that the turbidity of the filtered water flowing out of the filtration layer is higher than the reference turbidity, the turbidity of the filtered water is set to the reference turbidity. It is characterized in that the addition amount of the coagulant is increased so as to be not more than the degree.

【0014】第2発明方法を実施するための本発明に係
る凝集濾過装置は、設定添加量で凝集剤を添加した原水
を濾過層に通水して凝集濾過することにより原水を除濁
する凝集濾過装置において、凝集剤の添加量を調節する
調節手段と、凝集濾過装置から流出した濾過水の濁度を
測定する濁度測定手段と、予め設定されている基準濁度
と濁度測定手段により測定した濁度とを比較して、測定
濁度が基準濁度より高いときは測定濁度が基準濁度以下
となるように凝集剤の添加量を増量すべき旨の指令を調
節手段に発する制御手段とを備えることを特徴としてい
る。
The coagulation filtration apparatus according to the present invention for carrying out the method of the second invention is a coagulation filter for removing raw water by passing the raw water to which a coagulant is added in a set amount through a filtration layer and performing coagulation filtration. In the filtration device, adjusting means for adjusting the addition amount of the flocculant, turbidity measuring means for measuring the turbidity of the filtered water flowing out of the flocculating filtration device, and a preset reference turbidity and turbidity measuring means By comparing the measured turbidity with the measured turbidity, when the measured turbidity is higher than the reference turbidity, a command is issued to the adjusting means to increase the amount of the coagulant added so that the measured turbidity is equal to or less than the reference turbidity. Control means.

【0015】濁度測定手段としては、既知の透過光方
式、散乱光方式等の濁度計を使用できる。基準濁度は、
実機の凝集濾過装置又は凝集濾過実験装置を使用し、凝
集剤の添加量をパラメータとして正常時の原水(換言す
れば、長期間にわたる平均的な原水)を通水して一次濾
過水の濁度を測定することにより求めてもよいし、ある
いは一次濾過水の濁度の許容できる上限値と考えても良
い。測定した濁度が基準濁度より高いことは凝集不良の
発生を意味するので、凝集剤を増量して凝集不良を解消
する。
As the turbidity measuring means, a known turbidity meter of a transmitted light type, a scattered light type or the like can be used. The reference turbidity is
Using the actual coagulation filtration device or coagulation filtration test device, the turbidity of primary filtered water is passed by passing raw water at normal time (in other words, average raw water over a long period of time) with the amount of coagulant added as a parameter. May be obtained by measuring the turbidity of the primary filtered water, or may be considered as an allowable upper limit of the turbidity of the primary filtered water. If the measured turbidity is higher than the reference turbidity, it means that poor coagulation occurs. Therefore, the coagulant is increased to eliminate the poor coagulation.

【0016】また、本発明に係る凝集濾過装置と、通水
経路に沿って凝集濾過装置の下流に直列に接続されてい
る膜濾過装置とで水処理装置を構成しても良い。膜濾過
装置の種類は特に制約は無い。
Further, a water treatment device may be constituted by the coagulation filtration device according to the present invention, and a membrane filtration device connected in series downstream of the coagulation filtration device along the water flow path. The type of the membrane filtration device is not particularly limited.

【0017】[0017]

【発明の実施の形態】以下に、実施例を挙げ、添付図面
を参照して、本発明の実施の形態を具体的かつ詳細に説
明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0018】[0018]

【実施例】実施例1 実施例1は、第1発明方法を実施する例であって、図1
は第1発明方法を実施する水処理装置10のフローシー
トである。尚、図10に示す従来の水処理装置で使用し
た機器と同じ機能を有する機器には同じ符号を付してい
る。水処理装置10は、図1に示すように、原水の流れ
に沿って、河川水、工業用水等の原水を収容する原水タ
ンク12と、凝集濾過装置14と、一次濾過水タンク1
6と、膜濾過装置18と、原水タンク12から凝集濾過
装置14に原水を送水する第1送水ポンプ20と、一次
濾過水タンク16から膜濾過装置18に一次濾過水を送
水する第2送水ポンプ22とを備え、更に、原水タンク
12に凝集剤を注入する凝集剤注入設備24を備えてい
る。
Embodiment 1 Embodiment 1 is an example of implementing the first invention method.
Is a flow sheet of the water treatment apparatus 10 for implementing the first invention method. Note that devices having the same functions as those used in the conventional water treatment apparatus shown in FIG. 10 are denoted by the same reference numerals. As shown in FIG. 1, the water treatment device 10 includes a raw water tank 12 for storing raw water such as river water and industrial water, a coagulation filtration device 14, and a primary filtered water tank 1 along the flow of raw water.
6, a membrane filtration device 18, a first water supply pump 20 for supplying raw water from the raw water tank 12 to the coagulation filtration device 14, and a second water supply pump for supplying primary filtered water from the primary filtration water tank 16 to the membrane filtration device 18. 22, and a coagulant injection facility 24 for injecting the coagulant into the raw water tank 12.

【0019】凝集濾過装置14は、いわゆる高速流式の
繊維濾過装置であって、繊維素の間に懸濁物を捕捉でき
るように、多数の繊維素を集合させた繊維束や繊維塊等
の懸濁物捕捉用の担体を容器内に多数内蔵させて構成し
た濾過装置である。繊維素の濾材には、例えば太さが1
0μm 〜80μm 程度、長さが数十cm〜数mのアクリル
繊維、ポリエステル繊維、ポリアミド繊維等の非燃単繊
維を多数(例えば、数十〜数百本)束ねた長繊維束を多
数使用する。そのような長繊維束の下端を容器内部の下
部に設けられた目板に固定し、長繊維束の各上端を容器
上方に伸ばして自由端にした箒状の濾材になっている。
このような長繊維束の濾材を有する凝集濾過装置14に
下降流で原水を通すことにより、懸濁物を効率良く捕捉
することができる。
The coagulation filtration device 14 is a so-called high-speed flow type fiber filtration device, and forms a fiber bundle or a fiber lump in which a large number of fibrils are aggregated so that a suspended matter can be captured between the fibrils. This is a filtration device in which a large number of carriers for capturing a suspension are incorporated in a container. For example, the thickness of the fibrous filter medium is 1
A large number of long fiber bundles are used in which a large number (for example, several tens to several hundreds) of non-combustible single fibers such as acrylic fibers, polyester fibers, and polyamide fibers having a length of about 0 μm to 80 μm and a length of several tens cm to several meters are bundled. . The lower end of such a long fiber bundle is fixed to a perforated plate provided at the lower part inside the container, and each upper end of the long fiber bundle is extended upward of the container to form a free end broom-shaped filter medium.
By passing raw water in a downward flow through the coagulation filtration device 14 having such a filter material of a long fiber bundle, a suspended matter can be efficiently captured.

