JP4584849B2 - Flocculant injection amount control method and control controller - Google Patents
Flocculant injection amount control method and control controller Download PDFInfo
- Publication number
- JP4584849B2 JP4584849B2 JP2006048578A JP2006048578A JP4584849B2 JP 4584849 B2 JP4584849 B2 JP 4584849B2 JP 2006048578 A JP2006048578 A JP 2006048578A JP 2006048578 A JP2006048578 A JP 2006048578A JP 4584849 B2 JP4584849 B2 JP 4584849B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- inflow
- raw water
- flocculant
- injection amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、原水に凝集剤を注入して原水中の有機物等、不純物を凝集させてろ過する水処理設備の制御方法に係り、特に、原水への凝集剤の注入量制御方法及び制御コントローラに関する。 The present invention relates to a control method of a water treatment facility for injecting a flocculant into raw water and aggregating impurities such as organic matter in the raw water and filtering, and more particularly to a method and a control controller for controlling the amount of flocculant injected into raw water. .
表流水のような水質が変動する性質を持つ原水を処理する水処理設備に膜ろ過装置を設け、原水に凝集剤を注入して有機物等、不純物を凝集させて膜ろ過処理を行う際、凝集剤の注入量を適切に制御することが重要である。もし、凝集剤の注入量が不足すると凝集不良を起して、ろ過された水の水質の低下を招き、凝集剤の注入量が多すぎると凝集フロックが崩れ易くなって膜の閉塞が急速に進行し、短時間に膜差圧が上昇して処理不能に陥る。 When a membrane filtration device is installed in a water treatment facility that treats raw water with the property of changing water quality, such as surface water, and when flocculant is injected into the raw water to agglomerate impurities such as organic matter, aggregation is performed. It is important to appropriately control the injection amount of the agent. If the injection amount of the flocculant is insufficient, the flocculence is poor and the quality of the filtered water is deteriorated. If the injection amount of the flocculant is too large, the flocs are easily broken and the membrane is rapidly blocked. It progresses, and the membrane differential pressure rises in a short time and falls into the process.
従来の膜ろ過処理における凝集剤の注入量制御方法には、特許文献1に記載の、差圧上昇速度が基準の値に一致するように注入量を変化させる方法がある。また、特許文献2には、膜ろ過装置ではないが、原水の流量に応じて凝集剤を注入することが記載されている。
As a method for controlling the injection amount of the flocculant in the conventional membrane filtration process, there is a method described in
差圧の上昇速度を予め定めた基準値に一致するようにして凝集剤注入量の制御を行う場合、送水ポンプの台数を増加させると、送水ポンプ1台の場合に比べて処理する有機物が増加するため、凝集剤の注入量が不足して凝集不良が起こる恐れがある。また、膜ろ過装置への送水量が最大の場合に有機物、不純物等を完全に凝集させたときの差圧の上昇速度を基準値に定めた場合、送水量が最大送水量に達しない場合は、膜ろ過装置へ送り込まれる有機物、不純物等の量も少なくなる。したがって、それらを完全に凝集させたとしても、差圧の上昇速度は、送水量が最大の場合について定めた差圧の上昇速度の基準値に達しない。このとき、差圧の上昇速度を予め定めた基準値に一致するようにして凝集剤注入量の制御を行うと、凝集剤注入量が過剰になる惧れがある。 When the amount of flocculant injection is controlled so that the rate of increase in the differential pressure matches a predetermined reference value, increasing the number of water pumps increases the amount of organic matter to be processed compared to the case of one water pump. For this reason, the amount of the flocculant injected is insufficient, and there is a possibility that poor aggregation occurs. In addition, when the rate of increase in differential pressure when organic substances, impurities, etc. are completely agglomerated when the amount of water supplied to the membrane filtration device is the maximum, if the water supply amount does not reach the maximum water supply amount Also, the amount of organic matter, impurities, etc. sent to the membrane filtration device is reduced. Therefore, even if they are completely agglomerated, the rate of increase in the differential pressure does not reach the reference value of the rate of increase in the differential pressure determined for the case where the water supply amount is maximum. At this time, if the flocculant injection amount is controlled so that the rate of increase in the differential pressure coincides with a predetermined reference value, the flocculant injection amount may be excessive.
