JP2000202243A - Method for purifying exhaust gas of internal combustion engine, purification catalyst and apparatus for purifying exhaust gas - Google Patents

Method for purifying exhaust gas of internal combustion engine, purification catalyst and apparatus for purifying exhaust gas

Info

Publication number
JP2000202243A
JP2000202243A JP11006094A JP609499A JP2000202243A JP 2000202243 A JP2000202243 A JP 2000202243A JP 11006094 A JP11006094 A JP 11006094A JP 609499 A JP609499 A JP 609499A JP 2000202243 A JP2000202243 A JP 2000202243A
Authority
JP
Japan
Prior art keywords
fuel ratio
exhaust gas
air
catalyst
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11006094A
Other languages
Japanese (ja)
Other versions
JP4062806B2 (en
Inventor
Hidehiro Iizuka
秀宏 飯塚
Kojiro Okude
幸二郎 奥出
Masahito Kanae
雅人 金枝
Kousei Nagayama
更成 永山
Hisao Yamashita
寿生 山下
Osamu Kuroda
黒田  修
Yuichi Kitahara
雄一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00609499A priority Critical patent/JP4062806B2/en
Publication of JP2000202243A publication Critical patent/JP2000202243A/en
Application granted granted Critical
Publication of JP4062806B2 publication Critical patent/JP4062806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the SOx resistance and NOx removing performance of an NOx adsorption reduction type catalyst. SOLUTION: When a catalyst which contains at least one selected from alkali metals and alkaline earth metals, Rh and Pt, chemically adsorbs NOx in a higher air-fuel ratio than a theoretical air-fuel ratio and reduces and removes the chemically adsorbed NOx in the theoretical air-fuel ratio or below is disposed in the exhaust gas passage of an internal combustion engine, Zr is incorporated into the catalyst and at least one selected from Pd, Ir and Ru is further incorporated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の内燃機
関の排ガスを浄化する方法と排ガス浄化装置及び排ガス
浄化触媒に係わり、特に燃料希薄燃焼(リーンバーン)
が可能な内燃機関及び該内燃機関を搭載した自動車から
排出される排ガスを浄化する方法と排ガス浄化装置及び
排ガス浄化触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying exhaust gas from an internal combustion engine of an automobile or the like, an exhaust gas purifying apparatus and an exhaust gas purifying catalyst, and more particularly to a lean fuel combustion.
TECHNICAL FIELD The present invention relates to an internal combustion engine capable of exhaustion, a method for purifying exhaust gas emitted from an automobile equipped with the internal combustion engine, an exhaust gas purification device, and an exhaust gas purification catalyst.

【0002】[0002]

【従来の技術】内燃機関の排ガス流路に排ガス浄化触媒
を配置して、理論空燃比より高い空燃比(以下、酸化雰
囲気という)の排ガスと理論空燃比以下(以下、還元雰
囲気という)の空燃比の排ガスとを交互に接触させて排
ガス中の窒素酸化物を浄化する方法が特開平10−212933
号公報に記載されている。この公報には、排ガス浄化触
媒として、理論空燃比よりも高い空燃比いわゆるリーン
排ガス中のNOxを化学吸着する機能と、吸着したNO
xを還元浄化する機能とを有する吸着還元触媒を用いる
ことが示されている。
2. Description of the Related Art An exhaust gas purifying catalyst is disposed in an exhaust gas passage of an internal combustion engine, and an exhaust gas having an air-fuel ratio higher than a stoichiometric air-fuel ratio (hereinafter referred to as an oxidizing atmosphere) and an exhaust gas having a stoichiometric air-fuel ratio or less (hereinafter referred to as a reducing atmosphere). JP-A-10-212933 discloses a method for purifying nitrogen oxides in exhaust gas by alternately contacting exhaust gas with a fuel ratio.
No., published in Japanese Unexamined Patent Publication No. This publication describes that as an exhaust gas purifying catalyst, a function of chemically adsorbing NOx in so-called lean exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio, and a function of adsorbing NO
It is disclosed that an adsorption reduction catalyst having a function of reducing and purifying x is used.

【0003】特開平9−327617 号公報には、アルカリ土
類金属とチタンを有し、チタンを非晶質の形態にて含む
触媒が示されている。また、特開平10−109032号公報に
は、アルカリ土類金属とチタニアを有し、該アルカリ土
類金属とチタニアの一部を複合酸化物の形態にて含む触
媒が示されている。本発明者らの研究によれば、これら
の触媒はNOx吸着還元触媒に該当する。また、これら
の触媒は、排ガス中に含まれるSOxがアルカリ土類金
属に捕捉され、いわゆるSOx被毒を抑制しつつ、高い
NOx浄化性能を維持することができる。
Japanese Patent Application Laid-Open No. 9-327617 discloses a catalyst containing an alkaline earth metal and titanium and containing titanium in an amorphous form. JP-A-10-1009032 discloses a catalyst having an alkaline earth metal and titania, and containing a part of the alkaline earth metal and titania in the form of a composite oxide. According to the study of the present inventors, these catalysts correspond to NOx adsorption reduction catalysts. Further, these catalysts can maintain high NOx purification performance while suppressing SOx poisoning, in which SOx contained in exhaust gas is captured by alkaline earth metals.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術に記載の
NOx吸着還元触媒では、アルカリ土類金属へのSOx
捕捉量は、時間と共に増加する。SOx被毒は酸化雰囲
気で進みやすい。従って、酸化雰囲気での運転を長時間
続けるとNOx浄化性能は大きく劣化する。
In the NOx adsorption reduction catalyst described in the above prior art, SOx conversion to alkaline earth metal
The amount of capture increases with time. SOx poisoning easily proceeds in an oxidizing atmosphere. Therefore, if the operation in the oxidizing atmosphere is continued for a long time, the NOx purification performance is significantly deteriorated.

【0005】上記従来技術の問題点を踏まえ、触媒成分
に捕捉されたSOxを還元雰囲気において除去すること
を検討した。
[0005] In view of the above-mentioned problems of the prior art, it has been studied to remove SOx trapped in a catalyst component in a reducing atmosphere.

【0006】本発明の目的は、触媒成分に捕捉されたS
Oxを、排ガスの雰囲気を還元雰囲気にすることで除去
することができるようにしたNOx吸着還元タイプの排
ガス浄化触媒と、排ガス浄化方法ならびに排ガス浄化装
置を提供することにある。
[0006] It is an object of the present invention to provide a method in which S
An object of the present invention is to provide a NOx adsorption-reduction type exhaust gas purifying catalyst, an exhaust gas purifying method, and an exhaust gas purifying apparatus that can remove Ox by changing the atmosphere of the exhaust gas to a reducing atmosphere.

【0007】[0007]

【課題を解決するための手段】本発明者らは、内燃機関
の排ガス流路に、酸化雰囲気においてNOxを化学吸着
し、還元雰囲気において該化学吸着したNOxを還元浄
化するNOx吸着還元触媒を配置して、酸化雰囲気と還
元雰囲気の運転を交互に繰り返して排ガス中の窒素酸化
物を浄化する排ガス浄化方法において、優れた耐SOx
被毒性を維持しつつ高いNOx浄化性能を有する触媒の
検討を行った。
Means for Solving the Problems The present inventors have arranged a NOx adsorption reduction catalyst for chemically adsorbing NOx in an oxidizing atmosphere and reducing and purifying the chemically adsorbed NOx in a reducing atmosphere in an exhaust gas passage of an internal combustion engine. In an exhaust gas purification method for purifying nitrogen oxides in exhaust gas by alternately repeating operation in an oxidizing atmosphere and a reducing atmosphere, an excellent SOx resistance
A catalyst having high NOx purification performance while maintaining poisoning was studied.

【0008】その結果、アルカリ金属とアルカリ土類金
属の少なくとも1種とRhとPtとを含むNOx吸着還
元タイプの触媒において、ジルコニウム(Zr)を含有
することにより、優れた耐SOx被毒性と高いNOx浄
化性能とを付与できることを見出した。また、更にPd
とIrとRuから選ばれた少なくとも1種を含有するこ
とにより、この効果は一層高められることを見出した。
As a result, a NOx adsorption-reduction type catalyst containing at least one of an alkali metal and an alkaline earth metal, Rh and Pt, containing zirconium (Zr), has excellent resistance to SOx poisoning and high poisoning. It has been found that NOx purification performance can be provided. In addition, Pd
It has been found that this effect can be further enhanced by containing at least one selected from Ir and Ru.

【0009】本発明は、以下に記載の排ガス浄化方法,
排ガス浄化装置及び排ガス浄化触媒に関する。
The present invention provides an exhaust gas purifying method described below,
The present invention relates to an exhaust gas purification device and an exhaust gas purification catalyst.

【0010】(1)内燃機関の排ガス流路に、アルカリ
金属とアルカリ土類金属から選ばれた少なくも1種とR
hとPtとを含み、排ガス中の空燃比が理論空燃比より
高いときにNOxを化学吸着し、理論空燃比以下のとき
に該化学吸着したNOxを還元浄化するNOx吸着還元
触媒を配置して、該触媒に理論空燃比よりも高い空燃比
の排ガスと理論空燃比以下の空燃比の排ガスとを交互に
接触させるようにした排ガス浄化方法において、前記触
媒中にZrを含有したことを特徴とする内燃機関の排ガ
ス浄化方法(請求項1)。
(1) At least one selected from alkali metals and alkaline earth metals and R
h and Pt, a NOx adsorption reduction catalyst is provided for chemically adsorbing NOx when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio and for reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. An exhaust gas purification method in which exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, wherein Zr is contained in the catalyst. A method for purifying exhaust gas of an internal combustion engine (claim 1).

【0011】(2)内燃機関の排ガス流路に、アルカリ
金属とアルカリ土類金属から選ばれた少なくも1種とR
hとPtとを含み、排ガス中の空燃比が理論空燃比より
高いときにNOxを化学吸着し、理論空燃比以下のとき
に該化学吸着したNOxを還元浄化するNOx吸着還元
触媒を配置して、該触媒に理論空燃比よりも高い空燃比
の排ガスと理論空燃比以下の空燃比の排ガスとを交互に
接触させるようにした排ガス浄化方法において、前記触
媒中にZrと、PdとIrとRuから選ばれた少なくと
も1種とを含有したことを特徴とする内燃機関の排ガス
浄化方法(請求項2)。
(2) In the exhaust gas passage of the internal combustion engine, at least one kind selected from alkali metals and alkaline earth metals and R
h and Pt, a NOx adsorption reduction catalyst is provided for chemically adsorbing NOx when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio and for reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. An exhaust gas purification method in which exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, wherein Zr, Pd, Ir, and Ru are contained in the catalyst. A method for purifying exhaust gas of an internal combustion engine comprising at least one selected from the group consisting of:

【0012】(3)請求項1又は2において、前記触媒
に更にTiとSiの少なくとも1種を含有したことを特
徴とする内燃機関の排ガス浄化方法(請求項3)。
(3) The method for purifying exhaust gas of an internal combustion engine according to claim 1 or 2, wherein the catalyst further contains at least one of Ti and Si.

【0013】(4)請求項3において、前記触媒中に、
アルカリ金属とアルカリ土類金属から選ばれた少なくも
1種とZrとTiとSiから選ばれた少なくとも1種と
の複合酸化物を含むことを特徴とする内燃機関の排ガス
浄化方法(請求項4)。
(4) The method according to claim 3, wherein:
An exhaust gas purifying method for an internal combustion engine, comprising a composite oxide of at least one selected from an alkali metal and an alkaline earth metal and at least one selected from Zr, Ti and Si. ).

【0014】(5)請求項3において、前記触媒に更に
希土類金属を含有したことを特徴とする内燃機関の排ガ
ス浄化方法(請求項5)。
(5) The method for purifying exhaust gas of an internal combustion engine according to claim 3, wherein the catalyst further contains a rare earth metal.

【0015】(6)内燃機関の排ガス流路に、排ガス中
の空燃比が理論空燃比より高いときにNOxを化学吸着
し、理論空燃比以下のときに該化学吸着したNOxを還
元浄化するNOx吸着還元触媒を配置して、該触媒に理
論空燃比よりも高い空燃比の排ガスと理論空燃比以下の
空燃比の排ガスとを交互に接触させるようにした排ガス
浄化方法において、前記触媒を、多孔質担体の表面にS
rとMgとTiとZrとRhとPtとPd及びCeを担
持したものにより構成したことを特徴とする内燃機関の
排ガス浄化方法(請求項6)。
(6) NOx is chemically adsorbed in the exhaust gas passage of the internal combustion engine when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio, and when the air-fuel ratio is lower than the stoichiometric air-fuel ratio, the chemically adsorbed NOx is reduced and purified. An exhaust gas purification method in which an adsorption-reduction catalyst is disposed, and the exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and the exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst. S on the surface of the porous carrier
A method for purifying exhaust gas of an internal combustion engine, characterized by comprising r, Mg, Ti, Zr, Rh, Pt, Pd and Ce.

【0016】(7)内燃機関の排ガス流路に、排ガス中
の空燃比が理論空燃比より高いときにNOxを化学吸着
し、理論空燃比以下のときに該化学吸着したNOxを還
元浄化するNOx吸着還元触媒を配置して、該触媒に理
論空燃比よりも高い空燃比の排ガスと理論空燃比以下の
空燃比の排ガスとを交互に接触させるようにした排ガス
浄化方法において、前記触媒を、多孔質担体の表面にN
aとMgとTiとZrとRhとPtとPd及びCeを担
持したものにより構成したことを特徴とする内燃機関の
排ガス浄化方法(請求項7)。
(7) NOx is chemically adsorbed in the exhaust gas passage of the internal combustion engine when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio, and when the air-fuel ratio is equal to or lower than the stoichiometric air-fuel ratio, the chemically adsorbed NOx is reduced and purified. An exhaust gas purification method in which an adsorption-reduction catalyst is disposed, and the exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and the exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst. N on the surface of the porous carrier
A method for purifying exhaust gas of an internal combustion engine, characterized by comprising a material carrying a, Mg, Ti, Zr, Rh, Pt, Pd and Ce.

【0017】(8)内燃機関の排ガス流路に、排ガス中
の空燃比が理論空燃比より高いときにNOxを化学吸着
し、理論空燃比以下のときに該化学吸着したNOxを還
元浄化するNOx吸着還元触媒を配置して、該触媒に理
論空燃比よりも高い空燃比の排ガスと理論空燃比以下の
空燃比の排ガスとを交互に接触させるようにした排ガス
浄化方法において、前記触媒を、多孔質担体の表面に、
Na,Mg,K,Li,Cs,Sr及びCaから選ばれ
たアルカリ金属又はアルカリ土類金属の少なくとも1種
と、TiとSiから選ばれた少なくとも1種と、Rhと
Ptと、Zrと、PdとIrとRuから選ばれた少なく
とも1種と希土類金属とを担持したものにより構成し、
該多孔質担体100重量部に対して、アルカリ金属又は
アルカリ土類金属の少なくとも1種を総量で5−30重
量部、Tiを8−35重量部、Siを3−25重量部、
Zrを3−25重量部、Rhを0.05−0.5重量部、
Ptを1.5−5重量部、Pd,Ir,Ruの少なくと
も1種を総量で0.25−3重量部、希土類金属を5−
50重量部含むようにしたことを特徴とする排ガス浄化
方法(請求項8)。
(8) NOx is chemically adsorbed in the exhaust gas passage of the internal combustion engine when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio, and when the air-fuel ratio is lower than the stoichiometric air-fuel ratio, the chemically adsorbed NOx is reduced and purified. An exhaust gas purification method in which an adsorption-reduction catalyst is disposed, and the exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and the exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst. On the surface of the porous carrier,
At least one kind of alkali metal or alkaline earth metal selected from Na, Mg, K, Li, Cs, Sr and Ca, at least one kind selected from Ti and Si, Rh, Pt, and Zr; A material carrying at least one selected from Pd, Ir and Ru and a rare earth metal,
With respect to 100 parts by weight of the porous carrier, at least one kind of alkali metal or alkaline earth metal is 5 to 30 parts by weight in total, 8-35 parts by weight of Ti, 3-25 parts by weight of Si,
3-25 parts by weight of Zr, 0.05-0.5 parts by weight of Rh,
1.5-5 parts by weight of Pt, 0.25-3 parts by weight of at least one of Pd, Ir, and Ru, and 5-5-part weight of rare earth metal
An exhaust gas purifying method comprising 50 parts by weight (claim 8).

【0018】(9)内燃機関の排ガス流路に配置され、
アルカリ金属とアルカリ土類金属から選ばれた少なくと
も1種とPtとRhとを含み、排ガスの空燃比が理論空
燃比より高いときにNOxを化学吸着し、理論空燃比以
下のときに該化学吸着したNOxを還元浄化する排ガス浄
化触媒において、Zrを含有したことを特徴とする内燃
機関の排ガス浄化触媒(請求項9)。
(9) disposed in an exhaust gas passage of the internal combustion engine,
NOx is chemically adsorbed when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio and contains at least one selected from alkali metals and alkaline-earth metals, and Pt and Rh. An exhaust gas purifying catalyst for an internal combustion engine, wherein the exhaust gas purifying catalyst for reducing and purifying NOx contains Zr (claim 9).

【0019】(10)内燃機関の排ガス流路に配置さ
れ、アルカリ金属とアルカリ土類金属から選ばれた少な
くとも1種とPtとRhとを含み、排ガスの空燃比が理
論空燃比より高いときにNOxを化学吸着し、理論空燃
比以下のときに該化学吸着したNOxを還元浄化する排
ガス浄化触媒において、Zrと、PdとIrとRuから
選ばれた少なくとも1種とを含有したことを特徴とする
内燃機関の排ガス浄化触媒(請求項10)。
(10) When the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, the air-fuel ratio is at least one selected from the group consisting of alkali metals and alkaline earth metals, Pt, and Rh. An exhaust gas purifying catalyst for chemically adsorbing NOx and reducing and purifying the chemically adsorbed NOx when the stoichiometric air-fuel ratio is equal to or less than a stoichiometric air-fuel ratio, characterized in that it contains Zr and at least one selected from Pd, Ir and Ru. An exhaust gas purifying catalyst for an internal combustion engine, comprising:

【0020】(11)請求項9または10において、更
にTiとSiの少なくとも1種を含むことを特徴とする
内燃機関の排ガス浄化触媒(請求項11)。
(11) The exhaust gas purifying catalyst for an internal combustion engine according to claim 9 or 10, further comprising at least one of Ti and Si.

【0021】(12)請求項11において、前記アルカ
リ金属又はアルカリ土類金属がNa,Mg,K,Li,
Cs,Sr,Caから選ばれた少なくとも1種よりな
り、これらとZrとTiとSiの少なくとも1種との複
合酸化物を含むことを特徴とする内燃機関の排ガス浄化
触媒(請求項12)。
(12) In the eleventh aspect, the alkali metal or alkaline earth metal is Na, Mg, K, Li,
An exhaust gas purifying catalyst for an internal combustion engine, comprising at least one selected from the group consisting of Cs, Sr, and Ca, and a composite oxide of Zs, Ti, and at least one of Si (Claim 12).

【0022】(13)請求項11において、更に希土類
金属を含むことを特徴とする内燃機関の排ガス浄化触媒
(請求項13)。
(13) The exhaust gas purifying catalyst for an internal combustion engine according to claim 11, further comprising a rare earth metal (claim 13).

【0023】(14)多孔質担体の表面に、SrとMg
とTiとZrとRhとPtとPd及びCeを担持したこ
とを特徴とする内燃機関の排ガス浄化触媒(請求項1
4)。
(14) Sr and Mg on the surface of the porous carrier
An exhaust gas purifying catalyst for an internal combustion engine, wherein the catalyst carries titanium, Ti, Zr, Rh, Pt, Pd and Ce.
4).

【0024】(15)多孔質担体の表面に、NaとMg
とTiとZrとRhとPtとPd及びCeを担持したこ
とを特徴とする内燃機関の排ガス浄化触媒(請求項1
5)。
(15) Na and Mg on the surface of the porous carrier
An exhaust gas purifying catalyst for an internal combustion engine, wherein the catalyst carries titanium, Ti, Zr, Rh, Pt, Pd and Ce.
5).

【0025】(16)多孔質担体の表面に、Na,M
g,K,Li,Cs,Sr,Caから選ばれたアルカリ
金属又はアルカリ土類金属の少なくとも1種と、Tiと
Siから選ばれた少なくとも1種と、RhとPtと、P
dとIrとRuから選ばれた少なくとも1種と、Zr
と、希土類金属とを担持したものからなり、該多孔質担
体100重量部に対して、アルカリ金属またはアルカリ
土類金属を総量で5−30重量部、Tiを8−35重量
部、Siを3−25重量部、Zrを3−25重量部、R
hを0.05−0.5重量部、Ptを1.5−5 重量部、
PdとIrとRuから選ばれた少なくとも1種を総量で
0.25−3 重量部、希土類金属を5−50重量部有す
ることを特徴とする内燃機関の排ガス浄化触媒(請求項
16)。
(16) Na, M on the surface of the porous carrier
g, K, Li, Cs, Sr, Ca, at least one of alkali metals or alkaline earth metals, at least one of Ti and Si, Rh and Pt, P
at least one selected from d, Ir and Ru, and Zr
And a rare earth metal, and 5 to 30 parts by weight of alkali metal or alkaline earth metal, 8 to 35 parts by weight of Ti and 3 to 3 parts by weight of Si based on 100 parts by weight of the porous carrier. −25 parts by weight, 3-25 parts by weight of Zr, R
h at 0.05-0.5 parts by weight, Pt at 1.5-5 parts by weight,
An exhaust gas purifying catalyst for an internal combustion engine, comprising 0.25-3 parts by weight of at least one selected from Pd, Ir, and Ru and 5-50 parts by weight of a rare earth metal (Claim 16).

【0026】(17)内燃機関の排ガス流路に、アルカ
リ金属とアルカリ土類金属から選ばれた少なくとも1種
とRhとPtとを含み、排ガスの空燃比が理論空燃比よ
りも高いときにNOxを化学吸着し、理論空燃比以下の
ときに該化学吸着したNOxを還元浄化するNOx吸着
還元触媒を配置して、該触媒に理論空燃比より高い空燃
比の排ガスと理論空燃比以下の空燃比の排ガスとを交互
に接触させるようにした排ガス浄化装置において、前記
触媒にZrを含有したことを特徴とする内燃機関の排ガ
ス浄化装置(請求項17)。
(17) When the exhaust gas flow path of the internal combustion engine contains at least one selected from alkali metals and alkaline earth metals, Rh and Pt, and the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, NOx And a NOx adsorption reduction catalyst for reducing and purifying the chemically adsorbed NOx when the stoichiometric air-fuel ratio is lower than the stoichiometric air-fuel ratio. An exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and an air-fuel ratio lower than the stoichiometric air-fuel ratio are disposed on the catalyst. An exhaust gas purifying apparatus for an internal combustion engine, wherein the catalyst contains Zr, wherein the exhaust gas purifying apparatus alternately contacts the exhaust gas.

【0027】(18)内燃機関の排ガス流路に、アルカ
リ金属とアルカリ土類金属から選ばれた少なくとも1種
とRhとPtとを含み、排ガスの空燃比が理論空燃比よ
りも高いときにNOxを化学吸着し、理論空燃比以下の
ときに該化学吸着したNOxを還元浄化するNOx吸着
還元触媒を配置して、該触媒に理論空燃比より高い空燃
比の排ガスと理論空燃比以下の空燃比の排ガスとを交互
に接触させるようにした排ガス浄化装置において、前記
触媒にZrと、PdとIrとRuから選ばれた少なくと
も1種とを含有したことを特徴とする内燃機関の排ガス
浄化装置(請求項18)。
(18) When the exhaust gas passage of the internal combustion engine contains at least one selected from alkali metals and alkaline earth metals, Rh and Pt, and the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, NOx And a NOx adsorption reduction catalyst for reducing and purifying the chemically adsorbed NOx when the stoichiometric air-fuel ratio is lower than the stoichiometric air-fuel ratio. An exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and an air-fuel ratio lower than the stoichiometric air-fuel ratio are disposed on the catalyst. An exhaust gas purifying apparatus for an internal combustion engine, wherein the catalyst contains Zr and at least one selected from Pd, Ir, and Ru. Claim 18).

【0028】(19)請求項17又は18において、前
記触媒中に更にTiとSiの少なくとも1種を有するこ
とを特徴とする内燃機関の排ガス浄化装置(請求項1
9)。
(19) An exhaust gas purifying apparatus for an internal combustion engine according to claim 17 or 18, wherein the catalyst further comprises at least one of Ti and Si.
9).

【0029】(20)請求項19において、前記触媒中
に更に希土類金属を有することを特徴とする内燃機関の
排ガス浄化触媒(請求項20)。
(20) The exhaust gas purifying catalyst for an internal combustion engine according to claim 19, wherein the catalyst further comprises a rare earth metal (claim 20).

【0030】(21)内燃機関の排ガス流路に、排ガス
の空燃比が理論空燃比よりも高いときにNOxを化学吸
着し、理論空燃比以下のときに該化学吸着したNOxを
還元浄化するNOx吸着還元触媒を配置して、該触媒に
理論空燃比より高い空燃比の排ガスと理論空燃比以下の
空燃比の排ガスとを交互に接触させるようにした排ガス
浄化装置において、前記触媒が、多孔質担体の表面にS
rとMgとTiとZrとRhとPtとPdとCeを担持
したことを特徴とする内燃機関の排ガス浄化装置(請求
項21)。
(21) NOx is chemisorbed into the exhaust gas passage of the internal combustion engine when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, and NOx is reduced and purified when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In an exhaust gas purifying apparatus in which an adsorption reduction catalyst is arranged so that exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, the catalyst may be porous. S on the surface of the carrier
An exhaust gas purifying apparatus for an internal combustion engine carrying r, Mg, Ti, Zr, Rh, Pt, Pd, and Ce (claim 21).

【0031】(22)内燃機関の排ガス流路に、排ガス
の空燃比が理論空燃比よりも高いときにNOxを化学吸
着し、理論空燃比以下のときに該化学吸着したNOxを
還元浄化するNOx吸着還元触媒を配置して、該触媒に
理論空燃比より高い空燃比の排ガスと理論空燃比以下の
空燃比の排ガスとを交合に接触させるようにした排ガス
浄化装置において、前記触媒が、多孔質担体の表面にN
aとMgとTiとZrとRhとPtとPdとCeを担持
したことを特徴とする内燃機関の排ガス浄化装置(請求
項22)。
(22) NOx is chemically adsorbed to the exhaust gas passage of the internal combustion engine when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, and when the air-fuel ratio is lower than the stoichiometric air-fuel ratio, the NOx that is chemically adsorbed is reduced and purified. An exhaust gas purifying apparatus in which an adsorption reduction catalyst is disposed so that exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst. N on the surface of the carrier
An exhaust gas purifying apparatus for an internal combustion engine, comprising: a, Mg, Ti, Zr, Rh, Pt, Pd, and Ce.

【0032】(23)内燃機関の排ガス流路に、排ガス
の空燃比が理論空燃比よりも高いときにNOxを化学吸
着し、理論空燃比以下のときに該化学吸着したNOxを
還元浄化するNOx吸着還元触媒を配置して、該触媒に
理論空燃比より高い空燃比の排ガスと理論空燃比以下の
空燃比の排ガスとを交互に接触させるようにした排ガス
浄化装置において、前記触媒が、多孔質担体の表面に、
Na,Mg,K,Li,Cs,Sr,Caから選ばれた
アルカリ金属又はアルカリ土類金属の少なくとも1種
と、TiとSiから選ばれた少なくとも1種と、Rhと
Ptと、PdとIrとRuから選ばれた少なくとも1種
と、Zrと、希土類金属とを担持したものからなり、該
多孔質担体100重量部に対して、アルカリ金属または
アルカリ土類金属を総量で5−30重量部、Tiを8−
35重量部、Siを3−25重量部、Zrを3−25重
量部、Rhを0.05−0.5重量部、Ptを1.5−5
重量部、PdとIrとRuから選ばれた少なくとも1種
を総量で0.25−3 重量部、希土類金属を5−50重
量部有することを特徴とする内燃機関の排ガス浄化装置
(請求項23)。
(23) NOx is chemically adsorbed to the exhaust gas passage of the internal combustion engine when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, and when the air-fuel ratio is lower than the stoichiometric air-fuel ratio, the chemically adsorbed NOx is reduced and purified. In an exhaust gas purifying apparatus in which an adsorption reduction catalyst is arranged so that exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, the catalyst may be porous. On the surface of the carrier,
At least one alkali metal or alkaline earth metal selected from Na, Mg, K, Li, Cs, Sr, and Ca; at least one selected from Ti and Si; Rh and Pt; Pd and Ir And at least one selected from the group consisting of Ru and Zr and a rare earth metal. The total amount of alkali metal or alkaline earth metal is 5 to 30 parts by weight based on 100 parts by weight of the porous carrier. , Ti 8-
35 parts by weight, 3-25 parts by weight of Si, 3-25 parts by weight of Zr, 0.05-0.5 parts by weight of Rh, 1.5-5 parts by weight of Pt
An exhaust gas purifying apparatus for an internal combustion engine, comprising 0.25-3 parts by weight of at least one kind selected from Pd, Ir and Ru, and 5-50 parts by weight of a rare earth metal. ).

【0033】本発明の排ガス浄化触媒におけるSOx被
毒は、おおよそ以下の式(1)−(3)によって起こ
る。まず、SO2 の酸化によりSO3 が生成する(式
(1))。生成したSO3 はNOxを化学吸着する成分
(M:NOx吸着材)と反応して亜硫酸化合物(式
(2))または硫酸化合物(式(3))を生成する。亜
硫酸化合物や硫酸化合物は強酸性を示すので、酸性分子
となるNoxが吸着(式(4))しにくくなる。
The SOx poisoning in the exhaust gas purifying catalyst of the present invention is caused by the following equations (1) to (3). First, SO 3 is generated by oxidation of SO 2 (formula (1)). The generated SO 3 reacts with a component that chemically adsorbs NOx (M: NOx adsorbent) to generate a sulfite compound (formula (2)) or a sulfate compound (formula (3)). Since the sulfurous acid compound and the sulfuric acid compound show strong acidity, it becomes difficult for Nox which is an acidic molecule to be adsorbed (formula (4)).

【0034】 SO2+1/2O2→SO3 (1) M+SO3→M−SO3 (2) M−SO3+1/2O2 →M−SO4 (3) M+NOx→M−NOx (4) 従来技術に示した特開平9−327617 号公報及び特開平10
−109032号公報に記載の触媒では、アルカリ土類金属に
Tiを担持することでSOx捕捉(式(2)及び
(3))を抑制している。
SO 2 + 1 / 2O 2 → SO 3 (1) M + SO 3 → M-SO 3 (2) M-SO 3 + 1 / 2O 2 → M-SO 4 (3) M + NOx → M-NOx (4) Conventional Japanese Patent Application Laid-Open Nos. 9-327617 and 10
In the catalyst described in JP-A-1009032, SOx trapping (Equations (2) and (3)) is suppressed by supporting Ti on the alkaline earth metal.

【0035】しかしながら、NOx吸着成分にSOxが
捕捉するのを抑制しただけでは、SOx被毒の進行と共
にNOx浄化性能の低下が起こる。
However, simply suppressing the capture of SOx by the NOx adsorbed component causes a decrease in NOx purification performance with the progress of SOx poisoning.

【0036】本発明者らは、酸化雰囲気におけるNOx
吸着成分上へのSOx捕捉は避けられないものとして、
還元雰囲気において捕捉SOxを除去することが可能な
排ガス浄化触媒について検討した。
The present inventors have proposed that NOx in an oxidizing atmosphere
As SOx trapping on adsorbed components is inevitable,
An exhaust gas purifying catalyst capable of removing trapped SOx in a reducing atmosphere was studied.

【0037】捕捉SOxの除去反応は、おおよそ式
(5)−(8)によるものと考えられる。還元雰囲気排
ガスに共存するHC,CO,H2 が、HC,CO,H2
吸着成分(PM)上に捕捉される。この吸着HC,C
O,H2(PM−HC,CO,H2)と亜硫酸化合物が反
応し、NOx吸着成分から捕捉SOxが還元除去される
(式(6))。また、硫酸化合物を亜硫酸化合物へ還元
する反応(式(7))、及び硫酸化合物の還元反応(式
(8))によるSOx除去も起こる。
It is considered that the removal reaction of trapped SOx roughly follows the equations (5) to (8). HC, CO, H 2 coexisting in the reducing atmosphere exhaust gas is converted to HC, CO, H 2
Captured on adsorbed components (PM). This adsorbed HC, C
O, H 2 (PM-HC , CO, H 2) and sulfite compound reacts capture SOx is reduced and removed from the NOx adsorption component (formula (6)). In addition, SOx removal by the reaction of reducing the sulfate compound to the sulfite compound (Formula (7)) and the reduction reaction of the sulfate compound (Formula (8)) also occur.

【0038】 PM+HC,CO,H2→PM−HC,CO,H2 (5) M−SO3+PM−HC,CO,H2→PM+M+H2S+SO2+CO2+H2O (6) M−SO4+PM−HC,CO,H2→PM+M−SO3+CO2+H2O (7) M−SO4+PM−HC,CO,H2→PM+M+H2S+SO2+CO2+H2O (8) ここで、式(5)を進めるためには、HC,CO,H2
を吸着するHC,CO,H2 吸着成分が必要となる。N
Oと酸素が共存する還元雰囲気における捕捉SOxの除
去反応を検討した結果、HC,CO,H2の中でCOが
最も捕捉SOxの除去に寄与していた。
PM + HC, CO, H 2 → PM-HC, CO, H 2 (5) M-SO 3 + PM-HC, CO, H 2 → PM + M + H 2 S + SO 2 + CO 2 + H 2 O (6) M-SO 4 + PM-HC, CO, H 2 → PM + M-SO 3 + CO 2 + H 2 O (7) M-SO 4 + PM-HC, CO, H 2 → PM + M + H 2 S + SO 2 + CO 2 + H 2 O (8) In order to proceed with (5), HC, CO, H 2
HC adsorbing, CO, H 2 adsorbate is required. N
As a result of examining the removal reaction of trapped SOx in a reducing atmosphere in which O and oxygen coexist, CO among HC, CO, and H 2 most contributed to the removal of trapped SOx.

【0039】従って、捕捉SOxの除去には、HC,C
O,H2 等のうち特にCOを選択に吸着する再生促進成
分を含むことが好ましい。
Accordingly, the removal of the trapped SOx requires the removal of HC, C
It is preferable to include a regeneration-promoting component that selectively adsorbs CO among O and H 2 .

【0040】捕捉SOxの除去反応には、反応温度も重
要な因子となる。自動車において600℃以上の還元雰
囲気排ガスを供給することは燃費の悪化に繋がる。従っ
て、実用性を考慮すると、反応温度は500℃程度が望
ましい。
The reaction temperature is also an important factor in the removal reaction of trapped SOx. Supplying a reducing atmosphere exhaust gas of 600 ° C. or more in an automobile leads to deterioration of fuel efficiency. Therefore, considering practicality, the reaction temperature is desirably about 500 ° C.

【0041】本発明の排ガス浄化触媒によれば、500
℃程度の還元雰囲気においてHC,CO,H2 等の還元
剤で捕捉SOxを除去することができる。
According to the exhaust gas purifying catalyst of the present invention, 500
In a reducing atmosphere of about ° C. HC, CO, it can be removed trapped SOx in a reducing agent such as H 2.

【0042】ここで、再生促進成分のCOの吸着能力
は、COの吸着エンタルピー(ΔH)の絶対値が指標の
1つとなる。COの吸着エンタルピーの絶対値が大きな
材料ほどCOを強く引きつける能力を備えている。以下
に、CO吸着能力を有する金属を、金属単結晶(11
1)面のCOの吸着エンタルピーの絶対値(ΔH)(出
典:日本化学会編、化学便覧基礎編(改訂4版)、平成
5年)の序列が大きい順に示した。
Here, one of the indices of the CO adsorption capacity of the regeneration promoting component is the absolute value of the CO enthalpy of adsorption (ΔH). A material having a larger absolute value of the enthalpy of adsorption of CO has an ability to attract CO more strongly. In the following, a metal having CO adsorption ability is replaced with a metal single crystal (11
1) Absolute value (ΔH) of the enthalpy of adsorption of CO on the surface (Source: Chemical Society of Japan, Basic Handbook of Chemical Chemistry (Revised 4th Edition), 1993).

【0043】Ru(ΔH:160kJ/mol)>Pd(14
2),Ir(142)>Pt(138)>Rh(132)>C
o(128)>Ni(125)>Fe(105)>Cu(50)
>Ag(27) 上記序列より、COを強く引きつける再生促進成分とし
ては、Ru,Pd,Irが望ましい。Ruは高温度で蒸
散しやすく、Irは希少であるため、実用性を考える
と、比較的安価で安定に存在するPdが再生促進成分と
して好ましい。CO吸着力は、再生促進成分の金属種に
加えて担持状態によっても異なる。再生促進成分のCO
吸着力の特性は、COの昇温脱離法により判定できる。
測定方法は、100℃で排ガス浄化触媒にCOを飽和吸
着させた後、He気流中で5−10℃/min で昇温す
る。温度に対する触媒出口のCO脱離量を測定する。C
O吸着力の高い触媒の場合には、CO脱離量が最大とな
る温度が高温度側に移行する。
Ru (ΔH: 160 kJ / mol)> Pd (14
2), Ir (142)> Pt (138)> Rh (132)> C
o (128)> Ni (125)> Fe (105)> Cu (50)
> Ag (27) From the above ranking, Ru, Pd, and Ir are desirable as the regeneration promoting components that strongly attract CO. Since Ru easily evaporates at a high temperature and Ir is rare, Pd, which is relatively inexpensive and stably present, is preferable as a regeneration promoting component in consideration of practicality. The CO adsorbing power varies depending on the supported state in addition to the metal species of the regeneration promoting component. CO as a regeneration promoting component
The characteristics of the adsorptive power can be determined by the thermal desorption method of CO.
The measuring method is as follows. After CO is saturatedly adsorbed on the exhaust gas purifying catalyst at 100 ° C., the temperature is raised at 5-10 ° C./min in a He gas stream. The amount of CO desorbed at the catalyst outlet with respect to the temperature is measured. C
In the case of a catalyst having a high O adsorbing power, the temperature at which the amount of CO desorbed becomes maximum shifts to the high temperature side.

【0044】500℃程度の還元雰囲気において捕捉S
Oxを除去できる排ガス浄化触媒の場合には、200−
220℃でCO脱離量が最大となった。一方、捕捉SO
xを除去できない排ガス浄化触媒の場合には、175℃
付近でCO脱離量が最大となった。
Capture S in a reducing atmosphere of about 500 ° C.
In the case of an exhaust gas purifying catalyst capable of removing Ox, 200-
At 220 ° C., the amount of CO desorption reached a maximum. On the other hand, the captured SO
175 ° C in the case of an exhaust gas purification catalyst that cannot remove x
In the vicinity, the amount of CO desorption became maximum.

【0045】以上のことから、再生促進成分は、金属単
結晶(111)面のCO吸着エンタルピーの絶対値(Δ
H)が140kJ/mol 以上であるPd,Ru,Irが
好ましい。実用性を考慮すると、高温度にて蒸散しにく
いPdが好適である。さらに、再生促進成分はCOの昇
温脱離においてCO脱離温度の最大値が200−220℃
となる特性を有すると好適である。
From the above, the regeneration promoting component is represented by the absolute value (ΔΔ) of the CO adsorption enthalpy of the metal single crystal (111) plane.
Pd, Ru, and Ir having H) of 140 kJ / mol or more are preferable. Considering practicality, Pd that is difficult to evaporate at high temperatures is preferable. Furthermore, the maximum value of the CO desorption temperature is 200-220 ° C. in the temperature rise desorption of CO.
It is preferable to have the following characteristics.

【0046】ここで、NOx吸着成分に着目すると、還
元雰囲気における捕捉SOxの除去は、NOx吸着成分
に捕捉されたSOx量が少ない方が速やかに完了でき
る。さらに、亜硫酸化合物は硫酸化合物より還元されや
すい。
Here, focusing on the NOx adsorption component, the removal of the trapped SOx in the reducing atmosphere can be completed more quickly when the amount of SOx trapped by the NOx adsorption component is smaller. Further, sulfite compounds are more easily reduced than sulfate compounds.

【0047】NOx吸着成分を、アルカリ金属とアルカ
リ土類金属から選ばれた少なくとも1種と、Zrと、T
i,Siから選ばれる少なくとも1種とすることで、T
iのみを有するものより、SOxの捕捉は抑制される。
Zrを有することにより、短時間でSOxを捕捉したN
Ox吸着成分からSOx除去が可能になると考えられ
る。
The NOx adsorbing component is at least one selected from alkali metals and alkaline earth metals, Zr,
By using at least one kind selected from i and Si, T
The capture of SOx is more suppressed than that having only i.
By having Zr, N that captures SOx in a short time
It is considered that SOx can be removed from the Ox adsorption component.

【0048】アルカリ金属とアルカリ土類金属から選ば
れた少なくとも1種と、ZrとTiとSiの少なくとも
1種とは、複合酸化物を形成していることが望ましい。
It is desirable that at least one selected from alkali metals and alkaline earth metals and at least one of Zr, Ti and Si form a composite oxide.

【0049】アルカリ金属とアルカリ土類金属は、N
a,Sr,K,Li,Ca,Cs,Mgから選ばれた少
なくとも1種が望ましく、特にNaとSrが好適であ
る。
The alkali metal and the alkaline earth metal are N
At least one selected from a, Sr, K, Li, Ca, Cs, and Mg is desirable, and Na and Sr are particularly preferable.

【0050】SrとTiとの複合酸化物としては、Sr
TiO3,Sr2TiO4,Sr3Ti27,Sr4Ti310
SrTi1219,SrTi2138などがある。SrとS
iとの複合酸化物としては、SrSiO3 ,Sr3Si
5,Sr2SiO4などがある。SrとZrとの複合酸
化物としては、SrZrO3,Sr2ZrO4,Sr3Zr27
Sr4Zr310などがある。SrとTiとZrとの複合
酸化物としては、Sr2(Ti0.25Zr0.75)O4などがあ
る。SrとTiとSiとの複合酸化物としては、SrT
iSi28などがある。
As the composite oxide of Sr and Ti, Sr
TiO 3 , Sr 2 TiO 4 , Sr 3 Ti 2 O 7 , Sr 4 Ti 3 O 10 ,
SrTi 12 O 19 , SrTi 21 O 38 and the like. Sr and S
As a composite oxide with i, SrSiO 3 , Sr 3 Si
O 5 , Sr 2 SiO 4 and the like. Examples of composite oxides of Sr and Zr include SrZrO 3 , Sr 2 ZrO 4 , Sr 3 Zr 2 O 7 ,
Sr 4 Zr 3 O 10 and the like. Examples of the composite oxide of Sr, Ti, and Zr include Sr 2 (Ti 0.25 Zr 0.75 ) O 4 . As a composite oxide of Sr, Ti and Si, SrT
iSi 2 O 8 and the like.

【0051】NaとTiとの複合酸化物としては、Na
2TiO3,Na2Ti37, Na2Ti49,Na
2Ti613,Na4,Ti512,Na0.23TiO2,N
2TiO19,Na4Ti38,Na4Ti38,Na4
iO4,Na8Ti514,γ−Na2TiO3,β−Na2
TiO3,NaTiO2,Na0.46TiO2等がある。N
aとSiとの複合酸化物としては、Na4SiO4,β−
Na2Si25 ,Na2Si25,Na2Si49,γ−
Na2Si25,Na6Si27,α−Na2Si25
δ−Na2Si25,Na2Si37,α−Na2Si2
5,Na6Si819,Na2Si37,α−Na2Si2
5,Na2SiO3,Na4SiO4,Na2SiO3,Na4Si
4,Oα−Na2Si25,Na2Si25,Na2Si49
どがある。NaとZrとの複合酸化物としては、NaZ
rO3,α−NaZrO3,Na2ZrO3などがある。ま
た、NaとZrとSiとの複合酸化物として、Na2
rSiO5,Na2Zr2Si1031,Na14Zr2Si411
Na2ZrSi411,Na14Zr2Si1031 などがあ
る。NaとTiとSiとの複合酸化物としては、Na2
TiSi27,NaTiSi26,Na2TiSiO5
どがある。
As the composite oxide of Na and Ti, Na
2 TiO 3 , Na 2 Ti 3 O 7 , Na 2 Ti 4 O 9 , Na
2 Ti 6 O 13 , Na 4 , Ti 5 O 12 , Na 0.23 TiO 2 , N
a 2 TiO 19, Na 4 Ti 3 O 8, Na 4 Ti 3 O 8, Na 4 T
iO 4 , Na 8 Ti 5 O 14 , γ-Na 2 TiO 3 , β-Na 2
There are TiO 3 , NaTiO 2 , Na 0.46 TiO 2 and the like. N
As a composite oxide of a and Si, Na 4 SiO 4 , β-
Na 2 Si 2 O 5 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 , γ-
Na 2 Si 2 O 5 , Na 6 Si 2 O 7 , α-Na 2 Si 2 O 5 ,
δ-Na 2 Si 2 O 5 , Na 2 Si 3 O 7 , α-Na 2 Si 2 O
5 , Na 6 Si 8 O 19 , Na 2 Si 3 O 7 , α-Na 2 Si 2 O
5 , Na 2 SiO 3 , Na 4 SiO 4 , Na 2 SiO 3 , Na 4 Si
O 4, and the like Oα-Na 2 Si 2 O 5 , Na 2 Si 2 O 5, Na 2 Si 4 O 9. As a composite oxide of Na and Zr, NaZ
rO 3 , α-NaZrO 3 , Na 2 ZrO 3 and the like. Further, as a composite oxide of Na, Zr and Si, Na 2 Z
rSiO 5, Na 2 Zr 2 Si 10 O 31, Na 14 Zr 2 Si 4 O 11,
And the like Na 2 ZrSi 4 O 11, Na 14 Zr 2 Si 10 O 31. As a composite oxide of Na, Ti and Si, Na 2
Examples include TiSi 2 O 7 , NaTiSi 2 O 6 , and Na 2 TiSiO 5 .

【0052】上記複合酸化物の構造は、粉末X線回折法
で確認できる。また、前記複合酸化物を得るためには6
00℃以上の熱処理をすることが望ましい。焼成温度は
700℃とすることが望ましい。
The structure of the composite oxide can be confirmed by a powder X-ray diffraction method. In order to obtain the composite oxide, 6
It is desirable to perform a heat treatment at a temperature of 00 ° C. or higher. Firing temperature is
Desirably 700 ° C.

【0053】NOx還元成分は、RhとPtが好まし
い。また、還元雰囲気における三元触媒機能を高める場
合には、上記排ガス浄化触媒に酸素ストレージ機能を付
加することが望ましい。酸素ストレージ機能を有する材
料として、セリウム(Ce)を含有させることが好まし
い。
The NOx reduction components are preferably Rh and Pt. When the three-way catalyst function in a reducing atmosphere is enhanced, it is desirable to add an oxygen storage function to the exhaust gas purifying catalyst. Cerium (Ce) is preferably contained as a material having an oxygen storage function.

【0054】また、排ガス浄化触媒の耐熱性を高めるた
めには、希土類金属としてCeに加えてLaやYの添加
が効果的である。
In order to increase the heat resistance of the exhaust gas purifying catalyst, it is effective to add La or Y as a rare earth metal in addition to Ce.

【0055】本発明によるNOx浄化触媒の触媒組成
は、多孔質担体100重量部に対し、アルカリ金属また
はアルカリ土類金属が総量で5−30重量部、Tiが3
−35重量部、Siが3−25重量部、Zrが3−25
重量部、Rhが0.05−0.5重量部、Ptが1.5−
5 重量部、PdとIrとRuの少なくとも1つが総量
で0.25−3重量部、希土類金属が5−40重量部で
あることが好ましい。
The catalyst composition of the NOx purification catalyst according to the present invention is such that the total amount of alkali metal or alkaline earth metal is 5 to 30 parts by weight and Ti is 3 parts by weight with respect to 100 parts by weight of the porous carrier.
-35 parts by weight, 3-25 parts by weight of Si, 3-25 parts by weight of Zr
Parts by weight, Rh 0.05-0.5 parts by weight, Pt 1.5-
It is preferable that the total amount of Pd, Ir and Ru is 0.25-3 parts by weight, and the rare earth metal is 5-40 parts by weight.

【0056】特に好ましい比率は、多孔質担体100重
量部に対して、アルカリ金属またはアルカリ土類金属の
少なくとも1種が総量で8−15重量部、Tiが4−1
5重量部、Siが5−10重量部、Zrが5−10重量
部、Rhが0.10−0.20重量部、Ptが1.0−3.
0重量部、Pdが0.25−0.8重量部、希土類金属が
10−30重量部である。
A particularly preferable ratio is that the total amount of at least one alkali metal or alkaline earth metal is 8 to 15 parts by weight and Ti is 4-1 to 100 parts by weight of the porous carrier.
5 parts by weight, 5-10 parts by weight of Si, 5-10 parts by weight of Zr, 0.10-0.20 parts by weight of Rh, and 1.0-3.
0 parts by weight, Pd is 0.25-0.8 parts by weight, and rare earth metal is 10-30 parts by weight.

【0057】本発明によるNOx浄化触媒は、用途に応
じ各種の形状にして使用することができる。多孔質担体
に触媒成分を担持したものを、コージェライト或いはス
テンレス等の各種材料からなるハニカム構造体にコーテ
ィングして得られるハニカム形状を始めとし、ペレット
状,板状,粒状,粉末状等として適用できる。自動車の
排ガス流路に配置する場合は、ハニカム形状が好適であ
る。
The NOx purification catalyst according to the present invention can be used in various shapes depending on the application. It can be applied as a pellet, plate, granule, powder, etc., including a honeycomb shape obtained by coating a honeycomb structure made of various materials such as cordierite or stainless steel with a catalyst component supported on a porous carrier. it can. When it is arranged in an exhaust gas passage of an automobile, a honeycomb shape is preferable.

【0058】NOx浄化触媒の調製方法は、含浸法,混
練法,共沈法,ゾルゲル法,イオン交換法,蒸着法等の
物理的調製方法や化学反応を利用した調製方法等いずれ
も適用可能である。
As a method for preparing the NOx purification catalyst, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, a vapor deposition method, and a preparation method utilizing a chemical reaction can be applied. is there.

【0059】再生促進成分とNOx吸着成分とが近接し
ていると、式(5)−(8)の捕捉SOxの除去反応が
進みやすい。従って、含浸法による触媒調製の場合、再
生促進成分とNOx吸着成分を含む原料の混合溶液を用
い、担体上に再生促進成分とNOx吸着成分を同時に含
浸する方法が好適である。
When the regeneration accelerating component and the NOx adsorbing component are close to each other, the removal reaction of the trapped SOx of the formulas (5) to (8) tends to proceed. Therefore, in the case of preparing a catalyst by the impregnation method, it is preferable to use a mixed solution of a raw material containing a regeneration promoting component and a NOx adsorption component and simultaneously impregnate the carrier with the regeneration promotion component and the NOx adsorption component.

【0060】NOx浄化触媒の出発原料としては、硝酸
化合物,酢酸化合物,錯体化合物,水酸化物,炭酸化合
物,有機化合物,ジニトロジアミン錯体などの種々の化
合物や金属及び金属酸化物を用いることができる。
As starting materials for the NOx purification catalyst, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, dinitrodiamine complexes, metals and metal oxides can be used. .

【0061】再生促進成分としてPdを用いる場合に
は、ジニトロジアミンPd溶液を用いて調製することが
好ましい。ジニトロジアミンPd溶液を用いると、NO
x吸着成分との近接効果が高まる。その結果、NOx吸
着成分からの捕捉SOxの還元除去が促進される。
When Pd is used as a regeneration promoting component, it is preferably prepared using a dinitrodiamine Pd solution. When a dinitrodiamine Pd solution is used, NO
The proximity effect with the x-adsorbed component is increased. As a result, the reduction and removal of the trapped SOx from the NOx adsorption component are promoted.

【0062】上記方法において多孔質担体には、アルミ
ナの他にチタニア,シリカ,シリカ−アルミナ,マグネ
シア等の金属酸化物や複合酸化物等を用いることができ
る。耐熱性を有することからアルミナが好ましい。
In the above method, a metal oxide or a composite oxide such as titania, silica, silica-alumina, magnesia and the like can be used as the porous carrier in addition to alumina. Alumina is preferred because it has heat resistance.

【0063】本発明の排ガス浄化触媒は、酸化雰囲気で
の運転が可能な成層または均質リーンバーン自動車に搭
載すると好適である。また、本発明の排ガス浄化触媒を
有する排ガス浄化装置は、以下に示す排ガス制御装置を
備えることが好ましい。
The exhaust gas purifying catalyst of the present invention is preferably mounted on a stratified or homogeneous lean burn vehicle that can be operated in an oxidizing atmosphere. Further, the exhaust gas purifying apparatus having the exhaust gas purifying catalyst of the present invention preferably includes the following exhaust gas control device.

【0064】運転状態決定手段と空燃比(A/F)制御部
を有する。運転状態決定手段は、NOx吸着量推定手段
とNOx除去量推定手段とSOx吸収量推定手段とSO
x放出量推定手段を有する。理論空燃比より高い空燃比
におけるNOx吸着量をNOx吸着量推定手段で推定
し、SOx吸収量推定手段にてSOx吸収量を推定す
る。NOx吸着量推定手段またはSOx吸収量推定手段
が、予め決められたNOx吸着量またはSOx吸収量を
超えたと判定すると、NOx除去量推定手段とSOx放
出量推定手段がA/F制御部へと指令を出して理論空燃
比以下の運転を実施する。
It has an operating state determining means and an air-fuel ratio (A / F) control unit. The operating state determining means includes NOx adsorption amount estimating means, NOx removal amount estimating means, SOx absorption amount estimating means, and SOx absorbing amount estimating means.
It has x emission amount estimation means. The NOx adsorption amount at an air-fuel ratio higher than the stoichiometric air-fuel ratio is estimated by the NOx adsorption amount estimation means, and the SOx absorption amount is estimated by the SOx absorption amount estimation means. When the NOx adsorption amount estimating means or the SOx absorption amount estimating means determines that the predetermined NOx adsorption amount or the SOx absorption amount is exceeded, the NOx removal amount estimating means and the SOx release amount estimating means instruct the A / F control unit. And the operation is performed below the stoichiometric air-fuel ratio.

【0065】NOx吸着量とSOx捕捉量の検出方法と
しては、例えばNOxセンサー,酸素センサー,排ガス
温度センサー,エアーフローセンサー,ブースト圧計と
エンジン回転数計等を用いることができる。
As a method for detecting the NOx adsorption amount and the SOx trapping amount, for example, a NOx sensor, an oxygen sensor, an exhaust gas temperature sensor, an air flow sensor, a boost pressure gauge and an engine speed meter can be used.

【0066】[0066]

【発明の実施の形態】以下、具体的な例で本発明を説明
するが、本発明はこれらの実施例により制限されるもの
ではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.

【0067】「実施例1」アルミナ粉末とアルミナの前
駆体からなり硝酸酸性に調整したスラリーをコージェラ
イト製ハニカム(400セル/inc2)にコーティングし
た後、乾燥焼成して、ハニカムの見掛けの容積1リット
ルあたり190gのアルミナをコーティングしたアルミ
ナコートハニカムを得た。該アルミナコートハニカム
に、硝酸Ceと硝酸Zrの混合溶解を含浸した後、20
0℃で乾燥、続いて600℃で焼成した。
Example 1 A slurry composed of alumina powder and an alumina precursor and adjusted to be nitric acid was coated on a cordierite honeycomb (400 cells / inc 2), dried and fired to obtain an apparent volume 1 of the honeycomb. An alumina-coated honeycomb coated with 190 g of alumina per liter was obtained. After impregnating the alumina-coated honeycomb with a mixed solution of Ce nitrate and Zr nitrate,
Drying at 0 ° C. followed by firing at 600 ° C.

【0068】次に、ジニロトロジアンミンPt硝酸溶液
と硝酸RhとジニトロジアミンPdと硝酸Srと硝酸M
gとチタニアゾルの混合液を含浸し200℃で乾燥し、
続いて600℃で焼成した。
Next, a dinitrothodiamine Pt nitric acid solution, Rh nitrate, dinitrodiamine Pd, Sr nitrate and M nitrate M
g and a mixed solution of titania sol and dried at 200 ° C.
Subsequently, firing was performed at 600 ° C.

【0069】最後に、チタニアゾルを含浸し200℃で
乾燥し、続いて700℃で焼成した。
Finally, a titania sol was impregnated, dried at 200 ° C., and subsequently calcined at 700 ° C.

【0070】以上により、アルミナ100gに対して、
金属換算でPd0.26g,Sr11g,Ti4g,Ti
6g,Ti4g,Mg0.9g、Rh0.11g,Pt1.
4g,Ce14g,Zr6gを含有する実施例触媒1を
得た。また、Zrを担持しない実施例触媒2を得た。な
お、表中の第1成分,第2成分は担持順序を示してお
り、数字の小さい方が先に担持される。また、アルミナ
100gに対する担持量は担持成分の前に記述した。例
えば、14Ceはアルミナ100gに対して金属換算で
Ceを14gの比率で担持することを示す。
As described above, for 100 g of alumina,
Pd 0.26g, Sr11g, Ti4g, Ti
6 g, Ti 4 g, Mg 0.9 g, Rh 0.11 g, Pt 1.
Example catalyst 1 containing 4 g, Ce 14 g, and Zr 6 g was obtained. Further, Example Catalyst 2 not supporting Zr was obtained. Note that the first component and the second component in the table indicate the order of loading, with the smaller number being loaded first. In addition, the supported amount per 100 g of alumina is described before the supported component. For example, 14 Ce indicates that Ce is supported at a ratio of 14 g in terms of metal to 100 g of alumina.

【0071】[0071]

【表1】 [Table 1]

【0072】[試験例1]実施例触媒1と2のSOx捕
捉量を検討した。
Test Example 1 Examples Catalysts 1 and 2 were examined for the amount of trapped SOx.

【0073】試験に用いたガスは、酸化雰囲気における
SOx被毒のためのSOx被毒モデルガスとした。な
お、SOx被毒モデルガスは触媒のSOx被毒を加速す
るため、ガス中のSOx濃度を150ppm とした。
The gas used in the test was an SOx poisoning model gas for SOx poisoning in an oxidizing atmosphere. In order to accelerate the SOx poisoning of the catalyst with the SOx poisoning model gas, the SOx concentration in the gas was set to 150 ppm.

【0074】加速SOx被毒モデルガスの組成は、SO
2:150ppm,NOx:600ppm,C36:500ppm
,CO:0.1%,CO2:10%,O2:5%,H
2O:10%,N2 :残部とした。
The composition of the accelerated SOx poisoning model gas is SO
2 : 150 ppm, NOx: 600 ppm, C 3 H 6 : 500 ppm
, CO: 0.1%, CO 2 : 10%, O 2 : 5%, H
2 O: 10%, N 2 : balance.

【0075】試験方法は以下の手順に従った。The test procedure followed the following procedure.

【0076】SOx被毒処理は、300℃にて加速SO
x被毒モデルガスを1h流通した。このとき、触媒容積
を6cc、SVを30,000 /hとした。
The SOx poisoning treatment is performed at 300 ° C.
x Poisoned model gas was circulated for 1 h. At this time, the catalyst volume was 6 cc, and the SV was 30,000 / h.

【0077】SOx捕捉量は、加速SOx被毒モデルガ
ス流通後の触媒中のS量をS濃度分析計(堀場製作所E
MIA−120)で測定することで得た。
The amount of SOx trapped is determined by measuring the amount of S in the catalyst after the flow of the accelerated SOx poisoning model gas with an S concentration analyzer (Horiba Seisakusho E
MIA-120).

【0078】(試験結果)表2に実施例触媒1と2のS
Ox捕捉量を示した。Zrを有する実施例触媒1のSO
x捕捉は抑制されていることは明らかである。
(Test Results) Table 2 shows that the catalysts of Example Catalysts 1 and 2
The amount of captured Ox was shown. SO of Example Catalyst 1 with Zr
It is clear that x capture is suppressed.

【0079】[0079]

【表2】 [Table 2]

【0080】[試験例2]実施例触媒1と2の耐SOx
被毒性を検討するため、SOx被毒前後のNOx浄化
率、及び触媒再生処理による触媒性能回復を検討した。
試験に用いたガスは、リーンバーン排ガスを模擬した酸
化雰囲気モデルガスと、理論空燃比燃焼を模擬した還元
雰囲気モデルガスと、酸化雰囲気におけるSOx被毒の
ためのSOx被毒モデルガスとした。なお、SOx被毒
モデルガスは触媒のSOx被毒を加速するため、ガス中
のSOx濃度を150ppm とした。
Test Example 2 SOx Resistance of Catalysts 1 and 2 of the Examples
In order to examine the poisoning, the NOx purification rates before and after SOx poisoning and the recovery of the catalyst performance by the catalyst regeneration treatment were examined.
The gas used in the test was an oxidizing atmosphere model gas simulating lean burn exhaust gas, a reducing atmosphere model gas simulating stoichiometric air-fuel ratio combustion, and an SOx poisoning model gas for SOx poisoning in an oxidizing atmosphere. In order to accelerate the SOx poisoning of the catalyst with the SOx poisoning model gas, the SOx concentration in the gas was set to 150 ppm.

【0081】酸化雰囲気モデルガスの組成は、NOx:
600ppm ,C36:500ppm ,CO:0.1% ,C
2:10%,O2:5%,H2O:10%,N2:残部と
した。
The composition of the oxidizing atmosphere model gas is NOx:
600ppm, C 3 H 6: 500ppm , CO: 0.1%, C
O 2 : 10%, O 2 : 5%, H 2 O: 10%, N 2 : balance.

【0082】還元雰囲気モデルガスの組成は、NOx:
1000ppm,C36:600ppm,CO:0.5% ,C
2:5%,O2:0.5%,H2:0.3%,H2O:10
%,N2 :残部とした。
The composition of the reducing atmosphere model gas is NOx:
1000 ppm, C 3 H 6 : 600 ppm, CO: 0.5%, C
O 2 : 5%, O 2 : 0.5%, H 2 : 0.3%, H 2 O: 10
%, N 2 : balance.

【0083】加速SOx被毒モデルガスの組成は、SO
2:150ppm,NOx:600ppm,C36:500ppm
,CO:0.1%,CO2:10%,O2:5%,H
2O:10%,N2 :残部とした。
The composition of the accelerated SOx poisoning model gas is SO
2 : 150 ppm, NOx: 600 ppm, C 3 H 6 : 500 ppm
, CO: 0.1%, CO 2 : 10%, O 2 : 5%, H
2 O: 10%, N 2 : balance.

【0084】試験方法は以下の手順に従った。The test method followed the following procedure.

【0085】先ず、還元雰囲気モデルガスと酸化雰囲気
モデルガスを3分間毎に交互に触媒層に流通させる試験
(以下、繰り返し試験)をしてNOx浄化率を測定し
た。触媒容積を6cc、SVを30,000 /hとした。
First, a NOx purification rate was measured by performing a test in which a reducing atmosphere model gas and an oxidizing atmosphere model gas were alternately passed through the catalyst layer every three minutes (hereinafter referred to as a repeated test). The catalyst volume was 6 cc and the SV was 30,000 / h.

【0086】次に、加速SOx被毒モデルガスを触媒層
に流通させた後、繰り返し試験をして、SOx被毒後の
NOx浄化率を測定した。被毒条件として、被毒温度を
300℃、被毒時間を1時間、SVを30,000 /hと
した。
Next, after the accelerated SOx poisoning model gas was passed through the catalyst layer, a repeated test was performed to measure the NOx purification rate after SOx poisoning. As poisoning conditions, the poisoning temperature
The poisoning time was 300 ° C., the poisoning time was 1 hour, and the SV was 30,000 / h.

【0087】最後に、還元雰囲気モデルガスをSV:3
0,000 /h、500℃で10分間触媒層に流通させ
た(以下、再生処理)後、繰り返し試験をして、再生処
理後のNOx浄化率を測定した。
Finally, the reducing atmosphere model gas was changed to SV: 3
After flowing through the catalyst layer at 000 / h at 500 ° C. for 10 minutes (hereinafter referred to as regeneration treatment), a repeated test was performed to measure the NOx purification rate after the regeneration treatment.

【0088】なお、以降特に断らない限り、繰り返し試
験条件は温度400℃,SV30,000/hとする。また、
NOx浄化率は、式(1)の酸化雰囲気モデルガス切り
替え1分後の触媒層流通前後のNOx濃度の減少率とし
た。定義式を式1に示した。
Unless otherwise specified hereafter, the repetitive test conditions are a temperature of 400 ° C. and an SV of 30,000 / h. Also,
The NOx purification rate was defined as a decrease rate of the NOx concentration before and after the catalyst layer flow after one minute of the switching of the oxidizing atmosphere model gas of the equation (1). The definition formula is shown in Formula 1.

【0089】[0089]

【数1】 (Equation 1)

【0090】(試験結果)400℃におけるNOx浄化
率の測定結果を表3に示す。Zrを有する実施例触媒1
は再生処理によるNOx浄化性能の回復に優れている。
(Test Results) Table 3 shows the measurement results of the NOx purification rate at 400 ° C. Example catalyst 1 having Zr
Is excellent in the recovery of the NOx purification performance by the regeneration treatment.

【0091】[0091]

【表3】 [Table 3]

【0092】「試験例3」実施例触媒1と2のNOx吸
着材の構造を粉末X線回折法で検討した。実施例触媒1
と2については、SrとTiの複合酸化物SrTiO3
が得られた。さらに、実施例触媒1についてはSrとZ
rとの複合酸化物SrZrO3 が得られた。
Test Example 3 The structures of the NOx adsorbents of the catalysts of Examples 1 and 2 were examined by a powder X-ray diffraction method. Example catalyst 1
And 2 are composite oxides of Sr and Ti, SrTiO 3
was gotten. Further, for the example catalyst 1, Sr and Z
Thus, a composite oxide SrZrO 3 with r was obtained.

【0093】「実施例2」実施例1に基づいて、Pd量
を増量した実施例3、Si及びZrを担持した実施例触
媒4−6を作製した。触媒組成を表4に示す。
"Example 2" Based on Example 1, Example 3 in which the amount of Pd was increased and Example Catalyst 4-6 supporting Si and Zr were produced. Table 4 shows the catalyst composition.

【0094】実施例1試験例2に従い、耐SOx被毒性
を評価した。試験結果を表5に示す。実施例触媒3−6
の何れも再生処理によりNOx浄化性能は回復した。N
Ox浄化率の再生率で比較すると、Pd担持量を0.7
5g とした実施例触媒3が良かった。再生促進材とZ
r担持の相乗効果と考えられる。
Example 1 According to Test Example 2, the resistance to SOx poisoning was evaluated. Table 5 shows the test results. Example catalyst 3-6
In any case, the NOx purification performance was recovered by the regeneration treatment. N
When comparing the Ox purification rate with the regeneration rate, the Pd carrying amount was 0.7.
Example catalyst 3 with 5 g was good. Regeneration promoter and Z
This is considered to be a synergistic effect of supporting r.

【0095】また、ZrにSi,Tiiを添加した効果
は実施例触媒4−6から得られる。ZrとTiとSiを
含む実施例触媒5は再生処理によるNOx浄化性能の回
復性が最も良かった。なお、NOx浄化率の再生率は式
2と定義した。
The effect of adding Si and Tii to Zr is obtained from the catalyst 4-6 of the embodiment. The catalyst of Example 5 containing Zr, Ti and Si had the best recoverability of the NOx purification performance by the regeneration treatment. In addition, the regeneration rate of the NOx purification rate was defined as Expression 2.

【0096】[0096]

【数2】 (Equation 2)

【0097】[0097]

【表4】 [Table 4]

【0098】[0098]

【表5】 [Table 5]

【0099】「実施例3」実施例触媒1のZr担持量を
担体100gに対して2−30gの割合で担持し、実施
例1試験例2に従って耐SOx被毒性を検討した。結果
を表6に示した。Zr担持量が2g以下では再生処理に
よりNOx浄化率は回復しなかった。また、Zr担持量
を増加させると、初期のNOx浄化率は低下した。初期
のNOx浄化率を60%以上とするためには、Zr担持
量は3−10gとすると良い。また、初期のNOx浄化
率を50%以上とするためには、Zr担持量は担体10
0gに対して3−25gの比率とすると良い。
Example 3 The amount of Zr supported on the catalyst of Example 1 was 2-30 g per 100 g of the carrier, and the resistance to SOx poisoning was examined in accordance with Test Example 2 of Example 1. The results are shown in Table 6. When the amount of supported Zr was 2 g or less, the NOx purification rate was not restored by the regeneration treatment. When the amount of supported Zr was increased, the initial NOx purification rate was reduced. In order to make the initial NOx purification rate 60% or more, the Zr carrying amount is preferably 3 to 10 g. Further, in order to set the initial NOx purification rate to 50% or more, the amount of Zr carried must be 10%.
The ratio is preferably 3 to 25 g with respect to 0 g.

【0100】[0100]

【表6】 [Table 6]

【0101】「実施例4」実施例触媒3に250−50
0℃の範囲で還元雰囲気モデルガスを流通させ、NOx
浄化率及び炭化水素浄化率を測定した。
Example 4 Example catalyst 250-3 was added.
The reducing atmosphere model gas is circulated in the range of 0 ° C.
The purification rate and hydrocarbon purification rate were measured.

【0102】NOx浄化率の定義は、還元雰囲気モデル
ガス切り替え1分後の触媒層流通前後のNOx濃度の減
少率とした。
The NOx purification rate was defined as the reduction rate of the NOx concentration before and after circulation of the catalyst layer one minute after the switching of the reducing atmosphere model gas.

【0103】炭化水素浄化率の定義は、還元雰囲気モデ
ルガス切り替え1分後の触媒層流通前後の炭化水素濃度
の減少率とした。
The definition of the hydrocarbon purification rate was defined as the reduction rate of the hydrocarbon concentration before and after the catalyst layer flow one minute after the switching of the reducing atmosphere model gas.

【0104】測定結果、250−500℃の範囲でNO
x浄化率はほぼ100%となった。また、炭化水素浄化
率は300℃以上で80%以上、400℃以上でほぼ1
00%となった。
As a result of measurement, it was found that NO
The x purification rate was almost 100%. The hydrocarbon purification rate is 80% or more at 300 ° C or more, and almost 1 at 400 ° C or more.
00%.

【0105】「実施例5」実施例1試験例1に従い、実
施例触媒7−16を作製した。表7に実施例触媒7−1
6を示した。また、実施例1試験例2に従い耐SOx性
を検討した。表8に結果を示した。NOx浄化率の再生
率を比較すると、実施例触媒7に対し、Zrを担持した
実施例触媒8−11は回復性能が優れていた。また、Z
rとSiとTiを担持した実施例触媒11は最も回復性
能が優れていた。実施例触媒12−16に対しても同様
であった。つまり、Zrを担持した実施例触媒13−1
6はNOx浄化性率の回復性に優れていた。
Example 5 Example 1 According to Test Example 1, Example Catalysts 7-16 were produced. Table 7 shows Example Catalyst 7-1.
6 was indicated. Further, the SOx resistance was examined according to Test Example 2 of Example 1. Table 8 shows the results. Comparing the regeneration rates of the NOx purification rates, the catalyst of the embodiment 8-11 carrying Zr was superior to the catalyst of the embodiment 7 in the recovery performance. Also, Z
The catalyst of Example 11 supporting r, Si and Ti had the best recovery performance. The same was true for the example catalysts 12-16. That is, the example catalyst 13-1 supporting Zr
No. 6 was excellent in recovery of NOx purification rate.

【0106】[0106]

【表7】 [Table 7]

【0107】[0107]

【表8】 [Table 8]

【0108】[0108]

【発明の効果】本発明の排ガス浄化方法,排ガス浄化触
媒及び排ガス浄化装置により、酸化雰囲気において耐S
Ox被毒性を維持しつつ高いNOx浄化性能を高めるこ
とができた。
According to the exhaust gas purifying method, the exhaust gas purifying catalyst and the exhaust gas purifying apparatus of the present invention, S-resistant in an oxidizing atmosphere.
High NOx purification performance could be enhanced while maintaining Ox poisoning.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/20 F01N 3/20 B 3/24 3/24 R 3/28 301 3/28 301C (72)発明者 金枝 雅人 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 永山 更成 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 黒田 修 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 北原 雄一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 Fターム(参考) 3G091 AA02 AA12 AB06 BA11 BA14 BA33 BA39 CB02 DB10 DB13 EA01 EA05 EA06 EA17 EA33 EA34 FB10 FB11 FB12 FC01 GA01 GA03 GA06 GB01W GB01X GB02W GB02Y GB03W GB03Y GB04W GB05W GB06W GB07W GB10X GB17X HA35 4D048 AA06 AB02 BA01X BA02X BA03X BA06X BA07X BA08X BA14X BA15X BA18X BA19X BA30X BA31X BA32X BA33X BA41X BA42X BB02 4G069 AA04 AA08 AA09 BA01A BA01B BA01C BA02A BA02B BA02C BA04A BA04B BA04C BA05A BA05B BA05C BA06A BA06B BA06C BA13A BA13B BA13C BB04A BB04B BB04C BB06A BB06B BB06C BC01A BC08A BC12A BC12B BC12C BC38A BC43A BC43B BC43C BC69A BC71A BC71B BC71C BC72A BC72B BC72C BC75A BC75B BC75C CA03 CA08 CA13 DA06 EA18 FA03 FA06 FB14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F01N 3/20 F01N 3/20 B 3/24 3/24 R 3/28 301 3/28 301C (72) Inventor Masato Kaneda 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kazunari Nagayama 7-1-1, Omika-machi, Hitachi City, Ibaraki Prefecture Inside the research institute (72) Inventor Toshio Yamashita 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Osamu Kuroda Hitachi, Ltd. In-vehicle equipment division (72) Inventor Yuichi Kitahara 2520 No. Odaiba, Hitachinaka-shi, Ibaraki Prefecture F-ter in Hitachi, Ltd. automotive equipment division (Ref.) BA15X BA18X BA19X BA30X BA31X BA32X BA33X BA41X BA42X BB02 4G069 AA04 AA08 AA09 BA01A BA01B BA01C BA02A BA02B BA02C BA04A BA04B BA04C BA05A BA05B BA05C BA06A BA06B BA06C BA13A BA13B BA13C BB04A BB04B BB04C BB06A BB06B BB06C BC01A BC08A BC12A BC12B BC12C BC38A BC43A BC43B BC43C BC69A BC71A BC71B BC71C BC72A BC72B BC72C BC75A BC75B BC75C CA03 CA08 CA13 DA06 EA18 FA03 FA06 FB14

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排ガス流路に、アルカリ金属と
アルカリ土類金属から選ばれた少なくも1種とRhとP
tとを含み、排ガス中の空燃比が理論空燃比より高いと
きにNOxを化学吸着し、理論空燃比以下のときに該化
学吸着したNOxを還元浄化するNOx吸着還元触媒を
配置して、該触媒に理論空燃比よりも高い空燃比の排ガ
スと理論空燃比以下の空燃比の排ガスとを交互に接触さ
せるようにした排ガス浄化方法において、前記触媒中に
Zrを含有したことを特徴とする内燃機関の排ガス浄化
方法。
1. An exhaust gas flow path for an internal combustion engine, wherein at least one selected from alkali metals and alkaline earth metals and Rh and P
and a NOx adsorption reduction catalyst for reducing and purifying NOx when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio in the exhaust gas is lower than the stoichiometric air-fuel ratio. An exhaust gas purification method in which an exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and an exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, wherein the catalyst contains Zr. Engine exhaust gas purification method.
【請求項2】内燃機関の排ガス流路に、アルカリ金属と
アルカリ土類金属から選ばれた少なくも1種とRhとP
tとを含み、排ガス中の空燃比が理論空燃比より高いと
きにNOxを化学吸着し、理論空燃比以下のときに該化
学吸着したNOxを還元浄化するNOx吸着還元触媒を
配置して、該触媒に理論空燃比よりも高い空燃比の排ガ
スと理論空燃比以下の空燃比の排ガスとを交互に接触さ
せるようにした排ガス浄化方法において、前記触媒中に
Zrと、PdとIrとRuから選ばれた少なくとも1種
とを含有したことを特徴とする内燃機関の排ガス浄化方
法。
2. An exhaust gas flow path for an internal combustion engine, wherein at least one selected from alkali metals and alkaline earth metals and Rh and P
and a NOx adsorption reduction catalyst for reducing and purifying NOx when the air-fuel ratio in the exhaust gas is higher than the stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio in the exhaust gas is lower than the stoichiometric air-fuel ratio. In an exhaust gas purification method in which an exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and an exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, the catalyst is selected from Zr, Pd, Ir, and Ru. An exhaust gas purifying method for an internal combustion engine, comprising: at least one selected from the group consisting of:
【請求項3】請求項1又は2において、前記触媒に更に
TiとSiの少なくとも1種を含有したことを特徴とす
る内燃機関の排ガス浄化方法。
3. The method for purifying exhaust gas of an internal combustion engine according to claim 1, wherein said catalyst further contains at least one of Ti and Si.
【請求項4】請求項3において、前記触媒中のアルカリ
金属とアルカリ土類金属から選ばれた少なくも1種とZ
rとTiとSiから選ばれた少なくとも1種とが複合酸
化物を形成していることを特徴とする内燃機関の排ガス
浄化方法。
4. The catalyst according to claim 3, wherein at least one selected from an alkali metal and an alkaline earth metal in said catalyst is used.
An exhaust gas purification method for an internal combustion engine, wherein r, at least one selected from Ti and Si forms a composite oxide.
【請求項5】請求項3において、前記触媒に更に希土類
金属を含有したことを特徴とする内燃機関の排ガス浄化
方法。
5. The exhaust gas purifying method for an internal combustion engine according to claim 3, wherein said catalyst further contains a rare earth metal.
【請求項6】内燃機関の排ガス流路に、排ガス中の空燃
比が理論空燃比より高いときにNOxを化学吸着し、理論
空燃比以下のときに該化学吸着したNOxを還元浄化す
るNOx吸着還元触媒を配置して、該触媒に理論空燃比
よりも高い空燃比の排ガスと理論空燃比以下の空燃比の
排ガスとを交互に接触させるようにした排ガス浄化方法
において、前記触媒を、多孔質担体の表面にSrとMg
とTiとZrとRhとPtとPd及びCeを担持したも
のにより構成したことを特徴とする内燃機関の排ガス浄
化方法。
6. An NOx adsorber for chemically adsorbing NOx in an exhaust gas passage of an internal combustion engine when the air-fuel ratio in the exhaust gas is higher than a stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In an exhaust gas purification method in which a reduction catalyst is disposed and exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or less than the stoichiometric air-fuel ratio are alternately contacted with the catalyst, Sr and Mg on the surface of the carrier
An exhaust gas purifying method for an internal combustion engine, comprising: a carrier that carries Pt, Ti, Zr, Rh, Pt, Pd, and Ce.
【請求項7】内燃機関の排ガス流路に、排ガス中の空燃
比が理論空燃比より高いときにNOxを化学吸着し、理論
空燃比以下のときに該化学吸着したNOxを還元浄化す
るNOx吸着還元触媒を配置して、該触媒に理論空燃比
よりも高い空燃比の排ガスと理論空燃比以下の空燃比の
排ガスとを交互に接触させるようにした排ガス浄化方法
において、前記触媒を、多孔質担体の表面にNaとMg
とTiとZrとRhとPtとPd及びCeを担持したも
のにより構成したことを特徴とする内燃機関の排ガス浄
化方法。
7. A NOx adsorber for chemically adsorbing NOx in an exhaust gas passage of an internal combustion engine when the air-fuel ratio in the exhaust gas is higher than a stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio in the exhaust gas is lower than the stoichiometric air-fuel ratio. In an exhaust gas purification method in which a reduction catalyst is disposed and exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or less than the stoichiometric air-fuel ratio are alternately contacted with the catalyst, Na and Mg on the surface of the carrier
An exhaust gas purifying method for an internal combustion engine, comprising: a carrier that carries Pt, Ti, Zr, Rh, Pt, Pd, and Ce.
【請求項8】内燃機関の排ガス流路に、排ガス中の空燃
比が理論空燃比より高いときにNOxを化学吸着し、理論
空燃比以下のときに該化学吸着したNOxを還元浄化す
るNOx吸着還元触媒を配置して、該触媒に理論空燃比
よりも高い空燃比の排ガスと理論空燃比以下の空燃比の
排ガスとを交互に接触させるようにした排ガス浄化方法
において、前記触媒を、多孔質担体の表面に、Na,M
g,K,Li,Cs,Sr及びCaから選ばれたアルカ
リ金属又はアルカリ土類金属の少なくとも1種と、Ti
とSiから選ばれた少なくとも1種と、RhとPtと、
Zrと、PdとIrとRuから選ばれた少なくとも1種
と希土類金属とを担持したものにより構成し、該多孔質
担体100重量部に対して、アルカリ金属又はアルカリ
土類金属の少なくとも1種を総量で5−30重量部、T
iを8−35重量部、Siを3−25重量部、Zrを3
−25重量部、Rhを0.05−0.5重量部、Ptを
1.5−5重量部、Pd,Ir,Ruの少なくとも1種
を総量で0.25−3重量部、希土類金属を5−50重
量部含むようにしたことを特徴とする排ガス浄化方法。
8. A NOx adsorber for chemically adsorbing NOx in an exhaust gas passage of an internal combustion engine when the air-fuel ratio in the exhaust gas is higher than a stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In an exhaust gas purification method in which a reduction catalyst is disposed and exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio equal to or less than the stoichiometric air-fuel ratio are alternately contacted with the catalyst, Na, M on the surface of the carrier
g, K, Li, Cs, Sr and Ca, at least one of alkali metals or alkaline earth metals, and Ti
And at least one selected from Si, Rh and Pt,
Zr, at least one selected from Pd, Ir, and Ru, and a rare earth metal are supported, and at least one alkali metal or alkaline earth metal is added to 100 parts by weight of the porous carrier. 5-30 parts by weight in total, T
i is 8-35 parts by weight, Si is 3-25 parts by weight, Zr is 3 parts by weight.
-25 parts by weight, 0.05 to 0.5 parts by weight of Rh, 1.5 to 5 parts by weight of Pt, 0.25 to 3 parts by weight of at least one of Pd, Ir, and Ru, and rare earth metal. An exhaust gas purifying method characterized by comprising 5 to 50 parts by weight.
【請求項9】内燃機関の排ガス流路に配置され、アルカ
リ金属とアルカリ土類金属から選ばれた少なくとも1種
とPtとRhとを含み、排ガスの空燃比が理論空燃比よ
り高いときにNOxを化学吸着し、理論空燃比以下のと
きに該化学吸着したNOxを還元浄化する排ガス浄化触
媒において、Zrを含有したことを特徴とする内燃機関
の排ガス浄化触媒。
9. When the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio, wherein the air-fuel ratio is at least one selected from the group consisting of alkali metals and alkaline earth metals, Pt, and Rh. An exhaust gas purifying catalyst for an internal combustion engine, which chemically adsorbs Zr and reduces and purifies the chemically adsorbed NOx when the air-fuel ratio is equal to or lower than a stoichiometric air-fuel ratio, wherein the exhaust gas purifying catalyst contains Zr.
【請求項10】内燃機関の排ガス流路に配置され、アル
カリ金属とアルカリ土類金属から選ばれた少なくとも1
種とPtとRhとを含み、排ガスの空燃比が理論空燃比
より高いときにNOxを化学吸着し、理論空燃比以下の
ときに該化学吸着したNOxを還元浄化する排ガス浄化
触媒において、Zrと、PdとIrとRuから選ばれた
少なくとも1種とを含有したことを特徴とする内燃機関
の排ガス浄化触媒。
10. At least one selected from an alkali metal and an alkaline earth metal is disposed in an exhaust gas passage of an internal combustion engine.
An exhaust gas purifying catalyst containing a seed, Pt, and Rh, which chemically adsorbs NOx when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio and reduces and purifies the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio; And an at least one selected from the group consisting of Pd, Ir and Ru.
【請求項11】請求項9または10において、更にTi
とSiの少なくとも1種を含むことを特徴とする内燃機
関の排ガス浄化触媒。
11. The method according to claim 9 or 10, further comprising:
An exhaust gas purifying catalyst for an internal combustion engine, comprising at least one of Si and Si.
【請求項12】請求項11において、前記アルカリ金属
又はアルカリ土類金属がNa,Mg,K,Li,Cs,
Sr,Caから選ばれた少なくとも1種よりなり、これ
らとZrとTiとSiの少なくとも1種との複合酸化物
を含むことを特徴とする内燃機関の排ガス浄化触媒。
12. The method according to claim 11, wherein said alkali metal or alkaline earth metal is Na, Mg, K, Li, Cs,
An exhaust gas purifying catalyst for an internal combustion engine, comprising at least one selected from the group consisting of Sr and Ca, and comprising a composite oxide of these and at least one of Zr, Ti and Si.
【請求項13】請求項11において、更に希土類金属を
含むことを特徴とする内燃機関の排ガス浄化触媒。
13. The exhaust gas purifying catalyst for an internal combustion engine according to claim 11, further comprising a rare earth metal.
【請求項14】多孔質担体の表面に、SrとMgとTi
とZrとRhとPtとPd及びCeを担持したことを特
徴とする内燃機関の排ガス浄化触媒。
14. A porous carrier comprising Sr, Mg and Ti on the surface thereof.
An exhaust gas purifying catalyst for an internal combustion engine, which carries Zr, Rh, Pt, Pd and Ce.
【請求項15】多孔質担体の表面に、NaとMgとTi
とZrとRhとPtとPd及びCeを担持したことを特
徴とする内燃機関の排ガス浄化触媒。
15. The method according to claim 15, wherein Na, Mg and Ti are formed on the surface of the porous carrier.
An exhaust gas purifying catalyst for an internal combustion engine, which carries Zr, Rh, Pt, Pd and Ce.
【請求項16】多孔質担体の表面に、Na,Mg,K,
Li,Cs,Sr,Caから選ばれたアルカリ金属又は
アルカリ土類金属の少なくとも1種と、TiとSiから
選ばれた少なくとも1種と、RhとPtと、PdとIr
とRuから選ばれた少なくとも1種と、Zrと、希土類
金属とを担持したものからなり、該多孔質担体100重
量部に対して、アルカリ金属またはアルカリ土類金属を
総量で5−30重量部、Tiを8−35重量部、Siを
3−25重量部、Zrを3−25重量部、Rhを0.0
5−0.5重量部、Ptを1.5−5 重量部、PdとI
rとRuから選ばれた少なくとも1種を総量で0.25
−3 重量部、希土類金属を5−50重量部有すること
を特徴とする内燃機関の排ガス浄化触媒。
16. The method according to claim 16, wherein Na, Mg, K,
At least one of an alkali metal or an alkaline earth metal selected from Li, Cs, Sr, and Ca, at least one selected from Ti and Si, Rh and Pt, Pd and Ir
And at least one selected from Ru, Zr, and a rare earth metal, and 5-30 parts by weight of alkali metal or alkaline earth metal in total with respect to 100 parts by weight of the porous carrier. , Ti at 8-35 parts by weight, Si at 3-25 parts by weight, Zr at 3-25 parts by weight, and Rh at 0.0.
5-0.5 parts by weight, Pt 1.5-5 parts by weight, Pd and I
at least one selected from r and Ru in a total amount of 0.25
An exhaust gas purifying catalyst for an internal combustion engine, comprising -3 parts by weight and 5 to 50 parts by weight of a rare earth metal.
【請求項17】内燃機関の排ガス流路に、アルカリ金属
とアルカリ土類金属から選ばれた少なくとも1種とRh
とPtとを含み、排ガスの空燃比が理論空燃比よりも高
いときにNOxを化学吸着し、理論空燃比以下のときに
該化学吸着したNOxを還元浄化するNOx吸着還元触
媒を配置して、該触媒に理論空燃比より高い空燃比の排
ガスと理論空燃比以下の空燃比の排ガスとを交互に接触
させるようにした排ガス浄化装置において、前記触媒に
Zrを含有したことを特徴とする内燃機関の排ガス浄化
装置。
17. An exhaust gas passage of an internal combustion engine, wherein at least one selected from alkali metals and alkaline earth metals is added to Rh.
And a Pt, and a NOx adsorption reduction catalyst is provided for chemically adsorbing NOx when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio and for reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. An exhaust gas purifying apparatus wherein an exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and an exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately brought into contact with the catalyst, wherein the catalyst contains Zr. Exhaust gas purification equipment.
【請求項18】内燃機関の排ガス流路に、アルカリ金属
とアルカリ土類金属から選ばれた少なくとも1種とRh
とPtとを含み、排ガスの空燃比が理論空燃比よりも高
いときにNOxを化学吸着し、理論空燃比以下のときに
該化学吸着したNOxを還元浄化するNOx吸着還元触
媒を配置して、該触媒に理論空燃比より高い空燃比の排
ガスと理論空燃比以下の空燃比の排ガスとを交互に接触
させるようにした排ガス浄化装置において、前記触媒に
Zrと、PdとIrとRuから選ばれた少なくとも1種
とを含有したことを特徴とする内燃機関の排ガス浄化装
置。
18. At least one selected from alkali metals and alkaline earth metals and Rh in an exhaust gas flow path of an internal combustion engine.
And a Pt, and a NOx adsorption reduction catalyst is provided for chemically adsorbing NOx when the air-fuel ratio of the exhaust gas is higher than the stoichiometric air-fuel ratio and for reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In the exhaust gas purifying apparatus, the catalyst is made to alternately contact an exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and an exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio, wherein the catalyst is selected from Zr, Pd, Ir, and Ru. An exhaust gas purifying apparatus for an internal combustion engine, comprising at least one of the following.
【請求項19】請求項17又は18において、前記触媒
中に更にTiとSiの少なくとも1種を有することを特
徴とする内燃機関の排ガス浄化装置。
19. An exhaust gas purifying apparatus for an internal combustion engine according to claim 17, wherein said catalyst further comprises at least one of Ti and Si.
【請求項20】請求項19において、前記触媒中に更に
希土類金属を有することを特徴とする内燃機関の排ガス
浄化装置。
20. The exhaust gas purifying apparatus for an internal combustion engine according to claim 19, wherein said catalyst further comprises a rare earth metal.
【請求項21】内燃機関の排ガス流路に、排ガスの空燃
比が理論空燃比よりも高いときにNOxを化学吸着し、理
論空燃比以下のときに該化学吸着したNOxを還元浄化
するNOx吸着還元触媒を配置して、該触媒に理論空燃
比より高い空燃比の排ガスと理論空燃比以下の空燃比の
排ガスとを交互に接触させるようにした排ガス浄化装置
において、前記触媒が、多孔質担体の表面にSrとMg
とTiとZrとRhとPtとPdとCeを担持したこと
を特徴とする内燃機関の排ガス浄化装置。
21. A NOx adsorber for chemically adsorbing NOx in an exhaust gas passage of an internal combustion engine when the air-fuel ratio of the exhaust gas is higher than a stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In an exhaust gas purifying apparatus in which a reduction catalyst is arranged so that exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately contacted with the catalyst, the catalyst comprises a porous carrier. Sr and Mg on the surface of
An exhaust gas purifying apparatus for an internal combustion engine, which carries Ti, Zr, Rh, Pt, Pd, and Ce.
【請求項22】内燃機関の排ガス流路に、排ガスの空燃
比が理論空燃比よりも高いときにNOxを化学吸着し、理
論空燃比以下のときに該化学吸着したNOxを還元浄化
するNOx吸着還元触媒を配置して、該触媒に理論空燃
比より高い空燃比の排ガスと理論空燃比以下の空燃比の
排ガスとを交互に接触させるようにした排ガス浄化装置
において、前記触媒が、多孔質担体の表面にNaとMg
とTiとZrとRhとPtとPdとCeを担持したこと
を特徴とする内燃機関の排ガス浄化装置。
22. A NOx adsorbent for chemically adsorbing NOx in an exhaust gas passage of an internal combustion engine when the air-fuel ratio of the exhaust gas is higher than a stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In an exhaust gas purifying apparatus in which a reduction catalyst is arranged so that exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately contacted with the catalyst, the catalyst comprises a porous carrier. Na and Mg on the surface of
An exhaust gas purifying apparatus for an internal combustion engine, which carries Ti, Zr, Rh, Pt, Pd, and Ce.
【請求項23】内燃機関の排ガス流路に、排ガスの空燃
比が理論空燃比よりも高いときにNOxを化学吸着し、理
論空燃比以下のときに該化学吸着したNOxを還元浄化
するNOx吸着還元触媒を配置して、該触媒に理論空燃
比より高い空燃比の排ガスと理論空燃比以下の空燃比の
排ガスとを交互に接触させるようにした排ガス浄化装置
において、前記触媒が、多孔質担体の表面に、Na,M
g,K,Li,Cs,Sr,Caから選ばれたアルカリ
金属又はアルカリ土類金属の少なくとも1種と、Tiと
Siから選ばれた少なくとも1種と、RhとPtと、P
dとIrとRuから選ばれた少なくとも1種と、Zr
と、希土類金属とを担持したものからなり、該多孔質担
体100重量部に対して、アルカリ金属またはアルカリ
土類金属を総量で5−30重量部、Tiを8−35重量
部、Siを3−25重量部、Zrを3−25重量部、R
hを0.05−0.5重量部、Ptを1.5−5 重量部、
PdとIrとRuから選ばれた少なくとも1種を総量で
0.25−3 重量部、希土類金属を5−50重量部有す
ることを特徴とする内燃機関の排ガス浄化装置。
23. A NOx adsorber for chemically adsorbing NOx in an exhaust gas passage of an internal combustion engine when the air-fuel ratio of the exhaust gas is higher than a stoichiometric air-fuel ratio, and reducing and purifying the chemically adsorbed NOx when the air-fuel ratio is lower than the stoichiometric air-fuel ratio. In an exhaust gas purifying apparatus in which a reduction catalyst is arranged so that exhaust gas having an air-fuel ratio higher than the stoichiometric air-fuel ratio and exhaust gas having an air-fuel ratio lower than the stoichiometric air-fuel ratio are alternately contacted with the catalyst, the catalyst comprises a porous carrier. Na, M on the surface of
g, K, Li, Cs, Sr, Ca, at least one of alkali metals or alkaline earth metals, at least one of Ti and Si, Rh and Pt, P
at least one selected from d, Ir and Ru, and Zr
And a rare earth metal, and 5 to 30 parts by weight of alkali metal or alkaline earth metal, 8 to 35 parts by weight of Ti and 3 to 3 parts by weight of Si based on 100 parts by weight of the porous carrier. −25 parts by weight, 3-25 parts by weight of Zr, R
h at 0.05-0.5 parts by weight, Pt at 1.5-5 parts by weight,
An exhaust gas purifying apparatus for an internal combustion engine, comprising 0.25-3 parts by weight of at least one selected from Pd, Ir, and Ru and 5-50 parts by weight of a rare earth metal.
JP00609499A 1999-01-13 1999-01-13 Exhaust gas purification method, purification catalyst and exhaust gas purification apparatus for internal combustion engine Expired - Fee Related JP4062806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00609499A JP4062806B2 (en) 1999-01-13 1999-01-13 Exhaust gas purification method, purification catalyst and exhaust gas purification apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00609499A JP4062806B2 (en) 1999-01-13 1999-01-13 Exhaust gas purification method, purification catalyst and exhaust gas purification apparatus for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000202243A true JP2000202243A (en) 2000-07-25
JP4062806B2 JP4062806B2 (en) 2008-03-19

Family

ID=11628938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00609499A Expired - Fee Related JP4062806B2 (en) 1999-01-13 1999-01-13 Exhaust gas purification method, purification catalyst and exhaust gas purification apparatus for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4062806B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020155A1 (en) * 2000-09-08 2002-03-14 Toyota Jidosha Kabushiki Kaisha Absorption/reduction type catalyst for nox removal
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx
KR100892520B1 (en) 2007-11-14 2009-04-10 현대자동차주식회사 Ruthenium and potassium containing nitric oxide storage and reduction catalyst
JP2009228680A (en) * 2009-07-09 2009-10-08 Denso Corp Deterioration detector for exhaust emission control catalyst
WO2010147127A1 (en) * 2009-06-17 2010-12-23 日立建機株式会社 Exhaust gas treatment device for diesel engine
WO2013136991A1 (en) * 2012-03-12 2013-09-19 大塚化学株式会社 Exhaust gas purification catalyst, exhaust gas purification device and filter, and production method for said catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020155A1 (en) * 2000-09-08 2002-03-14 Toyota Jidosha Kabushiki Kaisha Absorption/reduction type catalyst for nox removal
US6906002B2 (en) 2000-09-08 2005-06-14 Toyota Jidosha Kabushiki Kaisha Absorption reduction-type NOx purifying catalyst
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx
KR100892520B1 (en) 2007-11-14 2009-04-10 현대자동차주식회사 Ruthenium and potassium containing nitric oxide storage and reduction catalyst
JP2011001849A (en) * 2009-06-17 2011-01-06 Hitachi Constr Mach Co Ltd Exhaust gas treatment device for diesel engine
WO2010147127A1 (en) * 2009-06-17 2010-12-23 日立建機株式会社 Exhaust gas treatment device for diesel engine
CN102449277A (en) * 2009-06-17 2012-05-09 日立建机株式会社 Exhaust gas treatment device for diesel engine
JP2009228680A (en) * 2009-07-09 2009-10-08 Denso Corp Deterioration detector for exhaust emission control catalyst
WO2013136991A1 (en) * 2012-03-12 2013-09-19 大塚化学株式会社 Exhaust gas purification catalyst, exhaust gas purification device and filter, and production method for said catalyst
KR20140120348A (en) * 2012-03-12 2014-10-13 오츠카 가가쿠 가부시키가이샤 Exhaust gas purification catalyst, exhaust gas purification device and filter, and production method for said catalyst
JP5612795B2 (en) * 2012-03-12 2014-10-22 大塚化学株式会社 Exhaust gas purification catalyst, exhaust gas purification device and filter, and method for producing the catalyst
CN104379252A (en) * 2012-03-12 2015-02-25 大塚化学株式会社 Exhaust gas purification catalyst, exhaust gas purification device and filter, and production method for said catalyst
KR101708986B1 (en) 2012-03-12 2017-02-21 오츠카 가가쿠 가부시키가이샤 Exhaust gas purification catalyst, exhaust gas purification device and filter, and production method for said catalyst

Also Published As

Publication number Publication date
JP4062806B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
KR0155576B1 (en) Catalyst for purifying exhaust gas and preparation thereof
JP5826285B2 (en) NOx absorption catalyst
EP1008378B1 (en) Exhaust gas purifying catalyst
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2000157870A (en) Catalyst for purifying exhaust gas from diesel engine
JP2003320252A (en) Exhaust gas treatment catalyst and production of the same
JP3855426B2 (en) Method for producing exhaust gas purifying catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3544400B2 (en) Exhaust gas purification catalyst
WO2003018179A1 (en) Enhanced nox trap having increased durability
JP4438114B2 (en) Exhaust gas purification method, exhaust gas purification catalyst and exhaust gas purification device for internal combustion engine
JP3704701B2 (en) Exhaust gas purification catalyst
JP4062806B2 (en) Exhaust gas purification method, purification catalyst and exhaust gas purification apparatus for internal combustion engine
JP3567708B2 (en) Exhaust gas purification catalyst
JP3488487B2 (en) Exhaust gas purification method
JP3378096B2 (en) Exhaust gas purification catalyst
JP2002079096A (en) ABSORBING AND REDUCTION TYPE NOx CLEANING CATALYST
JP2010051886A (en) Catalyst for cleaning exhaust gas
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4352586B2 (en) Internal combustion engine having exhaust gas purification catalyst
JP4135698B2 (en) Method for producing sulfur oxide absorbent
JP2007152303A (en) Hydrogen-producing catalyst
JP4309978B2 (en) Exhaust gas purification method, exhaust gas purification device, and exhaust gas purification catalyst
JPH1176827A (en) Apparatus for cleaning exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees