JPH10151341A - Sulfur compound adsorbent - Google Patents

Sulfur compound adsorbent

Info

Publication number
JPH10151341A
JPH10151341A JP8311741A JP31174196A JPH10151341A JP H10151341 A JPH10151341 A JP H10151341A JP 8311741 A JP8311741 A JP 8311741A JP 31174196 A JP31174196 A JP 31174196A JP H10151341 A JPH10151341 A JP H10151341A
Authority
JP
Japan
Prior art keywords
manganese oxide
weight
group
loading
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8311741A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Kimihiko Yoshida
公彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP8311741A priority Critical patent/JPH10151341A/en
Publication of JPH10151341A publication Critical patent/JPH10151341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly durable sulfur compd. adsorbent capable of efficiently adsorbing and removing sulfur compds. from a gas contg. relatively small amts. of such malodorous sulfur compds. as hydrogen sulfide, mercaptanes and sulfides and the balance hydrocarbons or further from a gas such as air contg. the malodorous sulfur compds. SOLUTION: This sulfur compd. adsorbent is formed by depositing at least one kind of element selected from a group consisting of Ti, Zr, Fe, Cu, Ce and La and at least one kind of element selected from a group consisting of Pt, Au and Pd on the manganese oxide having 250m<2> /g specific surface and 37±1 deg. angle (2θ) of diffraction at the diffraction peak as the maximum intensity in X-ray diffraction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】都市ガス、プロパンガス等の
一般家庭において用いられているガス燃料には、その漏
洩があった場合、それを臭覚的に感知させるために、通
常、硫黄化合物系の付臭剤が含まれている。従って、上
述したような都市ガス等を炭化水素として燃料電池の反
応用原料や、スプレー容器における高圧充填剤等の用途
に用いる場合に、所要の反応に有害であったり、また、
スプレーの使用者に不快感をもたせ、場合によっては、
毒性を有することさえある。
BACKGROUND OF THE INVENTION Gas fuels used in ordinary households, such as city gas and propane gas, are usually provided with sulfur compounds in order to make them smell sensible if they leak. Contains odorants. Therefore, when the above-mentioned city gas or the like is used as a hydrocarbon as a raw material for reaction of a fuel cell as a hydrocarbon, or in applications such as a high-pressure filler in a spray container, it is harmful to a required reaction,
May cause discomfort to the user of the spray, and in some cases,
It can even be toxic.

【0002】本発明は、都市ガス、プロパンガス等の炭
化水素ガスを上述したような用途に供する前に、上記硫
黄化合物系の付臭剤を効果的に除去することができるほ
か、種々の生活のための設備や機器、例えば、便所や冷
蔵庫内にて発生する硫黄化合物系の悪臭をも効果的に除
去することができる硫黄化合物吸着剤に関する。
[0002] The present invention can effectively remove the above-mentioned sulfur compound-based odorant before providing a hydrocarbon gas such as city gas or propane gas to the above-mentioned use, and can be used for various purposes. The present invention relates to a sulfur compound adsorbent capable of effectively removing a sulfur compound-based odor generated in a facility or an apparatus, for example, a toilet or a refrigerator.

【0003】[0003]

【従来の技術】悪臭を有する硫黄化合物は、従来、主と
して活性炭によって吸着除去されている。しかし、都市
ガスやプロパンガス等の主成分である炭化水素をこのよ
うに活性炭によって吸着処理すれば、炭化水素自体が活
性炭の細孔を占めるので、硫黄化合物が十分に活性炭に
吸着されないという問題がある。従来、活性炭以外の吸
着剤としては、電解法による二酸化マンガンやゼオライ
トのイオン交換サイトを銅でイオン交換してなる銅ゼオ
ライト等が知られているが、これらは、メルカプタン類
は吸着するものの、硫化メチル等のサルファイド類(硫
化物)は殆ど吸着しないという問題がある。
2. Description of the Related Art Conventionally, sulfur compounds having a bad smell are mainly adsorbed and removed by activated carbon. However, if hydrocarbons, which are the main components such as city gas and propane gas, are adsorbed with activated carbon in this way, the hydrocarbon itself occupies the pores of the activated carbon, and the problem is that sulfur compounds are not sufficiently adsorbed on activated carbon. is there. Conventionally, as adsorbents other than activated carbon, manganese dioxide by electrolysis and copper zeolite obtained by ion-exchanging ion exchange sites of zeolite with copper have been known. There is a problem that sulfides (sulfides) such as methyl hardly adsorb.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述したよ
うな硫黄化合物の吸着剤における従来の問題を解決する
ためになされたものであって、炭化水素をバランスと
し、比較的少量の硫化水素、メルカプタン類、サルファ
イド類(硫化物)等のような悪臭を有する硫黄化合物を
含むガスのほか、一般に、上述したような悪臭を有する
硫黄化合物を含むガス、例えば、空気から上記硫黄化合
物を効率よく吸着除去することができる吸着剤を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems in the above-mentioned adsorbents for sulfur compounds, and is intended to balance hydrocarbons and to use a relatively small amount of hydrogen sulfide. , Mercaptans, sulfides (sulfides), and other gases containing sulfur compounds having a bad odor, as well as gases containing sulfur compounds having a bad odor as described above, for example, the above-mentioned sulfur compounds efficiently from air. It is an object to provide an adsorbent that can be adsorbed and removed.

【0005】[0005]

【課題を解決するための手段】本発明による硫黄化合物
吸着剤は、比表面積が50m2 /g以上であり、X線回
折における最大強度の回折ピークの回折角度(2θ)が
37°±1°である酸化マンガンにTi、Zr、Fe、
Cu、Ce及びLaよりなる群から選ばれる少なくとも
1種の元素とPt、Au及びPdよりなる群から選ばれ
る少なくとも1種の元素とを担持させてなることを特徴
とする。
The sulfur compound adsorbent according to the present invention has a specific surface area of 50 m 2 / g or more and the diffraction angle (2θ) of the diffraction peak of the maximum intensity in X-ray diffraction is 37 ° ± 1 °. Ti, Zr, Fe,
It is characterized by supporting at least one element selected from the group consisting of Cu, Ce and La and at least one element selected from the group consisting of Pt, Au and Pd.

【0006】[0006]

【発明の実施の形態】以下、本発明において、酸化マン
ガンを担体といい、Ti、Zr、Fe、Cu、Ce及び
Laよりなる群から選ばれる少なくとも1種の元素をA
群元素といい、Pt、Au及びPdよりなる群から選ば
れる少なくとも1種の元素をB群元素ということがあ
り、これらA群元素及びB群元素を活性成分ということ
がある。また、本発明において、酸化マンガンは、二酸
化マンガンを意味するが、しかし、既に知られているよ
うに、非化学量論的な二酸化マンガンをも含むものとす
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, manganese oxide is hereinafter referred to as a carrier, and at least one element selected from the group consisting of Ti, Zr, Fe, Cu, Ce and La is represented by A
At least one element selected from the group consisting of Pt, Au and Pd is sometimes called a group B element, and these group A and group B elements are sometimes called active components. In the present invention, manganese oxide means manganese dioxide, but also includes non-stoichiometric manganese dioxide as already known.

【0007】本発明者らは、既に、比表面積が50m2
/g以上であり、X線回折における最大強度の回折ピー
クの回折角度(2θ)が37°±1°である酸化マンガ
ンが硫黄化合物を効果的に吸着することを見出している
(特開平8−173795号公報)。このような酸化マ
ンガンからなる吸着剤が、炭化水素類をバランスガスと
する系においても、硫黄化合物を効果的に吸着し得る理
由については,未だ明らかではないが、上記比表面積と
X線回折における特性を有する酸化マンガンが有する酸
素欠陥が大きく関わっていると考えられる。
The present inventors have already found that the specific surface area is 50 m 2.
/ G or more, and a manganese oxide having a diffraction angle (2θ) of a diffraction peak (2θ) of the maximum intensity in X-ray diffraction of 37 ° ± 1 ° effectively adsorbs a sulfur compound (Japanese Patent Application Laid-Open No. Hei 8- No. 173795). The reason why such an adsorbent composed of manganese oxide can effectively adsorb sulfur compounds even in a system using hydrocarbons as a balance gas is not clear yet, but the specific surface area and the X-ray diffraction are not clear. It is considered that oxygen vacancies of manganese oxide having characteristics are significantly involved.

【0008】本発明者らは、このような酸化マンガンの
硫黄化合物に対する吸着を更に研究した結果、上記酸化
マンガンに前記Ti、Zr、Fe、Cu、Ce及びLa
よりなる群から選ばれる少なくとも1種の元素(A群元
素)とPt、Au及びPdよりなる群から選ばれる少な
くとも1種の元素(B群元素)を活性成分として共に担
持させることによって、炭化水素類をバランスガスとす
る系において、硫化物をはじめ、種々の硫黄化合物に対
する吸着性能が一層向上すると共に、種々の硫黄化合物
に対する吸着性能の持続性が更に向上することを見出し
て、本発明に至ったものである。
The present inventors have further studied the adsorption of manganese oxide on sulfur compounds. As a result, the above-mentioned manganese oxide was found to contain Ti, Zr, Fe, Cu, Ce and La.
At least one element selected from the group consisting of (Group A elements) and at least one element selected from the group consisting of Pt, Au and Pd (Group B elements) as an active component, thereby producing a hydrocarbon. The present invention has been found that, in a system using a gas as a balance gas, the adsorption performance for various sulfur compounds including sulfides is further improved, and the sustainability of the adsorption performance for various sulfur compounds is further improved. It is a thing.

【0009】上述したような比表面積が50m2 /g以
上であり、X線回折における最大強度の回折ピークの回
折角度(2θ)が37°±1°である酸化マンガンは、
例えば、焼成することによって酸化マンガンを与える前
駆体、例えば、水酸化マンガンや、或いは炭酸マンガ
ン、酢酸マンガン等のマンガン塩を、雰囲気、温度、時
間等の焼成条件を調整して焼成し、必要に応じて、酸処
理をすることによって得ることができる。例えば、炭酸
マンガンを250〜450℃の範囲の温度で焼成した
後、例えば、硝酸等の酸を用いて酸処理することによっ
て、上記特性を有する酸化マンガンを得ることができ
る。また、別の方法として、水溶性マンガン塩、例え
ば、硝酸マンガン、硫酸マンガン、酢酸マンガン等と過
マンガン酸カリウムとを反応させた後、水洗乾燥させる
ことによっても、前記特性を有する酸化マンガンを得る
ことができる。
Manganese oxide having a specific surface area of 50 m 2 / g or more as described above and a diffraction angle (2θ) of a diffraction peak of the maximum intensity in X-ray diffraction of 37 ° ± 1 ° is:
For example, a precursor that gives manganese oxide by firing, for example, manganese hydroxide, or manganese carbonate, a manganese salt such as manganese acetate, firing, adjusting firing conditions such as atmosphere, temperature, time, etc. Accordingly, it can be obtained by performing an acid treatment. For example, manganese oxide having the above characteristics can be obtained by calcining manganese carbonate at a temperature in the range of 250 to 450 ° C., and then performing acid treatment using an acid such as nitric acid. In addition, as another method, a water-soluble manganese salt, for example, manganese nitrate, manganese sulfate, manganese acetate, and the like are reacted with potassium permanganate, and then washed with water and dried to obtain manganese oxide having the above characteristics. be able to.

【0010】このような酸化マンガンに前記A群元素と
B群元素とを活性成分として担持させるには、例えば、
第1の方法として、炭酸マンガンを焼成して、酸化マン
ガンとする際に、炭酸マンガンに上記元素の化合物を混
合し、これを焼成したり、硝酸マンガンと過マンガン酸
カリをウムとを反応させて、上記元素を担持させた酸化
マンガンを得ればよい。この方法において、上記元素の
化合物としては、特に、塩化合物を用いることが好まし
い。この方法によって、A群元素とB群元素とを活性成
分として担持させた酸化マンガンを調製する場合も、得
られる酸化マンガンは、比表面積が50m2 /g以上で
あり、X線回折における最大強度の回折ピークの回折角
度(2θ)が37°±1°である。勿論、A群元素とB
群元素とを担持した複合物としての吸着剤自体も、比表
面積が50m2 /g以上であり、X線回折における最大
強度の回折ピークの回折角度(2θ)が37°±1°で
ある。
In order to make the manganese oxide carry the group A element and the group B element as active components, for example,
As a first method, when manganese carbonate is calcined to form manganese oxide, a compound of the above element is mixed with manganese carbonate and calcined, or manganese nitrate and potassium permanganate are reacted with um. Thus, manganese oxide supporting the above element may be obtained. In this method, it is particularly preferable to use a salt compound as the compound of the above element. In the case where manganese oxide carrying a group A element and a group B element as active components is prepared by this method, the obtained manganese oxide has a specific surface area of 50 m 2 / g or more and a maximum intensity in X-ray diffraction. Has a diffraction angle (2θ) of 37 ° ± 1 °. Of course, group A elements and B
The adsorbent itself as a composite carrying the group elements also has a specific surface area of 50 m 2 / g or more, and the diffraction angle (2θ) of the diffraction peak of the maximum intensity in X-ray diffraction is 37 ° ± 1 °.

【0011】酸化マンガンの製造方法自体が上述したも
のである限りは、酸化マンガンを調製する際に、A群元
素とB群元素とを担持させるか、させないにかかわら
ず、得られる酸化マンガンは、比表面積が50m2 /g
以上であり、X線回折における最大強度の回折ピークの
回折角度(2θ)が37°±1°である。
As long as the method of producing manganese oxide itself is as described above, regardless of whether or not a group A element and a group B element are supported when preparing manganese oxide, the obtained manganese oxide is The specific surface area is 50 m 2 / g
As described above, the diffraction angle (2θ) of the maximum intensity diffraction peak in X-ray diffraction is 37 ° ± 1 °.

【0012】また、第2の方法として、前記比表面積特
性とX線回折特性とを特性を有する酸化マンガンを調製
した後、その粉末を前記元素の塩化合物の水溶液と混合
した後、蒸発乾固させてもよい。勿論、必要に応じて、
これら第1及び第2の方法を組み合わせて行なってもよ
い。
As a second method, after preparing manganese oxide having the specific surface area characteristics and the X-ray diffraction characteristics, the powder is mixed with an aqueous solution of a salt compound of the element, and then evaporated to dryness. May be. Of course, if necessary,
These first and second methods may be performed in combination.

【0013】本発明による硫黄化合物吸着剤において、
A群元素の担持率は、合計量にて、1〜20重量%の範
囲が好ましい。ここに、A群元素の担持率とは、活性成
分と酸化マンガンとの合計量に対するA群元素の割合
(重量%)をいう。A群元素の担持率が1重量%より少
ないときは、A群元素の添加による吸着能の増大が殆ど
なく、他方、20重量%を越えるときは、反対に、吸着
能が低下するからである。
In the sulfur compound adsorbent according to the present invention,
The loading of the group A element is preferably in the range of 1 to 20% by weight in total. Here, the carrying ratio of the group A element means the ratio (% by weight) of the group A element to the total amount of the active ingredient and manganese oxide. When the loading of the group A element is less than 1% by weight, there is almost no increase in the adsorptive capacity due to the addition of the group A element, while when it exceeds 20% by weight, the adsorptive capacity decreases. .

【0014】また、本発明による硫黄化合物吸着剤にお
いて、B群元素の担持率は、合計量にて、0.01〜1重
量%の範囲が好ましい。ここに、B群元素の担持率と
は、活性成分と酸化マンガンとの合計量に対するB群元
素の割合(重量%)をいう。B群元素の担持率が0.01
重量%より少ないときは、B群元素の添加による吸着能
の増大が殆どなく、他方、1重量%を越えるときは、反
対に、吸着能が低下するからである。
Further, in the sulfur compound adsorbent according to the present invention, the total loading of the group B element is preferably in the range of 0.01 to 1% by weight. Here, the loading ratio of the group B element refers to the ratio (% by weight) of the group B element to the total amount of the active ingredient and manganese oxide. The supporting rate of the group B element is 0.01
When the amount is less than 1% by weight, there is almost no increase in the adsorbing ability due to the addition of the group B element. On the other hand, when it exceeds 1% by weight, the adsorbing ability decreases.

【0015】本発明による硫黄化合物吸着剤において
は、このように、前記酸化マンガンにA群元素とB群元
素とを複合的に担持させることによって、相乗的に硫黄
化合物に対する吸着能を高めることができると共に、種
々の硫黄化合物に対する吸着性能の持続性も向上す
る。。
In the sulfur compound adsorbent according to the present invention, as described above, by adsorbing the group A element and the group B element on the manganese oxide in a complex manner, it is possible to synergistically enhance the adsorbing ability for the sulfur compound. In addition, the durability of the adsorption performance for various sulfur compounds is improved. .

【0016】本発明による吸着剤は、従来より知られて
いる成形方法によって、ハニカム状、球状等、種々の形
状に成形することができる。この成形に際して、成形助
剤、補強材、無機繊維、有機バインダー等を適宜配合し
てもよい。また予め成形された基材状にウオッシュコー
ト法等によって被覆担持させることもできる。さらに従
来知られているその他の吸着剤の調製方法によることも
できる。
The adsorbent according to the present invention can be formed into various shapes such as a honeycomb shape and a spherical shape by a conventionally known forming method. In this molding, a molding aid, a reinforcing material, an inorganic fiber, an organic binder, and the like may be appropriately compounded. Further, it can be coated and supported on a preformed base material by a wash coat method or the like. Further, it may be based on other conventionally known methods for preparing an adsorbent.

【0017】本発明による吸着剤によれば、硫化水素、
メチルメルカプタン、t−ブチルメルカプタンなどのメ
ルカプタン類、一硫化メチル、二硫化メチル等のサルフ
ァイド類(硫化物)を効率よく吸着除去することができ
る。
According to the adsorbent according to the present invention, hydrogen sulfide,
Mercaptans such as methyl mercaptan and t-butyl mercaptan, and sulfides (sulfides) such as methyl monosulfide and methyl disulfide can be efficiently adsorbed and removed.

【0018】[0018]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples.

【0019】実施例1 硝酸マンガン6水和物121.8gと100g/L濃度の
チタニル硫酸200gをイオン交換水100mLに溶解
して、硝酸マンガン/チタニル硫酸混合水溶液を調製し
た。別に、過マンガン酸カリウム40gをイオン交換水
200mLに溶解して、過マンガン酸カリウム水溶液を
調製した。
Example 1 A mixed aqueous solution of manganese nitrate / titanyl sulfate was prepared by dissolving 121.8 g of manganese nitrate hexahydrate and 200 g of titanyl sulfate at a concentration of 100 g / L in 100 mL of ion-exchanged water. Separately, 40 g of potassium permanganate was dissolved in 200 mL of ion-exchanged water to prepare an aqueous potassium permanganate solution.

【0020】上記過マンガン酸カリウム水溶液に攪拌
下、上記硝酸マンガン/チタニル硫酸混合水溶液を滴下
し、約30分にて反応を終了させた。得られた反応生成
物を濾過し、イオン交換水にて水洗し、乾燥して、Ti
を含む酸化マンガン65gを得た。このTiを含む酸化
マンガンは、比表面積170m2 /gであり、Ti担持
率6.2重量%であった。
While stirring the above aqueous solution of potassium permanganate, the above mixed aqueous solution of manganese nitrate and titanyl sulfate was added dropwise, and the reaction was completed in about 30 minutes. The obtained reaction product was filtered, washed with ion exchanged water, dried, and
Manganese oxide containing 65 g was obtained. The manganese oxide containing Ti had a specific surface area of 170 m 2 / g and a Ti loading of 6.2% by weight.

【0021】このTi担持酸化マンガン10gに適量の
イオン交換水と共にジニトロジアンミン白金硝酸溶液を
Pt換算で0.05gになるように加えて、スラリー状と
した後、これを蒸発乾固して、Pt担持率0.5重量%、
Ti担持率6.2重量%の酸化マンガンを得た。
A dinitrodiammineplatinic nitric acid solution is added to 10 g of the Ti-supported manganese oxide together with an appropriate amount of ion-exchanged water so that the solution becomes 0.05 g in terms of Pt, and a slurry is formed. Loading rate 0.5% by weight,
Manganese oxide having a Ti loading of 6.2% by weight was obtained.

【0022】実施例2 実施例1において、ジニトロジアンミン白金硝酸溶液に
代えて、塩化パラジウム溶液をPd換算で0.05gとな
るように加えた以外は、実施例1と同様にして、Pd担
持率0.5重量%、Ti担持率6.2重量%の酸化マンガン
を得た。
Example 2 A Pd carrying ratio was obtained in the same manner as in Example 1 except that a palladium chloride solution was added in an amount of 0.05 g in terms of Pd in place of the dinitrodiammine platinum nitrate solution. Manganese oxide having a content of 0.5% by weight and a Ti loading of 6.2% by weight was obtained.

【0023】実施例3 実施例1において、ジニトロジアンミン白金硝酸溶液に
代えて、塩化金溶液をAu換算で0.05gとなるように
加えた以外は、実施例1と同様にして、Au担持率0.5
重量%、Ti担持率6.2重量%の酸化マンガンを得た。
Example 3 The procedure of Example 1 was repeated, except that a gold chloride solution was added in an amount of 0.05 g in terms of Au in place of the dinitrodiammineplatinic nitrate solution. 0.5
Manganese oxide having a Ti content of 6.2% by weight was obtained.

【0024】実施例4 実施例1において、チタニル硫酸に代えて、100g/
L濃度の硫酸ジルコニル158gを用いた以外は、実施
例1と同様にして、Zrを含む酸化マンガン70gを得
た。このZrを含む酸化マンガンは、比表面積230m
2 /gであり、Zr担持率6.8重量%であった。この
後、実施例1と同様に操作を行なって、Pt担持率0.5
重量%、Zr担持率6.8重量%の酸化マンガンを得た。
Example 4 The procedure of Example 1 was repeated, except that titanyl sulfate was replaced with 100 g /
70 g of manganese oxide containing Zr was obtained in the same manner as in Example 1 except that 158 g of zirconyl sulfate having an L concentration was used. The manganese oxide containing Zr has a specific surface area of 230 m
2 / g, and the Zr loading was 6.8% by weight. Thereafter, the same operation as in Example 1 was performed to obtain a Pt carrying ratio of 0.5.
Thus, manganese oxide having a Zr loading of 6.8% by weight was obtained.

【0025】実施例5 実施例1において、チタニル硫酸に代えて、硫酸第一鉄
7水和物59.0gを用いた以外は、実施例1と同様にし
て、Feを含む酸化マンガン63gを得た。このFeを
含む酸化マンガンは、比表面積249m2 /gであり、
Fe担持率6.5重量%であった。この後、実施例2と同
様に操作を行なって、Pd担持率0.5重量%、Fe担持
率6.5重量%の酸化マンガンを得た。
Example 5 63 g of manganese oxide containing Fe was obtained in the same manner as in Example 1, except that 59.0 g of ferrous sulfate heptahydrate was used instead of titanyl sulfate. Was. The manganese oxide containing Fe has a specific surface area of 249 m 2 / g,
The Fe loading was 6.5% by weight. Thereafter, the same operation as in Example 2 was performed to obtain manganese oxide having a Pd loading of 0.5% by weight and an Fe loading of 6.5% by weight.

【0026】実施例6 実施例1において、チタニル硫酸に代えて、硝酸銅3水
和物51.3gを用いた以外は、実施例1と同様にして、
Cuを含む酸化マンガン62gを得た。このCuを含む
酸化マンガンは、比表面積208m2 /gであり、Fe
担持率6.1重量%であった。この後、実施例3と同様に
操作を行なって、Au担持率0.5重量%、Cu担持率6.
1重量%の酸化マンガンを得た。
Example 6 The procedure of Example 1 was repeated, except that 51.3 g of copper nitrate trihydrate was used instead of titanyl sulfate.
62 g of manganese oxide containing Cu was obtained. This manganese oxide containing Cu has a specific surface area of 208 m 2 / g and Fe
The loading was 6.1% by weight. Thereafter, the same operation as in Example 3 was performed to obtain an Au loading of 0.5% by weight and a Cu loading of 6.
1% by weight of manganese oxide was obtained.

【0027】実施例7 実施例1において、チタニル硫酸に代えて、硝酸第一セ
リウム5水和物45.6gを用いた以外は、実施例1と同
様にして、Ceを含む酸化マンガン78gを得た。この
Ceを含む酸化マンガンは、比表面積208m2 /gで
あり、Ce担持率3.8重量%であった。この後、実施例
1と同様に操作を行なって、Pt担持率0.5重量%、C
e担持率3.8重量%の酸化マンガンを得た。
Example 7 In the same manner as in Example 1, except that 45.6 g of cerous nitrate pentahydrate was used instead of titanyl sulfate, 78 g of manganese oxide containing Ce was obtained. Was. The manganese oxide containing Ce had a specific surface area of 208 m 2 / g and a Ce loading of 3.8% by weight. Thereafter, the same operation as in Example 1 was carried out to obtain a Pt carrying ratio of 0.5% by weight and C
e Manganese oxide having a loading of 3.8% by weight was obtained.

【0028】実施例8 実施例1において、チタニル硫酸に代えて、硝酸ランタ
ン6水和物45.4gを用いた以外は、実施例1と同様に
して、Laを含む酸化マンガン60gを得た。このLa
を含む酸化マンガンは、比表面積203m2 /gであ
り、La担持率4.2重量%であった。この後、実施例3
と同様に操作を行なって、Au担持率0.5重量%、La
担持率4.2重量%の酸化マンガンを得た。
Example 8 60 g of La-containing manganese oxide was obtained in the same manner as in Example 1, except that 45.4 g of lanthanum nitrate hexahydrate was used instead of titanyl sulfate. This La
Has a specific surface area of 203 m 2 / g and a La loading rate of 4.2% by weight. Thereafter, the third embodiment
The same operation as described above was carried out to obtain an Au loading of 0.5% by weight and La
Manganese oxide having a loading of 4.2% by weight was obtained.

【0029】実施例9 実施例1において、100g/L濃度のチタニル硫酸4
0gを用いた以外は、実施例1と同様にして、Tiを含
む酸化マンガン62gを得た。このTiを含む酸化マン
ガンは、比表面積180m2 /gであり、Ti担持率1.
1重量%であった。この後、実施例3と同様に操作を行
なって、Au担持率0.5重量%、Ti担持率1.1重量%
の酸化マンガンを得た。
Example 9 The procedure of Example 1 was repeated except that titanyl sulfate 4 having a concentration of 100 g / L was used.
Except that 0 g was used, 62 g of manganese oxide containing Ti was obtained in the same manner as in Example 1. The manganese oxide containing Ti has a specific surface area of 180 m 2 / g and a Ti loading of 1.
It was 1% by weight. Thereafter, the same operation as in Example 3 was performed to obtain an Au loading of 0.5% by weight and a Ti loading of 1.1% by weight.
Of manganese oxide was obtained.

【0030】実施例10 実施例1において、100g/L濃度のチタニル硫酸6
00gを用いた以外は、実施例1と同様にして、Tiを
含む酸化マンガン70gを得た。このTiを含む酸化マ
ンガンは、比表面積185m2 /gであり、Ti担持率
19.0重量%であった。この後、実施例3と同様に操作
を行なって、Au担持率0.5重量%、Ti担持率1 9.0
重量%の酸化マンガンを得た。
Example 10 The procedure of Example 1 was repeated except that the concentration of titanyl sulfate 6 was 100 g / L.
70 g of manganese oxide containing Ti was obtained in the same manner as in Example 1 except that 00 g was used. The manganese oxide containing Ti had a specific surface area of 185 m 2 / g and a Ti loading of 19.0% by weight. Thereafter, the same operation as in Example 3 was performed to obtain an Au loading of 0.5% by weight and a Ti loading of 19.0.
% Manganese oxide was obtained.

【0031】実施例11 実施例3において、塩化金溶液をAu換算で0.001g
となるように加えた以外は、実施例3と同様にして、A
u担持率0.01重量%、Ti担持率6.2重量%の酸化マ
ンガンを得た。
Example 11 In Example 3, 0.001 g of the gold chloride solution was converted to Au.
A in the same manner as in Example 3 except that
Manganese oxide having a u loading of 0.01% by weight and a Ti loading of 6.2% by weight was obtained.

【0032】実施例12 実施例3において、塩化金溶液をAu換算で0.1gとな
るように加えた以外は、実施例3と同様にして、Au担
持率1.0重量%、Ti担持率6.2重量%の酸化マンガン
を得た。
Example 12 The procedure of Example 3 was repeated, except that the gold chloride solution was added in an amount of 0.1 g in terms of Au. 6.2% by weight of manganese oxide were obtained.

【0033】実施例13 実施例4において、100g/L濃度の硫酸ジルコニル
31.6gを用いた以外は、実施例4と同様にして、Zr
を含む酸化マンガン66gを得た。このZrを含む酸化
マンガンは、比表面積233m2 /gであり、Zr担持
率1.3重量%であった。この後、実施例1と同様に操作
を行なって、Pt担持率0.5重量%、Zr担持率1.3重
量%の酸化マンガンを得た。
Example 13 Zr was prepared in the same manner as in Example 4 except that 31.6 g of zirconyl sulfate having a concentration of 100 g / L was used.
66 g of manganese oxide containing The manganese oxide containing Zr had a specific surface area of 233 m 2 / g and a Zr loading of 1.3% by weight. Thereafter, the same operation as in Example 1 was performed to obtain manganese oxide having a Pt loading of 0.5% by weight and a Zr loading of 1.3% by weight.

【0034】実施例14 実施例4において、100g/L濃度の硫酸ジルコニル
474gを用いた以外は、実施例4と同様にして、Zr
を含む酸化マンガン62gを得た。このZrを含む酸化
マンガンは、比表面積227m2 /gであり、Zr担持
率18.9重量%であった。この後、実施例1と同様に操
作を行なって、Pt担持率0.5重量%、Zr担持率18.
9重量%の酸化マンガンを得た。
Example 14 Zr was prepared in the same manner as in Example 4 except that 474 g of zirconyl sulfate having a concentration of 100 g / L was used.
Manganese oxide containing 62 g was obtained. The manganese oxide containing Zr had a specific surface area of 227 m 2 / g and a Zr loading of 18.9% by weight. Thereafter, the same operation as in Example 1 was carried out to obtain a Pt loading of 0.5% by weight and a Zr loading of 18%.
9% by weight of manganese oxide was obtained.

【0035】実施例15 実施例4において、ジニトロジアンミン白金硝酸溶液を
Pt換算にて0.001gとなるように用いた以外は、実
施例4と同様にして、Pt担持率0.01重量%、Zr担
持率6.8重量%の酸化マンガンを得た。
Example 15 The procedure of Example 4 was repeated, except that the dinitrodiammine platinum nitrate solution was used in an amount of 0.001 g in terms of Pt. Manganese oxide having a Zr loading of 6.8% by weight was obtained.

【0036】実施例16 実施例4において、ジニトロジアンミン白金硝酸溶液を
Pt換算にて0.1gとなるように用いた以外は、実施例
4と同様にして、Pt担持率1.0重量%、Zr担持率6.
8重量%の酸化マンガンを得た。
Example 16 The procedure of Example 4 was repeated, except that the dinitrodiammineplatinic nitric acid solution was used in an amount of 0.1 g in terms of Pt. Zr loading 6.
8% by weight of manganese oxide was obtained.

【0037】比較例1 硝酸マンガン6水和物121.8gと100g/L濃度の
チタニル硫酸200gをイオン交換水100mLに溶解
して、硝酸マンガン/チタニル硫酸混合水溶液を調製し
た。別に、過マンガン酸カリウム40gをイオン交換水
200mLに溶解して、過マンガン酸カリウム水溶液を
調製した。
COMPARATIVE EXAMPLE 1 121.8 g of manganese nitrate hexahydrate and 200 g of titanyl sulfate at a concentration of 100 g / L were dissolved in 100 mL of ion-exchanged water to prepare a mixed aqueous solution of manganese nitrate / titanyl sulfate. Separately, 40 g of potassium permanganate was dissolved in 200 mL of ion-exchanged water to prepare an aqueous potassium permanganate solution.

【0038】上記過マンガン酸カリウム水溶液に攪拌
下、上記硝酸マンガン/チタニル硫酸混合水溶液を滴下
し、約30分にて反応を終了させた。得られた反応生成
物を濾過し、イオン交換水にて水洗し、乾燥して、Ti
を含む酸化マンガン65gを得た。このTiを含む酸化
マンガンは、比表面積170m2 /gであり、Ti担持
率6.2重量%であった。
The above-mentioned mixed aqueous solution of manganese nitrate and titanyl sulfate was added dropwise to the aqueous solution of potassium permanganate with stirring, and the reaction was completed in about 30 minutes. The obtained reaction product was filtered, washed with ion exchanged water, dried, and
Manganese oxide containing 65 g was obtained. The manganese oxide containing Ti had a specific surface area of 170 m 2 / g and a Ti loading of 6.2% by weight.

【0039】比較例2 硝酸マンガン6水和物121.8gをイオン交換水100
mLに溶解して、硝酸マンガン水溶液を調製した。別
に、過マンガン酸カリウム40gをイオン交換水200
mLに溶解して、過マンガン酸カリウム水溶液を調製し
た。上記過マンガン酸カリウム水溶液に攪拌下、上記硝
酸マンガン水溶液を滴下し、約30分にて反応を終了さ
せた。得られた反応生成物を濾過し、イオン交換水にて
水洗し、乾燥して、酸化マンガン61gを得た。この酸
化マンガンの比表面積は204m2 /gであった。
COMPARATIVE EXAMPLE 2 121.8 g of manganese nitrate hexahydrate was added to 100 parts of ion-exchanged water.
The solution was dissolved in mL to prepare an aqueous solution of manganese nitrate. Separately, 40 g of potassium permanganate was added to 200 parts of ion-exchanged water.
The solution was dissolved in mL to prepare an aqueous solution of potassium permanganate. The manganese nitrate aqueous solution was added dropwise to the potassium permanganate aqueous solution with stirring, and the reaction was completed in about 30 minutes. The obtained reaction product was filtered, washed with ion-exchanged water, and dried to obtain 61 g of manganese oxide. The specific surface area of this manganese oxide was 204 m 2 / g.

【0040】比較例3 比較例2において調製した酸化マンガン10gに適量の
イオン交換水と共にジニトロジアンミン白金硝酸溶液を
Pt換算で0.05gになるように加えて、スラリー状と
した後、これを蒸発乾固して、Pt担持率0.5重量%の
酸化マンガンを得た。
Comparative Example 3 A dinitrodiammine platinum nitrate solution was added to 10 g of the manganese oxide prepared in Comparative Example 2 together with an appropriate amount of ion-exchanged water so as to obtain 0.05 g in terms of Pt, and the slurry was evaporated. After drying, manganese oxide having a Pt loading of 0.5% by weight was obtained.

【0041】(吸着評価試験) 実施例17 実施例1〜16及び比較例1〜3において調製した吸着
剤を下記のように顆粒状に成形し、これを用いて、その
硫黄化合物の吸着性能を評価する試験を行なった。
(Adsorption Evaluation Test) Example 17 The adsorbents prepared in Examples 1 to 16 and Comparative Examples 1 to 3 were formed into granules as described below, and the adsorbent was used to evaluate the adsorption performance of sulfur compounds. An evaluation test was performed.

【0042】顆粒状吸着剤の調製 実施例1〜16及び比較例1〜3にて得られた酸化マン
ガン粉体50gにシリカゾル(日産化学製「スノーテッ
クスN」)50gと水適量を加え、これを顆粒状に成形
して、20メッシュアンダー、30メッシュオーバーと
した。
Preparation of Granular Adsorbent To 50 g of the manganese oxide powder obtained in Examples 1 to 16 and Comparative Examples 1 to 3, 50 g of silica sol (“Snowtex N” manufactured by Nissan Chemical Industries, Ltd.) and an appropriate amount of water were added. Was formed into granules, and the mesh size was reduced to 20 mesh under and 30 mesh over.

【0043】吸着率の試験方法 試験は、図1に示すように、吸着剤を充填した吸着器1
を恒温槽2内に置き、この吸着器1に下記の硫黄化合物
を含むプロパンガス又は空気を下記の試験条件下に通過
させて、プロパンガス又は空気中の吸着器の入口及び出
口における硫黄化合物濃度を測定して、次式 硫黄化合物吸着率=〔(入口濃度−出口濃度)/入口濃
度〕×100(%) から、硫黄化合物の吸着率(%)を求めた。
Test Method of Adsorption Rate As shown in FIG. 1, the test was carried out using an adsorber 1 filled with an adsorbent.
Is placed in a constant temperature bath 2 and propane gas or air containing the following sulfur compound is passed through the adsorber 1 under the following test conditions, and the sulfur compound concentration in the propane gas or air at the inlet and outlet of the adsorber is measured. The sulfur compound adsorption rate (%) was determined from the following equation: sulfur compound adsorption rate = [(inlet concentration-outlet concentration) / inlet concentration] × 100 (%).

【0044】試験条件は次の条件1又は2によった。 試験条件1(バランスがプロパンであるときの硫化ジメチルの吸着除去) ガス組成: t−ブチルメチルカプタン 3ppm 硫化ジメチル 3ppm プロパン バランス 温度: 20℃ 空間速度(SV): 30000hr-1 The test conditions were based on the following conditions 1 or 2. Test condition 1 (Adsorption removal of dimethyl sulfide when the balance is propane) Gas composition: t-butylmethylcaptan 3 ppm dimethyl sulfide 3 ppm propane Balance temperature: 20 ° C. Space velocity (SV): 30,000 hr −1

【0045】 試験条件2(バランスが空気であるときの硫化水素及びメチルメルカプタンの吸 着除去) ガス組成: 硫化水素 5ppm メチルメルカプタン 5ppm 空気 バランス 相対湿度 60% 温度: 20℃ 空間速度(SV): 100000hr-1 試験条件1のときの結果を表1に示し、試験条件2のと
きの結果を表2に示す。
Test condition 2 (adsorption and removal of hydrogen sulfide and methyl mercaptan when the balance is air) Gas composition: hydrogen sulfide 5 ppm methyl mercaptan 5 ppm air balance relative humidity 60% temperature: 20 ° C. space velocity (SV): 100,000 hr -1 Table 1 shows the results under test condition 1, and Table 2 shows the results under test condition 2.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】以上のように、本発明による吸着剤は、
所定の比表面積とX線回折における最大強度の回折ピー
クの回折角度(2θ)が所定角度である酸化マンガンに
所定の活性成分を担持させてなり、比較的少量の硫化水
素、メルカプタン類、サルファイド類(硫化物)等のよ
うな悪臭を有する硫黄化合物を含むガスから上記硫黄化
合物を効率よく吸着除去することができる。特に、本発
明による吸着剤は、都市ガス、プロパンガス等、炭化水
素をバランスとし、比較的少量の硫黄化合物、なかで
も、従来、その吸着による除去が困難であった硫化メチ
ルを有効に吸着除去することができる。勿論、本発明に
よる吸着剤は、上記炭化水素をバランスとするガスのみ
ならず、一般家庭においても、便所や冷蔵庫において発
生する悪臭を有する硫黄化合物を含む空気からそのよう
な硫黄化合物を効率よく吸着除去することができる。
As described above, the adsorbent according to the present invention comprises:
A manganese oxide having a predetermined specific surface area and a diffraction angle (2θ) of a diffraction peak of the maximum intensity in X-ray diffraction at a predetermined angle is made to carry a predetermined active component, and a relatively small amount of hydrogen sulfide, mercaptans, and sulfides The sulfur compound can be efficiently adsorbed and removed from a gas containing a malodorous sulfur compound such as (sulfide). In particular, the adsorbent according to the present invention balances hydrocarbons, such as city gas and propane gas, and effectively adsorbs and removes relatively small amounts of sulfur compounds, especially methyl sulfide, which was conventionally difficult to remove by adsorption. can do. Of course, the adsorbent according to the present invention can efficiently adsorb such sulfur compounds from air containing sulfur compounds having bad smells generated in toilets and refrigerators, not only in the gas that balances hydrocarbons, but also in ordinary households. Can be removed.

【0049】更に、本発明による吸着剤によれば、酸化
マンガンのみからなる吸着剤に比べれば、勿論のこと、
A群元素又はB群元素のいずれか一方のみを担持させて
なる吸着に比べても、例えば、実施例1による吸着剤を
比較例1及び3による吸着剤のそれぞれと比較して明ら
かなように、硫黄化合物の吸着率自体が高く、しかも、
吸着率の経時低下が殆どみられず、吸着性能の持続性、
即ち、耐久性にすぐれるものである。
Further, according to the adsorbent according to the present invention, it is needless to say that compared with the adsorbent consisting of only manganese oxide,
Compared to the adsorption carried by only one of the group A element or the group B element, for example, the adsorbent according to Example 1 is clearly compared with the adsorbent according to Comparative Examples 1 and 3, respectively. , The sulfur compound adsorption rate itself is high, and
There is almost no decrease in the adsorption rate with time,
That is, it has excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、吸着剤の吸着性能を試験するための実験の
装置構成を示す。
FIG. 1 shows an experimental apparatus configuration for testing the adsorption performance of an adsorbent.

【符号の説明】[Explanation of symbols]

1…吸着器、2…恒温槽。 1. Adsorber, 2. Thermostat.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】比表面積が50m2 /g以上であり、X線
回折における最大強度の回折ピークの回折角度(2θ)
が37°±1°である酸化マンガンにTi、Zr、F
e、Cu、Ce及びLaよりなる群から選ばれる少なく
とも1種の元素とPt、Au及びPdよりなる群から選
ばれる少なくとも1種の元素とを担持させてなることを
特徴とする硫黄化合物吸着剤。
1. A diffraction angle (2θ) of a diffraction peak having a maximum intensity in X-ray diffraction having a specific surface area of 50 m 2 / g or more.
Is 37 ° ± 1 °, Ti, Zr, F
e, a sulfur compound adsorbent obtained by supporting at least one element selected from the group consisting of Cu, Ce and La and at least one element selected from the group consisting of Pt, Au and Pd. .
JP8311741A 1996-11-22 1996-11-22 Sulfur compound adsorbent Pending JPH10151341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8311741A JPH10151341A (en) 1996-11-22 1996-11-22 Sulfur compound adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8311741A JPH10151341A (en) 1996-11-22 1996-11-22 Sulfur compound adsorbent

Publications (1)

Publication Number Publication Date
JPH10151341A true JPH10151341A (en) 1998-06-09

Family

ID=18020925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8311741A Pending JPH10151341A (en) 1996-11-22 1996-11-22 Sulfur compound adsorbent

Country Status (1)

Country Link
JP (1) JPH10151341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022224A1 (en) * 2002-09-05 2004-03-18 Idemitsu Kosan Co., Ltd. Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022224A1 (en) * 2002-09-05 2004-03-18 Idemitsu Kosan Co., Ltd. Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
US7556872B2 (en) 2002-09-05 2009-07-07 Idemitsu Kosan Co., Ltd. Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system

Similar Documents

Publication Publication Date Title
US6042797A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US8357627B2 (en) Deodorizing catalyst, deodorizing method using the same, and method for regenerating the catalyst
KR100194483B1 (en) NOx Adsorbent
WO2021008276A1 (en) High-stability cuprous modified material
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JP3918305B2 (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JP4656353B2 (en) Room temperature catalyst
JP3722866B2 (en) Hydrophobic deodorizing material and method for regenerating the same
JPH06306377A (en) Removal of odorant from odorized gas
JP4507296B2 (en) Deodorizing material
JP3309428B2 (en) Deodorant and method for producing the same
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JPH10151341A (en) Sulfur compound adsorbent
JP3269306B2 (en) Sulfur compound adsorbent
JPH10165805A (en) Adsorbent for sulfur compound
JP3975557B2 (en) Ethylene adsorption removal method
CN113423485B (en) Filter medium for depositing nitrogen oxides
JPH10165804A (en) Adsorbent for sulfur compound
JPH05337363A (en) Adsorbing material for carbon monoxide in inert gas
JP2002079099A (en) Gas removing material
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JPH07185326A (en) Adsorbent for purifying hydrocarbons in exhaust gas
JP2000202243A (en) Method for purifying exhaust gas of internal combustion engine, purification catalyst and apparatus for purifying exhaust gas