本発明の課題は、入口流入量又は送水ポンプの台数の変動があっても、安定した状態で膜ろ過運転を行えるようにすることにある。 An object of the present invention is to enable a membrane filtration operation in a stable state even when the inlet inflow amount or the number of water pumps varies.
上記課題を解決するには、差圧の上昇速度以外に膜ろ過装置の状態を検知するために、膜ろ過装置の入口流入量を考慮に入れればよい。そこで、膜ろ過装置の差圧、膜ろ過装置の入口流入量を測定し、入口流入量の変動を考慮した凝集剤注入量の制御を行う。 In order to solve the above problem, in order to detect the state of the membrane filtration device in addition to the rate of increase in the differential pressure, the inlet inflow amount of the membrane filtration device may be taken into consideration. Therefore, the differential pressure of the membrane filtration device and the inlet inflow amount of the membrane filtration device are measured, and the flocculant injection amount is controlled in consideration of the fluctuation of the inlet inflow amount.
具体的には、原水に凝集剤を注入して凝集フロックを形成させ、形成された凝集フロックを含む原水を膜ろ過装置に供給してろ過する装置における凝集剤注入量制御方法であって、膜ろ過装置への原水の流入量を検出するとともに膜ろ過装置の入り側と出側の差圧の上昇速度を検出し、検出された前記流入量と差圧の上昇速度に基づいて凝集剤注入量を制御する。 Specifically, a flocculant injection amount control method in a device for injecting a flocculant into raw water to form a floc floc, supplying raw water containing the formed floc floc to a membrane filtration device, and filtering the raw water, The amount of raw water flowing into the filtration device is detected, and the rate of increase in the pressure difference between the inlet side and the outlet side of the membrane filtration device is detected. The amount of flocculant injected based on the detected amount of flow in and the pressure difference To control.
検出された前記流入量が変動した場合、凝集剤注入量を流入量の変動に比例した量だけ変化させればよい。また、運転開始時点における凝集剤注入量は、原水の有機物等濃度と流入量に基づいて予め設定された量とすることが望ましい。 When the detected inflow amount changes, the flocculant injection amount may be changed by an amount proportional to the change in inflow amount. Further, the amount of the flocculant injected at the start of operation is desirably set in advance based on the concentration of organic matter in the raw water and the inflow amount.
運転開始時点において、凝集剤注入量を、原水の有機物等濃度と流入量に基づいて予め設定された量とすることで、原水中の有機物、不純物等を十分に凝集フロック化することができる。さらに、流入量が変動した場合、流入量の変動に比例した量だけ凝集剤注入量を変化させれば、流入量が変動しても、原水中の有機物、不純物等を十分に凝集フロック化することができる。 By setting the amount of the flocculant injected at the start of operation to a preset amount based on the concentration of organic matter in the raw water and the inflow amount, the organic matter, impurities, etc. in the raw water can be sufficiently agglomerated. Furthermore, if the inflow rate fluctuates, if the amount of flocculant injected is changed by an amount proportional to the change in inflow rate, even if the inflow amount fluctuates, organic matter, impurities, etc. in the raw water will be sufficiently agglomerated and flocked. be able to.
本発明によれば、膜ろ過装置への原水流入量が変動しても、安定した状態で膜ろ過装置を運転できる。 According to the present invention, the membrane filtration device can be operated in a stable state even if the amount of raw water inflow into the membrane filtration device varies.