【0020】膜濾過装置18は、その仕様に関し特に限
定されるものではないが、本実施例では、限外濾過膜
(UF)を用いたクロスフロー式の膜濾過装置で構成さ
れている。膜としては、セラミック等の無機膜、又は酢
酸セルロース系、ポリスルホン系、ポリプロピレン系、
ポリエチレン系、ポリアクリロニトリル系、シリコーン
系など高分子化合物からなる有機膜等をチューブ状、プ
リーツ状、中空糸状、スパイラル状、平膜状にしたもの
を使用する。また、大流量の一次濾過水を処理する場合
には、中空糸膜を数百〜数千本束ねてケースに入れたモ
ジュール式の膜濾過装置を使用することもできる。尚、
膜濾過装置18は、全量濾過式でも良く、また精密濾過
膜(MF)を使用しても良い。
The specifications of the membrane filtration device 18 are not particularly limited, but in the present embodiment, the membrane filtration device 18 is constituted by a cross-flow type membrane filtration device using an ultrafiltration membrane (UF). As the membrane, inorganic membrane such as ceramic, or cellulose acetate, polysulfone, polypropylene,
An organic film made of a high molecular compound such as polyethylene, polyacrylonitrile, or silicone is used in the form of a tube, pleated, hollow fiber, spiral, or flat film. In the case of treating a large amount of primary filtered water, a modular membrane filtration device in which hundreds to thousands of hollow fiber membranes are bundled and put in a case can be used. still,
The membrane filtration device 18 may be a total filtration type, or may use a microfiltration membrane (MF).

【0021】凝集剤注入設備24は、凝集剤を収容する
凝集剤タンク26と、注入ポンプ28と、凝集剤タンク
26から注入ポンプ28を経て原水タンク12までの注
入管30と、注入管30に設けられた流量調節弁32と
から構成されている。以上の構成により、凝集剤注入設
備24は、流量調節弁32によって制御されて、設定流
量の凝集剤を原水タンク12に注入することができる。
尚、本実施例では、原水タンク12に凝集剤を注入して
いるが、凝集剤は凝集濾過装置14の前で原水に注入さ
れれば良く、原水タンク12から凝集濾過装置14まで
の配管に注入しても良い。また、流量調節弁32に代え
て注入ポンプ28を可変容量式のポンプにし、それによ
り凝集剤の注入量を調節しても良い。凝集剤としてはポ
リ塩化アルミニウム、硫酸バンド、塩化第二鉄など各種
のものを用いることができる。
The coagulant injection equipment 24 includes a coagulant tank 26 for storing a coagulant, an injection pump 28, an injection pipe 30 from the coagulant tank 26 via the injection pump 28 to the raw water tank 12, and an injection pipe 30. And a flow control valve 32 provided. With the above configuration, the coagulant injection equipment 24 can inject the coagulant at a set flow rate into the raw water tank 12 under the control of the flow control valve 32.
In this embodiment, the coagulant is injected into the raw water tank 12. However, the coagulant may be injected into the raw water in front of the coagulation filtration device 14, and the coagulant may be injected into the pipe from the raw water tank 12 to the coagulation filtration device 14. May be injected. Further, instead of the flow control valve 32, the injection pump 28 may be a variable displacement pump so that the injection amount of the coagulant may be adjusted. Various coagulants such as polyaluminum chloride, sulfuric acid band, and ferric chloride can be used.

【0022】本水処理装置10には、更に制御装置34
が設けてあって、それには、基準差圧上昇速度が予め入
力されている。基準差圧上昇速度は、通常時或いは正常
時の原水(長期間にわたる平均的な原水と言い換えても
良い。)に凝集剤を所定添加量で添加した上で凝集濾過
装置14又は凝集濾過実験装置に通水し、通水経過時間
に対してその時点の差圧を測定して求めた、凝集剤添加
量をパラメータとする差圧上昇速度であって、例えば図
4に示すような凝集剤添加量と差圧の上昇速度との間の
相関関係である。制御装置34は、凝集濾過装置14の
差圧を検出する差圧計36の測定値に基づいて差圧上昇
速度を計算し、それが基準差圧上昇速度より小さい時に
は凝集剤の設定流量を増加する旨の指令を流量調節弁3
2に発する。
The water treatment apparatus 10 further includes a controller 34
The reference differential pressure increase rate is input in advance. The reference differential pressure rise rate is determined by adding a coagulant in a predetermined amount to raw water in normal or normal time (which may be referred to as average raw water over a long period of time), and then performing coagulation filtration apparatus 14 or coagulation filtration experiment apparatus. And the rate of increase of the differential pressure using the amount of added coagulant as a parameter, which is obtained by measuring the differential pressure at that point in time with respect to the elapsed time of water passage, for example, as shown in FIG. It is a correlation between the quantity and the rate of rise of the differential pressure. The controller 34 calculates the differential pressure rise rate based on the measurement value of the differential pressure gauge 36 that detects the differential pressure of the flocculation filtration device 14, and increases the set flow rate of the flocculant when it is smaller than the reference differential pressure rise rate. Flow control valve 3
Fire at 2.

【0023】以下に、本水処理装置10の運転方法を説
明する。所定流量の原水を原水タンク12に受け入れる
と共に凝集剤注入設備24により所定流量の凝集剤を原
水タンク12に注入する。原水は第1送水ポンプ20に
より凝集濾過装置14に通水される。懸濁物の大部分
は、凝集剤の働きにより凝集して比較的大きなフロック
となり、凝集濾過装置14の濾過作用により原水から除
去される。懸濁物の大部分が除去された原水は、一次濾
過水として濾過水タンク16に入る。凝集濾過装置14
は、通水開始から所定時間経過後、又は差圧計36で測
定した差圧が設定値に達した時に、一旦通水が停止さ
れ、次いで逆流洗浄される。以後は、この手順の通水サ
イクルが繰り返される。
Hereinafter, an operation method of the water treatment apparatus 10 will be described. Raw water at a predetermined flow rate is received in the raw water tank 12 and a coagulant at a predetermined flow rate is injected into the raw water tank 12 by the coagulant injection equipment 24. Raw water is passed through the coagulation filtration device 14 by the first water supply pump 20. Most of the suspension is aggregated by the action of the flocculant to form relatively large flocs, which are removed from the raw water by the filtering action of the flocculation and filtration device 14. The raw water from which most of the suspension has been removed enters the filtered water tank 16 as primary filtered water. Coagulation filtration device 14
After the elapse of a predetermined time from the start of water supply or when the differential pressure measured by the differential pressure gauge 36 reaches a set value, the water supply is temporarily stopped, and then backwashing is performed. Thereafter, the water flow cycle of this procedure is repeated.

【0024】引き続き、一次濾過水は、濾過水タンク1
6から第2送水ポンプ22によって膜濾過装置18に通
水される。膜濾過装置18は、凝集濾過装置14を通り
抜けた微細な懸濁物を除去して除濁処理水を流出する。
本実施例では、膜濾過装置18は、クロスフロー方式で
運転されており、循環水は濾過水タンク16に戻り、一
次濾過水と共に膜濾過装置18に送水される。膜濾過装
置18は、通水開始から所定時間経過後、一旦通水が停
止され、逆圧洗浄される。以後は、この手順の通水サイ
クルがが繰り返される。
Subsequently, the primary filtered water is supplied to the filtered water tank 1
From 6, water is passed through the membrane filtration device 18 by the second water supply pump 22. The membrane filtration device 18 removes fine suspended matter that has passed through the coagulation filtration device 14 and flows out the turbidity-treated water.
In the present embodiment, the membrane filtration device 18 is operated in a cross flow system, and the circulating water returns to the filtration water tank 16 and is sent to the membrane filtration device 18 together with the primary filtration water. After a lapse of a predetermined time from the start of water passage, the water filtration of the membrane filtration device 18 is temporarily stopped, and backwashing is performed. Thereafter, the water flow cycle of this procedure is repeated.

【0025】凝集濾過装置14の差圧は、差圧計36に
より連続的に測定され、差圧計36からの出力信号は制
御装置34に入力され、制御装置34からの出力信号が
流量調節弁32に入力され凝集剤の注入量を調節してい
る。
The differential pressure of the coagulation filtration device 14 is continuously measured by a differential pressure gauge 36, an output signal from the differential pressure gauge 36 is input to a control device 34, and an output signal from the control device 34 is input to a flow control valve 32. The input coagulant injection amount is adjusted.

【0026】ここで、原水に凝集不良を引き起こす原因
となるX成分が流入した場合を想定する。原水中の懸濁
物はX成分のために凝集濾過装置14に入る前で十分に
凝集することができないので、多量の懸濁物が凝集濾過
装置14を通り抜けて後段の膜濾過装置18に導入さ
れ、膜濾過装置18の懸濁物除去負荷が高くなる。この
とき、凝集濾過装置14の差圧上昇速度は、図3に示す
ように正常に懸濁物の凝集が起こっている場合と比較し
て、小さい値となる。制御装置34では、凝集濾過装置
14の差圧上昇速度が、一定時間毎あるいは通水サイク
ル毎に計算され、予めプログラムされている凝集剤添加
量をパラメータとする基準差圧上昇速度と比較される。
Here, it is assumed that the X component that causes poor coagulation flows into the raw water. Since the suspension in the raw water cannot sufficiently coagulate before entering the coagulation filtration device 14 due to the X component, a large amount of the suspension passes through the coagulation filtration device 14 and is introduced into the subsequent membrane filtration device 18. As a result, the suspended solids removal load of the membrane filtration device 18 increases. At this time, the differential pressure increasing speed of the coagulation filtration device 14 is a small value as compared with the case where the coagulation of the suspension normally occurs as shown in FIG. In the control device 34, the differential pressure increasing speed of the flocculation filtration device 14 is calculated at regular time intervals or at every water passage cycle, and is compared with a reference differential pressure increasing speed having a preprogrammed coagulant addition amount as a parameter. .

【0027】差圧計36で測定した差圧に基づく差圧上
昇速度(以下、測定差圧上昇速度と言う)が基準差圧上
昇速度より低い場合、制御装置34からの指令により、
凝集剤注入設備24は、原水に対する凝集剤添加量を段
階的、あるいは連続的に増加して行き、測定差圧上昇速
度と基準差圧上昇速度との差が一定の範囲に収まるまで
凝集剤注入量を増加する。図5を参照して説明すると、
第1段階(図5中、1で表示した期間、以下同様)では
凝集不良が発生していないので、測定差圧上昇速度は、
基準差圧上昇速度にほぼ一致し、第2段階では測定差圧
上昇速度が基準差圧上昇速度より低くなっている。よっ
て、第2段階に入ったところで、凝集剤の添加量を増大
し、その結果、測定差圧上昇速度が基準差圧上昇速度と
一致ないし大きくなったところで凝集剤添加量を一定と
する(第3段階)。増量した凝集剤添加量で数サイクル
運転して、原水の水質がほぼ元に戻ったと想定される時
点で、凝集剤添加量を再び初期設定値に戻し、以後、差
圧の測定、測定差圧上昇速度の算出、測定差圧上昇速度
と基準差圧上昇速度との比較、次いで凝集剤添加量変更
の手順を繰り返しつつ連続運転を継続する(第4段
階)。なお、図5において、通水差圧の変化を示す線の
各谷の部分は、所定時間の通水を終了した凝集濾過装置
を逆流洗浄することにより、差圧が元の状態に回復した
ことを示している。
When the differential pressure rise rate based on the differential pressure measured by the differential pressure gauge 36 (hereinafter referred to as the measured differential pressure rise rate) is lower than the reference differential pressure rise rate, a command from the control device 34
The coagulant injection equipment 24 increases the amount of coagulant added to the raw water stepwise or continuously, and injects the coagulant until the difference between the measured differential pressure rise rate and the reference differential pressure rise rate falls within a certain range. Increase quantity. Referring to FIG.
In the first stage (the period indicated by 1 in FIG. 5, the same applies hereinafter), no aggregation failure has occurred, so the measured differential pressure rise rate is:
It substantially coincides with the reference differential pressure increasing speed, and in the second stage, the measured differential pressure increasing speed is lower than the reference differential pressure increasing speed. Therefore, when the second stage is started, the addition amount of the coagulant is increased, and as a result, the coagulant addition amount is made constant when the measured differential pressure rise rate becomes equal to or greater than the reference differential pressure rise rate (the second step). 3 steps). After a few cycles of operation with the increased amount of coagulant added, when the water quality of the raw water is assumed to have almost returned to the original value, the amount of coagulant added was returned to the initial set value again. The continuous operation is continued while repeating the procedure of calculating the rising speed, comparing the measured differential pressure rising speed with the reference differential pressure rising speed, and then repeating the procedure of changing the amount of the flocculant added (fourth stage). In FIG. 5, each valley portion of the line indicating the change in the water flow differential pressure indicates that the differential pressure has been restored to the original state by backflow washing the coagulation filtration device that has finished water flow for a predetermined time. Is shown.

【0028】凝集剤添加量の初期設定値は、予め実験に
より決定しておけば良いが、経験的には、PACとして
2〜5mg/l(Al2 3 として0.2〜0.5mg
/l)が適当である。また、原水の性状が変化して凝集
不良を引き起こしてから正常時の原水性状に戻るまでに
は、経験的に24〜72時間程度かかるから、予めこの
時間を制御装置34に記憶させておき、凝集不良を引き
起こして凝集剤添加量を増量してから上記時間を経過し
たら自動的に凝集剤添加量を初期設定値に戻すように制
御するとよい。
The initial setting value of the amount of the coagulant added may be determined in advance by experiments, but empirically, 2 to 5 mg / l as PAC (0.2 to 0.5 mg as Al 2 O 3)
/ L) is appropriate. In addition, since it takes 24 to 72 hours empirically from the change of the properties of the raw water to the occurrence of poor coagulation and the return to the normal raw water state, this time is stored in the controller 34 in advance, It is preferable to control the amount of the coagulant to be automatically returned to the initial set value after the lapse of the above-mentioned time from the increase in the amount of the coagulant to be added due to poor coagulation.

【0029】実験例1 実施例1の水処理装置10を以下の条件で連続運転し、
凝集濾過装置14の通水差圧と膜濾過装置18の膜間差
圧を通水時間の経過に応じて測定した。原水には新潟県
工業用水を使用し、凝集濾過装置14にはアクリルの長
繊維束を充填した高速繊維濾過装置、膜濾過装置18に
はUF膜(旭化成工業製LNV−5010)、凝集剤に
はポリ塩化アルミニウムを用いた。図6は、水処理装置
10を運転したときの凝集濾過装置14の通水差圧の時
間変化と膜濾過装置18の膜間差圧の時間変化を示す。
図6に示すように、実施例1の水処理装置10を使用し
た例では、第1段階(図6中、1で表示した期間、以下
同様)では凝集剤の初期添加量をAl2 3 で0.3m
g/lに設定し、差圧上昇速度が基準差圧上昇速度より
小さい第2段階では添加量をAl2 3 で0.6mg/
lに設定し、更に添加量を高くした第3段階では添加量
をAl2 3で0.9mg/lに設定し、第4段階では
添加量を初期設定率に戻した。
Experimental Example 1 The water treatment apparatus 10 of Example 1 was continuously operated under the following conditions.
The water pressure difference of the coagulation filtration device 14 and the membrane pressure difference of the membrane filtration device 18 were measured according to the passage of water time. Niigata industrial water is used as raw water, a high-speed fiber filtration device filled with an acrylic long fiber bundle is used for the coagulation filtration device 14, a UF membrane (Asahi Kasei Kogyo LNV-5010) is used for the membrane filtration device 18, and a coagulant Used polyaluminum chloride. FIG. 6 shows the time change of the pressure difference in water passing through the coagulation filtration device 14 and the time change of the pressure difference between the membranes of the membrane filtration device 18 when the water treatment device 10 is operated.
As shown in FIG. 6, in the example in which the water treatment apparatus 10 of the first embodiment is used, in the first stage (the period indicated by 1 in FIG. 6, the same applies hereinafter), the initial addition amount of the coagulant is set to Al 2 O 3. At 0.3m
g / l, and in the second stage where the differential pressure rise rate is smaller than the reference differential pressure rise rate, the addition amount is 0.6 mg / Al 2 O 3.
In the third stage where the addition amount was further increased and the addition amount was further increased, the addition amount was set to 0.9 mg / l with Al 2 O 3 , and in the fourth stage the addition amount was returned to the initial set rate.

【0030】また、比較のために水処理装置10と同じ
条件で図10に示した従来の水処理装置を運転し、同様
に凝集濾過装置14の通水差圧と膜濾過装置18の膜間
差圧を通水時間の経過に応じて測定した。図7は、従来
の水処理装置を運転したときの凝集濾過装置14の通水
差圧及び一次濾過水の濁度の時間変化と膜濾過装置18
の膜間差圧の時間変化を示す。
For comparison, the conventional water treatment apparatus shown in FIG. 10 was operated under the same conditions as those of the water treatment apparatus 10, and similarly, the differential pressure of water passing through the coagulation filtration device 14 and the membrane pressure of the membrane filtration device 18 were similarly measured. The differential pressure was measured as the water passage time passed. FIG. 7 is a graph showing the change in the pressure difference in water passing through the coagulation filtration device 14 and the change in turbidity of the primary filtered water when the conventional water treatment device is operated, and the change in the membrane filtration device
5 shows the change over time in the transmembrane pressure difference.

【0031】図6と図7に示す凝集濾過装置14の通水
差圧の上昇傾向及び図7の一次濾過水の濁度及び膜間差
圧の上昇傾向から明らかなように、実施例1の水処理装
置10を用いて凝集剤添加量を制御した実験例1では、
凝集濾過装置14の懸濁物除去能の低下現象が一時的に
しか発生せず、膜濾過装置18の膜間差圧の上昇がな
く、水処理装置10を安定して運転できることを確認し
ている。
As is clear from the rising tendency of the pressure difference in water passing through the flocculation filtration device 14 and the rising tendency of the turbidity and the transmembrane pressure difference of the primary filtered water shown in FIGS. In Experimental Example 1 in which the amount of the coagulant added was controlled using the water treatment device 10,
It was confirmed that the phenomenon of lowering of the suspended solids removing ability of the coagulation filtration device 14 occurred only temporarily, there was no increase in the transmembrane pressure difference of the membrane filtration device 18, and the water treatment device 10 could be operated stably. I have.

【0032】実施例2 実施例2は、第2発明方法を実施する例であって、図2
は第2発明方法を実施する水処理装置40のフローシー
トである。水処理装置40は、以下に説明する相違部分
を除いて、図1に示す水処理装置10の構成と同じであ
る。相違部分は、水処理装置10の差圧計36に代えて
濁度計42を凝集濾過装置14の出口に取り付けたこと
である。本実施例では、制御装置34には、凝集濾過装
置14の出口で測定した一次濾過水の濁度の上限値(基
準濁度)が予め設定されている。凝集濾過装置14の出
口の一次濾過水の濁度は、濁度計42により連続的に測
定され、濁度計42からの出力信号は制御装置34へ入
力される。更に、制御装置34からの出力信号は、流量
調節弁32に入力され、その弁開度を変えることによ
り、凝集剤の注入量を調節している。
Embodiment 2 Embodiment 2 is an example of implementing the second invention method.
Is a flow sheet of the water treatment apparatus 40 for implementing the second invention method. The water treatment device 40 has the same configuration as that of the water treatment device 10 shown in FIG. 1 except for the differences described below. The difference is that a turbidity meter 42 is attached to the outlet of the coagulation filtration device 14 in place of the differential pressure gauge 36 of the water treatment device 10. In this embodiment, the upper limit value (reference turbidity) of the turbidity of the primary filtered water measured at the outlet of the coagulation filtration device 14 is set in the control device 34 in advance. The turbidity of the primary filtered water at the outlet of the flocculation filtration device 14 is continuously measured by a turbidity meter 42, and an output signal from the turbidity meter 42 is input to the control device 34. Further, an output signal from the control device 34 is input to the flow control valve 32, and the injection amount of the coagulant is adjusted by changing the valve opening.

【0033】ここで、原水に凝集不良の原因となるX成
分が流入した場合を想定する。原水中の懸濁物はX成分
のために凝集濾過装置14に入る前で十分に凝集するこ
とができないので、多量の懸濁物が、凝集濾過装置14
を通り抜けて一次濾過水と共に膜濾過装置18に導入さ
れる。そのため、膜濾過装置18の懸濁物除去負荷が高
くなり、膜の閉塞現象が発生する。
Here, it is assumed that the X component causing poor coagulation flows into the raw water. Since the suspension in the raw water cannot sufficiently coagulate before entering the coagulation filtration device 14 due to the X component, a large amount of the suspension is formed by the coagulation filtration device 14.
And is introduced into the membrane filtration device 18 together with the primary filtered water. For this reason, the suspended solids removal load of the membrane filtration device 18 increases, and a clogging phenomenon of the membrane occurs.

【0034】そこで、図8に示すように、測定濁度が基
準濁度より低い第1段階(図8中、1で表示した期間、
以下同様)では、初期設定の添加量で凝集剤を添加し、
濁度が基準濁度を越えた第2段階に入ると、制御装置3
4から指令が出て、段階的、又は連続的に流量調節弁3
2の弁開度を大きくし、凝集剤の添加量を増加する。凝
集濾過装置14の出口濁度が制御装置34に設定した基
準濁度以下となるまで凝集剤添加量を増加して行く。測
定濁度が基準濁度以下になった第3段階で凝集剤注入量
を一定とする。引き続き、増量した凝集剤添加量で運転
して、原水の水質がほぼ元に戻ったと想定される第4段
階で、凝集剤添加量を再び初期設定値に戻し、一次濾過
水濁度の測定、測定濁度と基準濁度との比較、次いで凝
集剤添加量変更の手順を繰り返しつつ連続運転を継続す
る。
Therefore, as shown in FIG. 8, the first stage in which the measured turbidity is lower than the reference turbidity (the period indicated by 1 in FIG. 8,
The same applies to the following), the coagulant is added at the initial addition amount,
When the turbidity enters the second stage in which the turbidity exceeds the reference turbidity, the control device 3
4. A command is issued from step 4 and the flow control valve 3 is stepwise or continuously.
2, the valve opening is increased, and the amount of the coagulant added is increased. The addition amount of the coagulant is increased until the turbidity at the outlet of the coagulation filtration device 14 becomes equal to or less than the reference turbidity set in the control device 34. In the third stage when the measured turbidity becomes lower than the reference turbidity, the coagulant injection amount is made constant. Subsequently, the operation was performed with the increased amount of the flocculant added, and in the fourth stage in which the water quality of the raw water was assumed to have substantially returned to the original state, the flocculant added amount was returned to the initial set value again, and the primary filtration water turbidity was measured. Continuous operation is continued while repeating the procedure of comparing the measured turbidity with the reference turbidity and then changing the amount of the flocculant added.

【0035】基準濁度は後段の膜濾過装置の性能等にも
よるが、経験的に一度以下が望ましい。
Although the standard turbidity depends on the performance of the subsequent membrane filtration device, it is empirically set to one or less.

【0036】実験例2 実施例2の水処理装置40を以下の条件で連続運転し、
凝集濾過装置14の通水差圧と膜濾過装置18の膜間差
圧を通水時間の経過に応じて測定した。原水には新潟県
工業用水、凝集濾過装置3にはアクリルの長繊維束を充
填した高速繊維濾過装置、膜濾過装置5にはUF膜(旭
化成工業製LNV−5010)、凝集剤にはポリ塩化ア
ルミニウムを用いた。膜濾過装置18の出口での基準濁
度を1度(カオリン)に設定した。
Experimental Example 2 The water treatment apparatus 40 of Example 2 was continuously operated under the following conditions.
The water pressure difference of the coagulation filtration device 14 and the membrane pressure difference of the membrane filtration device 18 were measured according to the passage of water time. The raw water is Niigata industrial water, the coagulation filtration device 3 is a high-speed fiber filtration device filled with an acrylic long fiber bundle, the membrane filtration device 5 is a UF membrane (LNV-5010 manufactured by Asahi Kasei Kogyo), and the coagulant is polychlorinated. Aluminum was used. The reference turbidity at the outlet of the membrane filtration device 18 was set to 1 degree (kaolin).

【0037】図9は、水処理装置40を運転したときの
凝集濾過装置14の出口での一次濾過水の濁度の時間的
変化と膜濾過装置18の膜間差圧の時間的変化を示す。
図9に示すように、実施例1の水処理装置40を使用し
た例では、第1段階(図9中、1で表示した期間、以下
同様)では凝集剤の初期添加量をAl2 3 で0.3m
g/lに設定し、一次濾過水の濁度が基準濁度(濁度の
上限値)より大きい第2段階では添加量をAl2 3
0.6mg/lに設定し、更に添加量を大きくした第3
段階では添加量をAl2 3 で0.9mg/lに設定
し、第4段階では添加量を初期設定量に戻た。
FIG. 9 shows the temporal change of the turbidity of the primary filtered water at the outlet of the flocculation filtration device 14 and the temporal change of the transmembrane pressure of the membrane filtration device 18 when the water treatment device 40 is operated. .
As shown in FIG. 9, in the example using the water treatment apparatus 40 of the first embodiment, in the first stage (the period indicated by 1 in FIG. 9, the same applies hereinafter), the initial addition amount of the coagulant is set to Al 2 O 3. At 0.3m
g / l, and in the second stage where the turbidity of the primary filtered water is higher than the reference turbidity (upper limit of turbidity), the addition amount is set to 0.6 mg / l with Al 2 O 3 and further added. The third that increased
In the step, the addition amount was set to 0.9 mg / l with Al 2 O 3 , and in the fourth step, the addition amount was returned to the initial set amount.

【0038】従来装置による結果を示す前掲の図7と図
9に示す一次濾過水の濁度及び膜間差圧の上昇傾向から
明らかなように、実施例2の水処理装置40を用いて凝
集剤添加量を制御した実験例2では、凝集濾過装置14
の出口濁度の上昇が短時間で解消し、膜濾過装置18の
膜間差圧上昇もなく、水処理装置40の安定運転が確保
できることを確認している。
As is clear from the turbidity of the primary filtered water and the tendency of increasing the transmembrane pressure shown in FIGS. 7 and 9 showing the results obtained by the conventional apparatus, the coagulation was performed using the water treatment apparatus 40 of Example 2. In Experimental Example 2 in which the additive amount was controlled,
It has been confirmed that the rise in the turbidity at the outlet is eliminated in a short time, and there is no increase in the transmembrane pressure of the membrane filtration device 18 and the stable operation of the water treatment device 40 can be ensured.

【0039】[0039]

【発明の効果】本発明方法によれば、凝集濾過装置の入
口圧力と出口圧力との差圧を測定し、その差圧上昇速度
が予め求めた基準差圧上昇速度より低いときには、原水
中の懸濁物の凝集不良が生じていると判断し、凝集剤の
添加量を増加する。また、凝集濾過装置から流出する一
次濾過水の濁度を測定し、予め設定した基準濁度より高
いときには、原水中の懸濁物の凝集不良が生じていると
判断し、凝集剤の添加量を増加する。したがって、原水
の水質の変動が生じて、原水中で懸濁物の凝集不良が発
生した場合に、本発明方法によれば、凝集不良の発生を
検知し、凝集剤の添加量を増加することにより、凝集不
良現象を速やかに解消することができる。また、凝集濾
過装置の下流に膜濾過装置を設けている場合には、従来
予測することが難しかった膜濾過装置の膜閉塞の発生を
予測して、その発生を未然に防止することができる。
According to the method of the present invention, the differential pressure between the inlet pressure and the outlet pressure of the coagulation filtration device is measured, and when the differential pressure rising speed is lower than the reference differential pressure rising speed obtained in advance, the raw water in the raw water is measured. It is determined that poor aggregation of the suspension has occurred, and the amount of the aggregating agent added is increased. Further, the turbidity of the primary filtered water flowing out of the coagulation filtration device is measured, and when the turbidity is higher than a predetermined reference turbidity, it is determined that poor coagulation of the suspension in the raw water has occurred, and the amount of the coagulant added Increase. Therefore, when the quality of the raw water fluctuates and poor aggregation of the suspension occurs in the raw water, according to the method of the present invention, the occurrence of poor aggregation is detected and the amount of the coagulant added is increased. Thereby, the aggregation failure phenomenon can be quickly eliminated. When a membrane filtration device is provided downstream of the coagulation filtration device, it is possible to predict the occurrence of membrane blockage of the membrane filtration device, which has been difficult to predict in the past, and to prevent the occurrence.

【0040】本発明に係る水処理装置は、本発明方法を
実施するのに最適な装置を実現しており、原水の性状変
化があっても凝集濾過装置での懸濁物除去能力は影響を
受けず、後段の膜濾過装置の安定運転が確保できる。
The water treatment apparatus according to the present invention realizes an optimum apparatus for carrying out the method of the present invention, and even if there is a change in the properties of raw water, the ability to remove suspended solids in the flocculation filtration apparatus is not affected. No stable operation of the subsequent membrane filtration device can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1発明方法を実施する水処理装置10のフロ
ーシートである。
FIG. 1 is a flow sheet of a water treatment apparatus 10 for implementing a first invention method.

【図2】第2発明方法を実施する水処理装置40のフロ
ーシートである。
FIG. 2 is a flow sheet of a water treatment apparatus 40 for implementing the method of the second invention.

【図3】凝集濾過装置の通水時間と差圧との関係を示す
グラフである。
FIG. 3 is a graph showing a relationship between a water flow time of a coagulation filtration device and a differential pressure.

【図4】凝集剤添加量と差圧上昇速度との相関関係を示
すグラフである。
FIG. 4 is a graph showing a correlation between a coagulant addition amount and a differential pressure rise rate.

【図5】凝集剤の添加量を変化させた場合の凝集濾過装
置の通水時間と差圧との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the water flow time of a coagulation filtration device and the pressure difference when the amount of coagulant added is changed.

【図6】実験例1の結果を示すグラフであって、通水時
間と、凝集濾過装置の通水差圧及び膜濾過装置の膜間差
圧との関係を示すグラフである。
FIG. 6 is a graph showing the results of Experimental Example 1, and is a graph showing the relationship between the water passage time, the water passage pressure difference of the coagulation filtration device, and the transmembrane pressure difference of the membrane filtration device.

【図7】従来の水処理装置を使用して測定した結果を示
すグラフであって、通水時間と、凝集濾過装置の通水差
圧及び一次濾過水の濁度並びに膜濾過装置の膜間差圧と
の関係を示すグラフである。
FIG. 7 is a graph showing the results of measurement using a conventional water treatment apparatus, wherein the water passage time, the pressure difference between the water and the turbidity of the primary filtration water, and the membrane between the membranes of the membrane filtration apparatus. It is a graph which shows the relationship with a differential pressure.

【図8】凝集剤の添加量を変化させた場合の凝集濾過装
置の通水時間と濁度との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the water flow time and the turbidity of the coagulation filtration device when the amount of the coagulant added is changed.

【図9】実験例2の結果を示すグラフであって、通水時
間と、凝集濾過装置の一次濾過水の濁度及び膜濾過装置
の膜間差圧との関係を示すグラフである。
FIG. 9 is a graph showing the results of Experimental Example 2, and is a graph showing the relationship between the water passage time, the turbidity of the primary filtered water of the coagulation filtration device, and the transmembrane pressure of the membrane filtration device.

【図10】従来の水処理装置のフローシートである。FIG. 10 is a flow sheet of a conventional water treatment apparatus.

【符号の説明】[Explanation of symbols]

10 第1発明方法を実施する水処理装置 12 原水タンク 14 凝集濾過装置 16 一次濾過水タンク 18 膜濾過装置 20 第1送水ポンプ 22 第2送水ポンプ 24 凝集剤注入設備 26 凝集剤タンク 28 注入ポンプ 30 注入管 32 流量調節弁 34 制御装置 36 差圧計 40 第2発明方法を実施する水処理装置 42 濁度計 DESCRIPTION OF SYMBOLS 10 Water treatment apparatus which implements 1st invention method 12 Raw water tank 14 Coagulation filtration apparatus 16 Primary filtration water tank 18 Membrane filtration apparatus 20 1st water supply pump 22 2nd water supply pump 24 Coagulant injection equipment 26 Coagulant tank 28 Injection pump 30 Injection pipe 32 Flow control valve 34 Control device 36 Differential pressure gauge 40 Water treatment device for implementing the second invention method 42 Turbidity meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 憲昭 新潟県新潟市桃山町二丁目200 東北電力 株式会社新潟火力発電所内 (72)発明者 桑田 政博 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内 (72)発明者 村田 周和 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Noriaki Watanabe 2-200 Momoyamacho, Niigata City, Niigata Tohoku Electric Power Co., Inc. Niigata Thermal Power Station (72) Inventor Masahiro Kuwata 1-4-9 Kawagishi, Toda City, Saitama Olga (72) Inventor Shuwa Murata 1-4-9 Kawagishi, Toda City, Saitama Prefecture Organo Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 設定添加量で凝集剤を添加した原水を濾
過層に通水して凝集濾過することにより、原水を除濁す
る方法であって、 原水通水時の濾過層の入口圧力と出口圧力との差圧の上
昇速度が基準差圧上昇速度より低いことを検出した場合
に、通水時の差圧上昇速度が基準差圧上昇速度とほぼ一
致するように凝集剤の添加量を増加させることを特徴と
する水の凝集濾過方法。
1. A method for removing raw water by passing raw water to which a flocculant has been added in a set addition amount through a filtration layer and subjecting the raw water to coagulation filtration. When it is detected that the rate of increase of the differential pressure from the outlet pressure is lower than the reference differential pressure increase rate, the amount of the coagulant added is adjusted so that the differential pressure increase rate at the time of passing water substantially matches the reference differential pressure increase rate. A method for coagulating and filtering water, comprising increasing the concentration.
【請求項2】 設定添加量で凝集剤を添加した原水を濾
過層に通水して凝集濾過することにより、原水を除濁す
る方法であって、 濾過層から流出する濾過水の濁度が基準濁度より高くな
ったことを検出した場合に、濾過水の濁度が基準濁度以
下となるように凝集剤の添加量を増加させることを特徴
とする水の凝集濾過方法。
2. A method for removing turbidity of raw water by passing raw water to which a coagulant has been added in a set addition amount through a filtration layer and performing coagulation filtration, wherein the turbidity of the filtered water flowing out of the filtration layer is reduced. A method for coagulating and filtering water, comprising, when detecting that the turbidity becomes higher than a reference turbidity, increasing the amount of a coagulant added so that the turbidity of the filtered water is equal to or lower than the reference turbidity.
【請求項3】 設定添加量で凝集剤を添加した原水を濾
過層に通水して凝集濾過することにより原水を除濁する
凝集濾過装置において、 凝集剤の添加量を調節する調節手段と、 凝集濾過装置の入口圧力と出口圧力との差圧を検出する
差圧検出手段と、 差圧検出手段により検出した通水時の差圧の時間的変化
により差圧の上昇速度を算出する算出手段と、 予め設定されている基準差圧上昇速度と算出手段により
算出した差圧の上昇速度とを比較して、算出差圧上昇速
度が基準差圧上昇速度より低いときは算出差圧上昇速度
が基準差圧上昇速度とほぼ一致するように凝集剤の添加
量を増量すべき旨の指令を調節手段に発する制御手段と
を備えることを特徴とする凝集濾過装置。
3. A coagulation filtration device for removing raw water by passing raw water to which a coagulant has been added in a set addition amount through a filtration layer and performing coagulation filtration, wherein an adjusting means for adjusting the coagulant addition amount; Differential pressure detecting means for detecting a differential pressure between the inlet pressure and the outlet pressure of the coagulation filtration device, and calculating means for calculating a rising speed of the differential pressure based on a temporal change of the differential pressure at the time of water passage detected by the differential pressure detecting means And comparing the preset reference differential pressure increase rate with the differential pressure increase rate calculated by the calculation means, and when the calculated differential pressure increase rate is lower than the reference differential pressure increase rate, the calculated differential pressure increase rate is A coagulation filtration device comprising: control means for issuing a command to the adjustment means to increase the amount of coagulant added so as to substantially coincide with the reference differential pressure rise rate.
【請求項4】 設定添加量で凝集剤を添加した原水を濾
過層に通水して凝集濾過することにより原水を除濁する
凝集濾過装置において、 凝集剤の添加量を調節する調節手段と、 凝集濾過装置から流出した濾過水の濁度を測定する濁度
測定手段と、 予め設定されている基準濁度と濁度測定手段により測定
した濁度とを比較して、測定濁度が基準濁度より高いと
きは測定濁度が基準濁度以下となるように凝集剤の添加
量を増量すべき旨の指令を調節手段に発する制御手段と
を備えることを特徴とする凝集濾過装置。
4. An aggregating and filtering apparatus for removing raw water by passing raw water to which a flocculant has been added in a set addition amount through a filtration layer and performing flocculant filtration, comprising: an adjusting means for adjusting the amount of the flocculant added; The turbidity measurement means for measuring the turbidity of the filtered water flowing out of the coagulation filtration device is compared with a predetermined reference turbidity and the turbidity measured by the turbidity measurement means. A coagulation filtration device comprising: a control unit that issues a command to the adjustment unit that the amount of the coagulant to be added is increased so that the measured turbidity is equal to or lower than the reference turbidity when the turbidity is higher than the reference turbidity.
【請求項5】 請求項3又は4に記載の凝集濾過装置
と、通水経路に沿って凝集濾過装置の下流に直列に接続
されている膜濾過装置とを備えることを特徴とする水処
理装置。
5. A water treatment apparatus, comprising: the coagulation filtration device according to claim 3 or 4; and a membrane filtration device connected in series downstream of the coagulation filtration device along a water flow path. .
JP18880996A 1996-06-28 1996-06-28 Coagulating filtration method of water and water treatment device Pending JPH1015307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18880996A JPH1015307A (en) 1996-06-28 1996-06-28 Coagulating filtration method of water and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18880996A JPH1015307A (en) 1996-06-28 1996-06-28 Coagulating filtration method of water and water treatment device

Publications (1)

Publication Number Publication Date
JPH1015307A true JPH1015307A (en) 1998-01-20

Family

ID=16230195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18880996A Pending JPH1015307A (en) 1996-06-28 1996-06-28 Coagulating filtration method of water and water treatment device

Country Status (1)

Country Link
JP (1) JPH1015307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222814A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Flocculant injection volume control method and control controller
JP2009195818A (en) * 2008-02-21 2009-09-03 Hitachi Ltd Operation method of water purification membrane filtration system
KR101174757B1 (en) * 2010-07-20 2012-08-17 (주)한영계기 water purifying device for simplified water service
JPWO2015045574A1 (en) * 2013-09-30 2017-03-09 水ing株式会社 Desalination apparatus and desalination method
KR20190055840A (en) * 2016-10-07 2019-05-23 케미라 오와이제이 Method and system for controlling hydrophobic condition and fouling in a water-intensive process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222814A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Flocculant injection volume control method and control controller
JP4584849B2 (en) * 2006-02-24 2010-11-24 株式会社日立製作所 Flocculant injection amount control method and control controller
JP2009195818A (en) * 2008-02-21 2009-09-03 Hitachi Ltd Operation method of water purification membrane filtration system
KR101174757B1 (en) * 2010-07-20 2012-08-17 (주)한영계기 water purifying device for simplified water service
JPWO2015045574A1 (en) * 2013-09-30 2017-03-09 水ing株式会社 Desalination apparatus and desalination method
KR20190055840A (en) * 2016-10-07 2019-05-23 케미라 오와이제이 Method and system for controlling hydrophobic condition and fouling in a water-intensive process
US11866356B2 (en) 2016-10-07 2024-01-09 Kemira Oyj Method and system for controlling hydrophobic conditions and fouling in water intensive processes

Similar Documents

Publication Publication Date Title
JP5203563B2 (en) Membrane filtration system
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JP5367758B2 (en) Membrane filtration system using temperature-responsive membrane
KR101210872B1 (en) Apparatus for memberane filtering water applicable in variable water quality
KR100979096B1 (en) Optimized operation control system and method for membrane process using intermittent aeration
KR100889915B1 (en) Auto controlling apparatus of clean in place and its method by using membrane fouling rate
JPH11319516A (en) Water filtration apparatus and method for operating the same
EP0122439A2 (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
KR100720139B1 (en) Operation control system using water analysis of membrane filtration device and method thereof
JP5595956B2 (en) Evaluation method of fouling of separation membrane and operation method of membrane separation equipment
JP4408524B2 (en) Fresh water system
JP4885512B2 (en) Water purification equipment and operation method thereof
JPH1015307A (en) Coagulating filtration method of water and water treatment device
JP5672447B2 (en) Filtration device and water treatment device
JP5588099B2 (en) Membrane filtration treatment method and membrane filtration treatment equipment
KR20080010909A (en) Water-treatment apparatus using membrane module submerged at inside of fiber filter and method thereof
JP3680452B2 (en) Anomaly detection method and control method for membrane processing system
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
JPH07275671A (en) Operation of external pressure type hollow yarn ultrafiltration membrane module
JP2009262087A (en) Operation method of water treatment device
JP4033094B2 (en) Method for detecting membrane damage of membrane filtration device and apparatus therefor
JP4876391B2 (en) Precoat liquid concentration control method
KR101692789B1 (en) Water-treatment apparatus using membrane unit and Method thereof
JPH10202010A (en) Water treatment device
JP5972068B2 (en) Monitoring device for irreversible membrane fouling substances