図1に本発明の実施の形態に係る水処理設備の全体構成を示す。図示の水処理設備は、表流水が流入する原水槽1と、この原水槽1より取水した原水を一時貯溜する凝集槽2と、凝集槽2に接続して配置された凝集剤タンク3と、凝集槽2の出側に接続された吸い込みヘッダー25と、吸い込みヘッダー25に互いに並列に吸込み側を接続させた3台の送水ポンプ4と、3台の送水ポンプ4の吐出側に共通に接続された吐出ヘッダー26と、吐出ヘッダー26に流入管27で入り側を接続された膜ろ過装置5と、膜ろ過装置5の出側に接続された流出管28と、流入管27に介装された流入量流量計7と、流入量流量計7下流側の流入管27と流出管28に接続されて両者の差圧を計測、出力する差圧計6と、差圧計6と流入量流量計7の出力を入力として凝集剤タンク3から凝集槽2に注入される凝集剤の量を制御する制御コントローラ8と、制御コントローラ8に接続された表示装置13とを含んで構成されている。
FIG. 1 shows an overall configuration of a water treatment facility according to an embodiment of the present invention. The illustrated water treatment facility includes a
上記水処理設備では、原水槽1より取水された、凝集対象の有機物、不純物(以下、有機物等という)を含む原水は凝集槽2に一時貯溜され、凝集槽2に凝集剤タンク3から凝集剤が注入、添加される。凝集剤タンク3の凝集剤出側には、図示されていない凝集剤の注入量制御手段が設けられており、凝集剤の凝集槽2への注入、添加により、原水中の有機物等を凝集させて凝集フロックを形成させる。凝集槽2の凝集フロックを含む原水は、送水ポンプ4にて膜ろ過装置5に送り込まれ、ろ過される。膜ろ過装置5でろ過された原水は、清浄水となって流出管28から排出される。
In the above water treatment facility, raw water taken from the
膜ろ過装置5の入口圧力と出口圧力の差を測定する差圧計6と、膜ろ過装置5の入口流入量を測定する流入量流量計7の各出力信号は制御コントローラ8に送られ、制御コントローラ8は、差圧計6と流入量流量計7の各出力信号を入力として凝集剤タンク3から凝集槽2に注入される凝集剤の量を、前記注入量制御手段を介して制御する。
The output signals of the
図2に制御コントローラ8の構成を示す。制御コントローラ8は、前記差圧計6や流入量流量計7などの計測機器9より得られたデータを演算処理する演算部10と、演算部10の処理結果を入力として前記注入量制御手段などの操作機器12への操作指令を出す制御部11とを含んで構成されている。演算部10には、原水の有機物等の濃度と膜ろ過装置の入口流入量(以下、単に、流入量という)に対応した凝集剤注入量のデータおよびそのときの差圧上昇速度のデータが格納されている。前記表示装置13は、制御コントローラ8の演算結果や装置の状態などを表示するもので、設備運転者は、表示装置13を利用して監視制御を行うことも可能である。なお、制御コントローラ8には、原水の有機物等の濃度設定を行うことができるようになっており、演算部10は前記差圧計6から入力される差圧に基づいて差圧上昇速度を算出するとともに、設定された前記濃度に応じた演算処理を行うようになっている。
FIG. 2 shows the configuration of the
図3に制御コントローラ8のデータ処理フローを示す。設備運転開始に先立って、前記差圧計6や流入量流量計7などの計測機器9より得られたデータおよび前記設定された濃度と凝集剤注入量の関係を規定した関係表読込み(手順14)が行われる。運転が開始されると、差圧計6、流入量流量計7のデータの受信(手順15)があらかじめ定められた時間間隔で行われる。次いで、受信したデータに基づき、前記読み込んだ関係表を参照して凝集剤注入量が決定される(手順16)。決定された凝集剤注入量に基づき、操作機器への制御信号が生成され、出力される(手順17)。尚、上記手順では凝集剤注入量は前記読み込んだ関係表を参照して決定されるが、必ずしも関係表でなくても、前記差圧計6や流入量流量計7などの計測機器9より得られたデータと凝集剤注入量の関係を数式、グラフを用いて規定するようにしてもよい。
FIG. 3 shows a data processing flow of the
図4に送水ポンプの台数を増加させた場合の凝集剤注入量決定手順を示す。各送水ポンプ4は、いずれも定速運転される同一容量のポンプである。送水ポンプの台数増加(手順18)が起こると、膜ろ過装置入口流入量が台数増加に比例して増加する(手順19)。それによって処理する有機物数が増加する(手順20)。このとき、ポンプの台数に比例して凝集剤注入量を増加する(手順21)。十分な凝集剤を注入し凝集フロックを形成すると凝集フロック数は送水ポンプの台数に比例して増加する(手順22)。それによって膜ろ過装置により除去される凝集フロック数は増加して膜の閉塞が早まる。すなわち、ポンプの台数の増加または、入口流入量増加に伴い凝集剤注入量はそれに比例して増加し、それに伴って差圧上昇速度が増加する(手順23)。
FIG. 4 shows a procedure for determining the flocculant injection amount when the number of water pumps is increased. Each
原水中の有機物等が注入された凝集剤により凝集され、凝集フロックとなって膜ろ過装置でろ過されると、時間の経過とともに膜の入り側に堆積する凝集フロックが増加し、ろ過装置の差圧が上昇してくる。この差圧の上昇速度は、凝集剤注入量が適切な場合、膜の入り側に堆積する凝集フロックの時間当たり量、すなわち、有機物等の濃度と流入量で決まる。つまり、有機物等の濃度と流入量が決まれば、差圧の上昇速度が有機物等の濃度と流入量に対応して予め設定した値になるように凝集剤注入量を調節することで、適切な凝集剤注入量とすることができる。このことは、ある流入量に対して凝集剤注入量が適切な状態に設定された状態で運転されている場合、流入量が変動しても、有機物等の濃度が変動しない限り、流入量に比例して凝集剤注入量を変化させればよいことを意味する。 When organic matter in the raw water is agglomerated by the injected flocculant and becomes flocculent floc and filtered by the membrane filtration device, the aggregated floc that accumulates on the entrance side of the membrane increases with the passage of time, and the difference between the filtration devices The pressure rises. The rate of increase in the differential pressure is determined by the amount of coagulation floc deposited on the entrance side of the film per time, that is, the concentration of organic matter and the inflow when the injection amount of the coagulant is appropriate. In other words, once the concentration of organic matter and the amount of inflow are determined, the flocculant injection amount is adjusted so that the rate of increase in the differential pressure becomes a preset value corresponding to the concentration of organic matter and the amount of inflow. The flocculant injection amount can be set. This means that when the flocculant injection amount is set to an appropriate state for a certain inflow amount, even if the inflow amount fluctuates, the inflow amount does not change unless the concentration of organic matter, etc. This means that the flocculant injection amount should be changed in proportion.
制御コントローラ8は、膜ろ過装置の運転開始時は、有機物等の濃度と流入量に応じて予め設定されている凝集剤注入量を注入するが、その後の差圧の上昇速度が予め設定した値よりも小さい場合、凝集剤注入量が不足していると判断し、凝集剤注入量を予め定めた量だけ増加するように動作する。
At the start of the operation of the membrane filtration device, the
一方、凝集剤注入量が過剰な場合、先に述べたように、生成された凝集フロックが崩れ易く、膜の孔を詰まらせ易い。つまり、適切な凝集剤注入量よりも過剰な凝集剤が注入された場合、差圧の上昇速度が、有機物等の濃度と流入量に対応して予め設定された差圧の上昇速度よりも大きくなる。すなわち、差圧の上昇速度が予め設定された差圧の上昇速度よりも大きい場合、前記制御コントローラ8は、凝集剤注入量を予め定めた量だけ低減するように動作する。
On the other hand, when the amount of the flocculant injected is excessive, as described above, the generated flocculent flocs are liable to collapse and the membrane pores are easily clogged. That is, when an excessive amount of flocculant is injected beyond the appropriate amount of flocculant, the rate of increase in the differential pressure is greater than the rate of increase in the differential pressure set in advance corresponding to the concentration of organic matter and the amount of inflow. Become. That is, when the differential pressure increase rate is greater than the preset differential pressure increase rate, the
原水の有機物等の濃度が変動しない場合の、膜ろ過装置入口流入量と適切な凝集剤注入量の関係を、膜ろ過装置入口流入量を横軸に、適切な凝集剤注入量を縦軸に、それぞれとって図5に示す。直線S1は、有機物等の濃度が標準的な濃度の原水について、流入量に対応する凝集剤注入量を示し、縦軸のm、2m、3mは、有機物等の濃度が標準的な濃度Kの原水について、それぞれ流入量f1、f2、f3の場合の凝集剤注入量初期設定値であり、直線S1上の点f1m、点f2m、点f3mは、それぞれ、原水に含まれる有機物等を凝集させるのに必要十分な量の凝集剤注入量を示す点である。直線S2は原水に含まれる有機物等の濃度が前記標準的な濃度Kよりも低い濃度Lの場合を示し、直線S3は原水に含まれる有機物等の濃度が前記標準的な濃度Kよりも高い濃度Mの場合を示している。 When the concentration of organic matter in the raw water does not change, the relationship between the inflow rate of the membrane filtration device inlet and the appropriate flocculant injection amount is plotted on the horizontal axis, and the appropriate flocculant injection amount is plotted on the vertical axis. These are shown in FIG. The straight line S 1 indicates the amount of the flocculant injected corresponding to the inflow amount for the raw water having a standard concentration of organic matter, etc., and m, 2 m, and 3 m on the vertical axis indicate the concentration K of the standard concentration of organic matter. Are the initial setting values of the flocculant injection amount in the case of the inflow amounts f 1 , f 2 , and f 3 , and the points f 1 m, f 2 m, and f 3 m on the straight line S 1 are respectively In addition, the amount of the flocculant injection necessary and sufficient for aggregating the organic matter contained in the raw water is shown. Linear S 2 shows the case of a low concentration L than the concentration is the standard concentration K of organic substances or the like contained in the raw water, the straight line S 3 rather than concentration the standard concentration K of organic substances or the like contained in the raw water The case of high concentration M is shown.
図3の制御量を決定する関係である膜ろ過装置入口流入量と差圧上昇速度、凝集剤注入量の関係を図6に示す。図6は、有機物等の濃度が標準的な濃度の原水について、凝集剤注入量のデータを示すもので、差圧上昇速度を横軸に、凝集剤注入量を縦軸に、それぞれとって示してある。図の斜線は膜ろ過装置への流入量一定の線f1、f2、f3を示し、線f1、f2、f3は、送水ポンプ1台、2台、3台を運転した場合の流入量をそれぞれ示している。 FIG. 6 shows the relationship between the flow rate at the inlet of the membrane filtration device, the differential pressure increase rate, and the coagulant injection amount, which is the relationship for determining the control amount in FIG. FIG. 6 shows the data of the flocculant injection amount for the raw water having a standard concentration of organic matter, etc., and the differential pressure increase rate is shown on the horizontal axis and the flocculant injection amount is shown on the vertical axis. It is. The slanted lines in the figure indicate lines f 1 , f 2 , and f 3 with a constant flow rate into the membrane filtration device, and the lines f 1 , f 2 , and f 3 indicate the case where one , two , and three water pumps are operated. The inflow of each is shown.
縦軸のm0、2m0、3m0は、それぞれ流入量f1、f2、f3の場合の凝集剤注入量初期設定値であり、点f1m、点f2m、点f3mは、それぞれ、原水に含まれる有機物等を凝集させるのに必要十分な量の凝集剤注入量を示す点であるとともに、前記必要十分な量の凝集剤が注入された場合の差圧上昇速度v,2v,3vを示している。 The vertical axes m 0 , 2 m 0 , and 3 m 0 are the flocculant injection amount initial setting values for the inflow amounts f 1 , f 2 , and f 3 , respectively, and the points f 1 m, f 2 m, and f 3 m is a point that indicates a sufficient amount of the flocculant injection necessary for aggregating the organic matter contained in the raw water, and the differential pressure increase rate when the necessary and sufficient amount of the flocculant is injected. v, 2v, and 3v are shown.
線f1、f2、f3は、点f1m、点f2m、点f3mの図上下側では直線であるが、点f1m、点f2m、点f3mの図上上側では、点f1m、点f2m、点f3mを起点として傾斜を緩やかにした曲線となっている。これは、流入量に対して凝集剤注入量が過剰になり、その結果、形成される凝集フロックが崩れ易くなって急激に差圧が上昇することを示している。 The lines f 1 , f 2 , and f 3 are straight lines on the upper and lower sides of the point f 1 m, the point f 2 m, and the point f 3 m in the figure, but the points f 1 m, f 2 m, and f 3 m On the upper side of the figure, the curve has a gentle slope starting from the point f 1 m, the point f 2 m, and the point f 3 m. This indicates that the flocculant injection amount becomes excessive with respect to the inflow amount, and as a result, the formed floc flocs are apt to collapse and the differential pressure increases rapidly.
なお、f3mで示される点は、送水ポンプ3台で有機物等の濃度が標準的な濃度の原水が送水された場合の差圧上昇速度3vを示し、膜ろ過装置としての計画差圧上昇速度、言い換えると差圧上昇速度の上限である。差圧上昇速度がこれよりも高くなると、つまり、原水に含まれる有機物等の濃度が前記標準的な濃度よりも高い状態で送水ポンプ3台で送水すると逆洗の頻度が増加し、ろ過能率が低下して好ましくないので、流入量を低下させる。
Incidentally, the point represented by
図5に示すように、点f1m、点f2m、点f3mは直線S1上に並んでいて、点f1m、点f2m、点f3mで表される凝集剤注入量が流入量に比例している。したがって、凝集剤注入量を流入量に比例して変化させればよい。本実施の形態においては、一定流量の同仕様の送水ポンプ3台を用い、台数制御により流入量を変化させるので、図6においては、流入量を示す3本の線f1、f2、f3が示されているが、回転数制御等により、無段階的に流入量が変わる場合にも、同様に、凝集剤注入量を流入量に比例して直線S1に沿って変化させればよい。 As shown in FIG. 5, the point f 1 m, the point f 2 m, and the point f 3 m are arranged on the straight line S 1 and are represented by the points f 1 m, f 2 m, and f 3 m. The agent injection volume is proportional to the inflow volume. Therefore, the flocculant injection amount may be changed in proportion to the inflow amount. In the present embodiment, three inflow pumps of the same specification with a constant flow rate are used, and the inflow amount is changed by controlling the number of units. Therefore, in FIG. 6, three lines f 1 , f 2 , f indicating the inflow amount are used. 3 is shown, by the rotation speed control or the like, even when the steplessly inflow changes, likewise, be varied along the straight line S 1 in proportion to coagulant injection amount inflow Good.
図5の直線S2では、原水に含まれる有機物等の濃度が前記標準的な濃度よりも低いため、流入量f3においても、凝集剤注入量は2m0にとどまり、差圧上昇速度は、図6の点f2mで表される差圧上昇速度2vで納まっている。図5の直線S3では、原水に含まれる有機物等の濃度が前記標準的な濃度よりも高いため、流入量に応じて凝集剤注入量を変化させると、流入量f2で凝集剤注入量が3m0に達している。この結果、形成される凝集フロックが急激に増加し、流入量f2で、図6の点f3mで表される差圧上昇速度3vに達している。差圧上昇速度3vが検知された場合、制御コントローラ8は、それ以上の流入量増加を停止するようになっている。
In linear S 2 in FIG. 5, since the concentration of organic substances or the like contained in the raw water is lower than the standard concentration, even in the inflow f 3, coagulant injection amount remains 2m 0, the differential pressure increase rate, It is stored at a differential
前記図5のデータ及び図6のデータは、制御コントローラ8の演算部10に、有機物等濃度や流入量をキーにして読み出し可能に格納されている。
The data shown in FIG. 5 and the data shown in FIG. 6 are stored in the
表示装置13には、運転中、処理中の原水の有機物濃度、原水の入り口流入量、凝集剤注入量、及び差圧上昇速度が表示されるようになっている。
The
以下、運転時の手順について説明する。 Hereinafter, the procedure during operation will be described.
運転開始に先立って、制御コントローラ8の演算部10に、原水の有機物等濃度が設定される。また、ポンプの運転台数が設定される。運転が開始されると、制御コントローラ8の演算部10は、設定された有機物等濃度と検出された流入量に基づき、図5に示されたデータを参照して、凝集剤注入量を選定し、制御部11は、選定された凝集剤注入量に基づき、注入量制御手段に制御信号を出力して前記選定された量の凝集剤を凝集槽2に注入する。
Prior to the start of operation, the concentration of organic matter in the raw water is set in the
運転開始後は、制御コントローラ8の演算部10は、所定のサンプリング間隔で、流入量流量計7及び差圧計6の出力データを読み込み、流入量及び差圧上昇速度を算出する。演算部10は、算出された差圧上昇速度を、図6に示された流入量に対応する差圧上昇速度vあるいは2vあるいは3vと対比し、算出された差圧上昇速度が低い場合は、予め定められた量だけ凝集剤注入量を増加し、算出された差圧上昇速度が高い場合は、予め定められた量だけ凝集剤注入量を減少させる。
After the operation is started, the
凝集剤注入量を増加あるいは減少させた場合は、差圧上昇速度の応答の遅れを見込んだ時間が経過した後、差圧上昇速度を検出し、検出された差圧上昇速度を、図6に示された流入量に対応する差圧上昇速度vあるいは2vあるいは3vと対比し、上記手順を繰り返す。 When the amount of the flocculant injected is increased or decreased, after a time when a delay in the response of the differential pressure increase rate is expected, the differential pressure increase rate is detected, and the detected differential pressure increase rate is shown in FIG. The above procedure is repeated in comparison with the differential pressure increasing speed v, 2 v, or 3 v corresponding to the indicated inflow amount.
算出された差圧上昇速度が、図6に示された流入量に対応する差圧上昇速度vあるいは2vあるいは3vに対して許容範囲内にある場合は、そのまま運転を継続する。 If the calculated differential pressure increase speed is within the allowable range with respect to the differential pressure increase speed v, 2v, or 3v corresponding to the inflow amount shown in FIG. 6, the operation is continued as it is.
運転中、流入量の変動が検出された場合は、制御コントローラ8の前記演算部10は、流入量の変動量に比例した量だけ凝集剤注入量を増減させた凝集剤注入量を制御部11に出力し、制御部11は、演算部10から入力された信号に基づいて注入量制御手段に制御信号を出力して、凝集剤注入量を増減させる。
When a change in the inflow amount is detected during operation, the
図4の手順に示すように、入口流入量または送水ポンプの台数の増加に伴い、入口流入量または送水ポンプの台数の増加に比例して凝集剤注入量が増加させれば、効率よく制御できる結果が得られる。 As shown in the procedure of FIG. 4, if the amount of flocculant injected is increased in proportion to the increase in the number of inlet inflows or the number of water pumps as the number of inlet inflows or the number of water pumps increases, it can be controlled efficiently. Results are obtained.
さらに上記の結果により、以下の結果も得られる。第一に、ポンプの台数が1台の場合でもその送水ポンプの台数が可変速の場合には入口流入量が変動するので、この場合にも適用可能である。第二に、送水ポンプが複数台で固定速の場合には、差圧上昇速度は台数に比例するので、入口流入量も予測可能なため流入量流量計7が無くても制御可能になるので、流入量流量計を取り除くことが可能である。
Furthermore, the following results are also obtained from the above results. First, even when the number of pumps is one, the inlet inflow amount varies when the number of water pumps is variable, so that the present invention is also applicable to this case. Secondly, when there are multiple water pumps at a fixed speed, the differential pressure increase rate is proportional to the number of units, so the inlet flow rate can also be predicted, so it can be controlled without the flow
1 原水槽
2 凝集槽
3 凝集剤タンク
4 送水ポンプ
5 膜ろ過装置
6 差圧計
7 流入量流量計
8 制御コントローラ
9 計測機器
10 演算部
11 制御部
12 操作機器
13 表示装置
25 吸込みヘッダー
26 吐出ヘッダー
27 流入管
28 流出管
DESCRIPTION OF
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048578A JP4584849B2 (en) | 2006-02-24 | 2006-02-24 | Flocculant injection amount control method and control controller |
CN 200610172488 CN101024134A (en) | 2006-02-24 | 2006-12-29 | Flocculent agent injection rate control method and controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048578A JP4584849B2 (en) | 2006-02-24 | 2006-02-24 | Flocculant injection amount control method and control controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007222814A JP2007222814A (en) | 2007-09-06 |
JP4584849B2 true JP4584849B2 (en) | 2010-11-24 |
Family
ID=38545113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006048578A Expired - Fee Related JP4584849B2 (en) | 2006-02-24 | 2006-02-24 | Flocculant injection amount control method and control controller |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4584849B2 (en) |
CN (1) | CN101024134A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5627322B2 (en) * | 2010-07-15 | 2014-11-19 | 株式会社日立製作所 | Waste water treatment system and waste water treatment method |
FI20105814A0 (en) * | 2010-07-20 | 2010-07-20 | Kemira Oyj | Method and system for handling aqueous streams |
CN102225272B (en) * | 2011-04-20 | 2013-08-07 | 天脊煤化工集团股份有限公司 | Solid-liquid separation processing method for high-viscosity acidic slurry |
WO2015045574A1 (en) * | 2013-09-30 | 2015-04-02 | 水ing株式会社 | Desalination apparatus and desalination method |
JP6883459B2 (en) * | 2017-04-04 | 2021-06-09 | 株式会社クボタ | Organic wastewater treatment method and organic wastewater treatment equipment |
CN113044928B (en) * | 2021-05-31 | 2021-08-20 | 金科环境股份有限公司 | Ultra-filtration micro-flocculation precise dosing control method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1015307A (en) * | 1996-06-28 | 1998-01-20 | Tohoku Electric Power Co Inc | Coagulating filtration method of water and water treatment device |
JPH10286567A (en) * | 1997-04-16 | 1998-10-27 | Nkk Corp | Membrane separating process |
JP2003170174A (en) * | 2001-12-05 | 2003-06-17 | Kurita Water Ind Ltd | Coagulating filtration method and system |
JP2006015236A (en) * | 2004-07-01 | 2006-01-19 | Toray Ind Inc | Apparatus and method for preparing regenerated water |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2597756C (en) * | 2005-02-28 | 2010-01-05 | Kubota Corporation | Water treatment system |
-
2006
- 2006-02-24 JP JP2006048578A patent/JP4584849B2/en not_active Expired - Fee Related
- 2006-12-29 CN CN 200610172488 patent/CN101024134A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1015307A (en) * | 1996-06-28 | 1998-01-20 | Tohoku Electric Power Co Inc | Coagulating filtration method of water and water treatment device |
JPH10286567A (en) * | 1997-04-16 | 1998-10-27 | Nkk Corp | Membrane separating process |
JP2003170174A (en) * | 2001-12-05 | 2003-06-17 | Kurita Water Ind Ltd | Coagulating filtration method and system |
JP2006015236A (en) * | 2004-07-01 | 2006-01-19 | Toray Ind Inc | Apparatus and method for preparing regenerated water |
Also Published As
Publication number | Publication date |
---|---|
JP2007222814A (en) | 2007-09-06 |
CN101024134A (en) | 2007-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4584849B2 (en) | Flocculant injection amount control method and control controller | |
US20180037471A1 (en) | Wastewater treatment system | |
CN107601632B (en) | Automatic dosing control method and system for coagulation | |
US8262914B2 (en) | Wastewater treatment system | |
WO2012173988A1 (en) | Control system for wastewater treatment plants with membrane bioreactors | |
JP5470887B2 (en) | Water quality reforming system | |
JP5691709B2 (en) | Water purification method and water purification device | |
US11866348B2 (en) | System, apparatus, and method for treating wastewater in real time | |
JP2008237971A (en) | Method for operating membrane filtration system | |
JP2008126137A (en) | Membrane filter control system of water treatment equipment | |
JP2009220085A (en) | Method for controlling water content to constant in screw press and device for controlling water content to constant | |
EP2017686A3 (en) | Process controller having improved surge capacity control and related methodology | |
JP2012196628A5 (en) | ||
JP5782931B2 (en) | Water treatment method and water treatment apparatus | |
JP2007098236A (en) | Method and apparatus for injecting flocculant in water clarifying process | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
JP7335160B2 (en) | Sludge coagulation dewatering device and its control method | |
RU2484880C2 (en) | Method and system of reducing quantity of particles | |
JP7285748B2 (en) | water treatment equipment | |
JP4882632B2 (en) | Method and apparatus for treating phosphoric acid-containing wastewater | |
JP6136750B2 (en) | Water treatment system | |
CN103539282B (en) | Water treatment apparatus with circulating flow path and water treatment method using the same | |
JP2003047805A (en) | Water treatment apparatus and apparatus for adjusting quantity of flocculant to be added | |
JP5649380B2 (en) | Turbid water treatment equipment | |
JPH1015307A (en) | Coagulating filtration method of water and water treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100810 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4584849 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |