JPH10148423A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH10148423A
JPH10148423A JP30488996A JP30488996A JPH10148423A JP H10148423 A JPH10148423 A JP H10148423A JP 30488996 A JP30488996 A JP 30488996A JP 30488996 A JP30488996 A JP 30488996A JP H10148423 A JPH10148423 A JP H10148423A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
compressor
gas
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30488996A
Other languages
Japanese (ja)
Inventor
Yutaka Ueki
裕 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30488996A priority Critical patent/JPH10148423A/en
Publication of JPH10148423A publication Critical patent/JPH10148423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent danger of a running out of oil from generating by a method wherein among refrigerant pipings where a refrigerant is passed to a heat-exchanger which constitutes an evaporator, at least areas where a refrigerating machine oil is easy to separate from the refrigerant are made a double pipe, and the refrigerant is passed on the external side, and a high temperature refrigerant gas from a compressor is branched and guided to the internal side. SOLUTION: To a refrigerant piping 11C of a compressor 5, a pipe 13 for high pressure gas, which guides a refrigerant gas of a high temperature to an evaporator 1, is connected, and by providing an electromagnetic valve 15 on an outward path, and a check valve 17 on a returning path, a reverse flow is prevented from generating. The pipe 13 for high pressure gas is branched into a plurality of branching pipes in parallel, and also, in a heat-exchanger, the refrigerant piping is arranged in a manner to meander while going through a large number of fins. By inserting the branching pipe in the refrigerant piping, the refrigerant piping becomes a double pipe, and the refrigerant passes through the external side, and the refrigerant pipe has a function to cool the evaporator 1. Also, on the internal side, the high temperature refrigerant gas is guided. Then, in the evaporator 1, the refrigerating machine oil stays, and is heated by the high temperature refrigerant gas, and the viscosity of the refrigerating machine oil increases, and the flowability is recovered, and the refrigerating machine oil is returned to the compressor 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は冷凍装置に関し、
詳しくは、冷凍装置の一部を構成する蒸発器の構造に関
する。
TECHNICAL FIELD The present invention relates to a refrigeration apparatus,
More specifically, the present invention relates to a structure of an evaporator constituting a part of a refrigeration apparatus.

【0002】[0002]

【従来の技術】一般に冷凍装置(この明細書では冷蔵装
置を含む概念とする)は、ショーケース内部の冷却や冷
蔵庫などの広い分野で使用される。
2. Description of the Related Art Generally, a refrigeration system (in this specification, a concept including a refrigeration system) is used in a wide range of fields such as cooling inside a showcase and a refrigerator.

【0003】このような冷凍装置の一般的な冷媒回路図
を図4に示す。すなわち、蒸発器1で蒸発した冷媒は、
アキュームレータ3に送られ、冷媒のうち蒸発し切れな
かった冷媒液が蒸発するまで一時的に蓄えられ、蒸発し
た冷媒ガスのみが圧縮機5へ送られ圧縮され高温高圧の
冷媒ガスとされる。高温高圧の冷媒ガスは凝縮器7で周
囲の空気と熱交換して冷却され、凝縮する。凝縮した冷
媒液は、キャピラリチューブ9に通されて減圧され、再
び蒸発器1へ送られる。
FIG. 4 shows a general refrigerant circuit diagram of such a refrigeration system. That is, the refrigerant evaporated in the evaporator 1 is
The refrigerant is sent to the accumulator 3 and temporarily stored until the refrigerant liquid that has not completely evaporated out of the refrigerant evaporates. Only the evaporated refrigerant gas is sent to the compressor 5 and compressed to be a high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas exchanges heat with surrounding air in the condenser 7 to be cooled and condensed. The condensed refrigerant liquid is reduced in pressure through the capillary tube 9 and sent to the evaporator 1 again.

【0004】さて、冷媒としてオゾン層を破壊しないH
FC(ハイドロフルホロカーボン)系冷媒(例えばHF
C−134a)が使用されるようになっている。また、
冷凍装置には圧縮機5の潤滑のためなどに用いられる冷
凍機油が冷媒に混合され溶け合った状態で用いられる。
そして、HFC系冷媒を使用する場合の冷凍機油として
は、この冷媒と相溶性のある冷凍機油に例えばエステ
ル、PAG(ポリアルキレングリコール油)などを用い
るのが通常である。
[0004] As a refrigerant, H does not destroy the ozone layer.
FC (hydroflurocarbon) based refrigerant (for example, HF
C-134a) is to be used. Also,
In the refrigerating device, refrigerating machine oil used for lubrication of the compressor 5 and the like is used in a state of being mixed with and melted by the refrigerant.
As the refrigerating machine oil when an HFC-based refrigerant is used, it is usual to use, for example, an ester, PAG (polyalkylene glycol oil) or the like as the refrigerating machine oil compatible with the refrigerant.

【0005】しかし、これらの冷凍機油は、吸湿性が高
く水分の存在により劣化しスラッジを発生させる。この
スラッジはキャピラリチューブ9などに付着し、冷媒の
流れを疎外することで冷凍装置の冷却性能の低下を引き
起こし易い。よって、冷凍装置を安定的に稼動させるに
は、スラッジの発生原因となる水分、不純物などを低レ
ベルに管理する必要がある。また、市場におけるサービ
ス作業においても、水分や不純物などを低レベルに管理
する必要があり、作業性は従来のものに比べて非常に悪
くなる。
[0005] However, these refrigerating machine oils are highly hygroscopic and deteriorate due to the presence of moisture to generate sludge. This sludge adheres to the capillary tube 9 and the like, and tends to cause a decrease in the cooling performance of the refrigeration apparatus by alienating the flow of the refrigerant. Therefore, in order to operate the refrigeration apparatus stably, it is necessary to control water, impurities, and the like that cause sludge to a low level. Also, in the service work in the market, it is necessary to control moisture, impurities, and the like to a low level, and the workability is much worse than the conventional work.

【0006】これに対しHFC系冷媒でない従来の冷媒
(R22など)で使用している従来の冷凍機油(アルキ
ルベンゼン油、鉱油)は、前記HFC系冷媒と相溶性の
ある冷凍機油ほどには、管理を厳密にする必要はなかっ
た。このため、できれば従来の冷凍機油を使用できるこ
とが望ましい。
On the other hand, conventional refrigeration oils (alkylbenzene oil and mineral oil) used in conventional refrigerants (such as R22) that are not HFC-based refrigerants are less controlled than refrigeration oils that are more compatible with the HFC-based refrigerants. There was no need to be strict. For this reason, it is desirable that conventional refrigeration oil can be used if possible.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
冷凍機油をHFC系冷媒に用いると、相溶性が悪く、圧
縮機から排出された冷凍機油が冷媒配管内で分離し滞留
してしまい、冷凍機油の不足から圧縮機の潤滑が不十分
となり、いわゆるオイル切れを起こす危険性がある。
However, when the conventional refrigerating machine oil is used for the HFC-based refrigerant, the refrigerating machine oil discharged from the compressor is separated and stays in the refrigerant pipe due to poor compatibility, and the refrigerating machine oil is rejected. Insufficient oil may cause insufficient lubrication of the compressor, causing a so-called oil shortage.

【0008】特に、冷媒が蒸発する蒸発器では、冷媒と
冷凍機油が分離しやすく、更には、冷媒の蒸発による温
度低下により、分離した冷凍機油の粘度が高くなるた
め、冷凍機油の流動性が悪くなり、滞留が更にひどくな
ってしまう。
Particularly, in an evaporator in which the refrigerant evaporates, the refrigerant and the refrigerating machine oil are easily separated, and further, the viscosity of the separated refrigerating machine oil increases due to a decrease in temperature due to the evaporation of the refrigerant. It gets worse, and the stay gets worse.

【0009】この発明は、以上の問題点を解決するため
になされたもので、蒸発器において冷媒から冷凍機油が
分離し滞留してしまうことを抑止できる冷凍装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a refrigeration apparatus which can prevent refrigeration oil from separating and staying in a refrigerant in an evaporator.

【0010】[0010]

【課題を解決するための手段】以上の目的を達成するた
めに、請求項1の発明は、蒸発器で蒸発した冷媒ガス
を、圧縮機で圧縮して高温高圧の冷媒ガスとし、凝縮器
で周囲の空気と熱交換して凝縮した冷媒を再び前記蒸発
器へ戻す冷媒流路を備え、冷媒と圧縮機の潤滑のための
冷凍機油が混在している冷凍装置において、蒸発器を構
成する熱交換器に冷媒を通す冷媒配管のうち、少なくと
も、冷媒から冷凍機油が分離しやすい部位を二重管に
し、この二重管の外側に冷媒を通し、内側に前記圧縮機
からの高温の冷媒ガスを分流して導くことを特徴とする
冷凍装置である。
SUMMARY OF THE INVENTION In order to achieve the above object, according to the first aspect of the present invention, a refrigerant gas evaporated by an evaporator is compressed by a compressor into a high-temperature and high-pressure refrigerant gas, and the refrigerant gas is compressed by a condenser. In a refrigerating apparatus including a refrigerant flow path for returning the refrigerant condensed by exchanging heat with the surrounding air to the evaporator again, wherein the refrigerant and the refrigerating machine oil for lubricating the compressor are mixed, the heat forming the evaporator is provided. At least a part of the refrigerant pipe through which the refrigerant passes through the exchanger is formed as a double pipe at a portion where the refrigerating machine oil is easily separated from the refrigerant, the refrigerant is passed outside the double pipe, and the high-temperature refrigerant gas from the compressor is passed inside. Is a refrigeration apparatus characterized by diverting and guiding.

【0011】請求項2の発明は、更に、二重管の内側に
高温の冷媒ガスを導くための高圧ガス用管に電磁弁を設
け、圧縮機に油レベルセンサを設け、または蒸発器と圧
縮機との間に備えられるアキュームレータに油レベルセ
ンサを設け、油レベルセンサが検出した冷凍機油のレベ
ルが所定の値になったら前記電磁弁を開け高温の冷媒ガ
スを導く制御手段を設けたことを特徴とする請求項1記
載の冷凍装置である。
According to a second aspect of the present invention, a high pressure gas pipe for guiding a high-temperature refrigerant gas to the inside of the double pipe is provided with a solenoid valve, a compressor is provided with an oil level sensor, or the evaporator and the compressor are connected to each other. An oil level sensor is provided in an accumulator provided between the compressor and a control unit for opening the solenoid valve when the level of the refrigerating machine oil detected by the oil level sensor reaches a predetermined value, and guiding high-temperature refrigerant gas. The refrigeration apparatus according to claim 1, characterized in that:

【0012】請求項3の発明は、更に、二重管の内側に
高温の冷媒ガスを導くための高圧ガス用管に電磁弁を設
け、冷凍装置の運転時間をタイマによって監視し断続的
に前記電磁弁を開け高温の冷媒ガスを導く制御手段を設
けたことを特徴とする請求項1記載の冷凍装置である。
According to a third aspect of the present invention, a high-pressure gas pipe for guiding a high-temperature refrigerant gas is provided inside the double pipe, and a solenoid valve is provided. 2. The refrigeration apparatus according to claim 1, further comprising control means for opening an electromagnetic valve to guide a high-temperature refrigerant gas.

【0013】請求項4の発明は、更に、高温の冷媒ガス
を導くための高圧ガス用管を複数の並列な分岐管に分岐
させ、この分岐管を、ジグザグに配置された冷媒配管の
互いに平行な複数の部位毎に挿通させ、各分岐管に電磁
弁を設け、冷媒配管の上流側から順に電磁弁を開き高温
の冷媒ガスを順に並列に導く制御手段を設けたことを特
徴とする請求項1、2、または3記載の冷凍装置であ
る。
According to a fourth aspect of the present invention, the high-pressure gas pipe for introducing the high-temperature refrigerant gas is branched into a plurality of parallel branch pipes, and the branch pipes are parallel to each other in the zigzag refrigerant pipes. The electromagnetic valve is provided in each branch pipe, the electromagnetic valve is sequentially opened from the upstream side of the refrigerant pipe, and control means for guiding the high-temperature refrigerant gas in parallel is provided. A refrigeration apparatus according to 1, 2, or 3.

【0014】[0014]

【発明の実施の形態】この発明の一実施形態を、図1及
び図2において説明する。冷媒液が内部で蒸発し冷熱を
供給する蒸発器1は、冷媒配管11Aを介してアキュー
ムレータ3に接続される。アキュームレータ3は蒸発器
1で蒸発しきれなかった冷媒液を一時的に蓄え、蒸発さ
せる容器である。アキュームレータ3は冷媒配管11B
を介して、冷媒ガスを圧縮し高温高圧の冷媒ガスにする
圧縮機5に接続される。圧縮機5は冷媒配管11Cを介
して、高温高圧の冷媒ガスを空気によって冷却する凝縮
器7に接続される。凝縮器7は冷媒配管11Dを介し
て、冷媒液を減圧するキャピラリチューブ9に接続され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. The evaporator 1 in which the refrigerant liquid evaporates and supplies cold heat is connected to the accumulator 3 via the refrigerant pipe 11A. The accumulator 3 is a container for temporarily storing and evaporating the refrigerant liquid that has not been completely evaporated in the evaporator 1. The accumulator 3 is a refrigerant pipe 11B
Is connected to a compressor 5 which compresses the refrigerant gas into a high-temperature and high-pressure refrigerant gas. The compressor 5 is connected via a refrigerant pipe 11C to a condenser 7 that cools a high-temperature and high-pressure refrigerant gas with air. The condenser 7 is connected via a refrigerant pipe 11D to a capillary tube 9 for reducing the pressure of the refrigerant liquid.

【0015】冷媒にはオゾン層を破壊する恐れの少ない
HFC系冷媒を使用し、冷凍機油にはこの冷媒と相溶性
が悪いものの、厳密な管理の必要がない従来の冷凍機油
が使用される。
As the refrigerant, an HFC-based refrigerant having a low risk of destruction of the ozone layer is used, and as the refrigerating machine oil, a conventional refrigerating machine oil which has poor compatibility with this refrigerant but does not require strict control is used.

【0016】圧縮機5の下流側の冷媒配管11Cには、
高温の冷媒ガスを蒸発器1へ導くための高圧ガス用管1
3が接続される。高圧ガス用管13の往路には電磁弁1
5が設けられ、復路には逆止弁17が設けられ、圧縮機
5側から冷媒ガスが逆流しないようになっている。
The refrigerant pipe 11C on the downstream side of the compressor 5 includes:
High-pressure gas pipe 1 for guiding high-temperature refrigerant gas to evaporator 1
3 are connected. The solenoid valve 1 is provided on the outward path of the high pressure gas pipe 13.
5 is provided, and a check valve 17 is provided on the return path so that the refrigerant gas does not flow backward from the compressor 5 side.

【0017】そして図2に示すように、高圧ガス用管1
3は複数の並列な分岐管19に分岐している。また、蒸
発器1を構成する熱交換器21において、冷媒配管11
は、多数のフィン(図示せず)に貫通しつつ蛇行して配
管される。そして、分岐管19は、蛇行して配管された
冷媒配管11の互いに平行な複数の部位23ごとに挿通
している(図2(B))。この挿通が行われる部分24
は溶接される。各分岐管19には電磁弁25が設けられ
ている。これら複数の電磁弁25も制御装置31により
開閉(ON、OFF)される。
Then, as shown in FIG.
3 branches into a plurality of parallel branch pipes 19. In the heat exchanger 21 constituting the evaporator 1, the refrigerant pipe 11
Is meanderingly piped while penetrating a number of fins (not shown). Then, the branch pipe 19 is inserted into each of a plurality of parallel portions 23 of the refrigerant pipe 11 arranged in a meandering manner (FIG. 2B). Portion 24 where this insertion is performed
Are welded. Each branch pipe 19 is provided with a solenoid valve 25. The plurality of solenoid valves 25 are also opened and closed (ON, OFF) by the control device 31.

【0018】前記分岐管19が蒸発器1の冷媒配管11
に挿通されることで、冷媒配管11は二重管27となっ
ている(図2(B)(C))。この二重管27の外側を
冷媒が通る。この冷媒は蒸発器1を冷やす働きを有する
ため、冷たい。二重管27の内側には、高温の冷媒ガス
が導かれる。
The branch pipe 19 serves as the refrigerant pipe 11 of the evaporator 1.
, The refrigerant pipe 11 is a double pipe 27 (FIGS. 2B and 2C). The refrigerant passes outside the double pipe 27. Since this refrigerant has a function of cooling the evaporator 1, it is cold. A high-temperature refrigerant gas is guided inside the double pipe 27.

【0019】また、図1に示すように、圧縮機5内部の
冷凍機油のレベルを検出するための油レベルセンサ29
が設けられる。この検出値は制御装置31へ送られ、こ
の検出値に基づく制御装置31からの出力により高圧ガ
ス用管13の電磁弁15及び分岐管19の各電磁弁25
が開閉(ON、OFF)される。
As shown in FIG. 1, an oil level sensor 29 for detecting the level of refrigerating machine oil inside the compressor 5 is provided.
Is provided. The detected value is sent to the control device 31, and the solenoid valve 15 of the high pressure gas pipe 13 and the solenoid valve 25 of the branch pipe 19 are output by the output from the control device 31 based on the detected value.
Are opened and closed (ON, OFF).

【0020】すなわち、圧縮機5内の冷凍機油のレベル
が所定よりも小さい値になったら、電磁弁15が開けら
れ、分岐管19の各電磁弁25が冷媒配管11(二重管
27)の上流側に位置するもののから順に開かれる。
That is, when the level of the refrigerating machine oil in the compressor 5 becomes smaller than a predetermined value, the solenoid valve 15 is opened, and each solenoid valve 25 of the branch pipe 19 is connected to the refrigerant pipe 11 (double pipe 27). Opened in order from the one located upstream.

【0021】以下、この実施形態の作用を説明する。ま
ず冷媒は、蒸発器1で冷媒液が蒸発して冷媒ガスにな
る。この時、気化熱が冷却機能を果たす。蒸発した冷媒
ガスはアキュームレータ3へ送られ、冷媒ガスに含まれ
蒸発し切れなかった冷媒液が一時的に溜められる。溜め
られた冷媒液はやがて蒸発し冷媒ガスとなる。冷媒液が
一時的に溜められ蒸発した冷媒ガスが圧縮機5へ流れる
ことにより、冷媒液が直接に圧縮機5に入り液圧縮をし
てしまわないようにできる。アキュームレータ3からの
冷媒ガスは圧縮機5で圧縮され、高温高圧の冷媒ガスと
なる。高温高圧の冷媒ガスは凝縮器7で周囲の空気と熱
交換して冷却される。冷却され凝縮した冷媒液は、キャ
ピラリチューブ9を通って減圧される。減圧された冷媒
液は再び蒸発器1に送られる。
Hereinafter, the operation of this embodiment will be described. First, the refrigerant evaporates in the evaporator 1 into a refrigerant gas. At this time, the heat of vaporization performs a cooling function. The evaporated refrigerant gas is sent to the accumulator 3, and the refrigerant liquid contained in the refrigerant gas and not completely evaporated is temporarily stored. The stored refrigerant liquid evaporates and becomes refrigerant gas. By temporarily storing the refrigerant liquid and evaporating the refrigerant gas to the compressor 5, the refrigerant liquid can be prevented from directly entering the compressor 5 and compressing the liquid. The refrigerant gas from the accumulator 3 is compressed by the compressor 5 and becomes a high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas exchanges heat with surrounding air in the condenser 7 and is cooled. The cooled and condensed refrigerant liquid is decompressed through the capillary tube 9. The decompressed refrigerant liquid is sent to the evaporator 1 again.

【0022】圧縮機5を出た冷媒には、圧縮機5の潤滑
に用いられる冷凍機油が混在している。この冷凍機油
は、蒸発器1を構成する熱交換器21内部で液冷媒が蒸
発するに伴い分離し、冷凍機油単体で冷媒配管11内を
流動するようになる。このような状態では、通常は、冷
媒ガスの風圧が冷凍機油を流動させ続け、圧縮機5の方
へ戻す。しかし、蒸発器1の働きによる温度低下に伴
い、冷凍機油の粘度は上昇し、流動しにくい状態とな
り、ひいては滞留する。この滞留する状態が続くと、そ
の量が多くなり、圧縮機5へ戻る冷凍機油の量が少なく
なり、圧縮機5中の冷凍機油の総量が少なくなり、よっ
て圧縮機5の潤滑が悪くなり、圧縮機5のいわゆるオイ
ル切れの危険性が高くなる。
The refrigerant that has left the compressor 5 contains refrigerating machine oil used for lubricating the compressor 5. This refrigerating machine oil separates as the liquid refrigerant evaporates inside the heat exchanger 21 constituting the evaporator 1, and flows through the refrigerant pipe 11 by the refrigerating machine oil alone. In such a state, normally, the wind pressure of the refrigerant gas keeps the refrigerating machine oil flowing, and returns to the compressor 5. However, as the temperature decreases due to the operation of the evaporator 1, the viscosity of the refrigerating machine oil increases, so that the refrigerating machine oil becomes difficult to flow and eventually stays. When this stagnation state continues, the amount increases, the amount of the refrigerating machine oil returning to the compressor 5 decreases, the total amount of the refrigerating machine oil in the compressor 5 decreases, and thus the lubrication of the compressor 5 deteriorates, The danger of running out of oil in the compressor 5 increases.

【0023】このように圧縮機5内部の冷凍機油が少な
くなると、油レベルセンサ29が冷凍機油のレベルを検
出し、検出したレベルが所定の値よりも小さくなるとこ
の検出値が入力された制御装置31が、高温ガス用管1
3の電磁弁15を開ける。これにより圧縮機5の下流の
冷媒配管11から高温の冷媒ガスが分流され、蒸発器1
へ導かれる。このようにして断続的に電磁弁15を開け
ることになるので、不必要に蒸発器1の温度が上昇して
しまうのを抑えることができる。
As described above, when the amount of refrigerating machine oil inside the compressor 5 decreases, the oil level sensor 29 detects the level of the refrigerating machine oil, and when the detected level becomes lower than a predetermined value, the control unit to which the detected value is input. 31 is the hot gas pipe 1
The solenoid valve 15 of No. 3 is opened. As a result, high-temperature refrigerant gas is diverted from the refrigerant pipe 11 downstream of the compressor 5, and
Led to. Since the electromagnetic valve 15 is opened intermittently in this manner, it is possible to suppress an unnecessary increase in the temperature of the evaporator 1.

【0024】そして蒸発器1においては、冷媒配管11
の二重管27の内側に高温の冷媒ガスが導かれる。二重
管27の外側には冷媒が通され、冷凍機油33(図2
(C))が滞留している。この冷凍機油33は、高温冷
媒ガスにより暖められ、粘度が上がり流動性が回復す
る。このようにして流動しやすくなった冷凍機油は、冷
媒ガスなどの風圧により、圧縮機5へ戻される。
In the evaporator 1, the refrigerant pipe 11
A high-temperature refrigerant gas is introduced into the inside of the double pipe 27. A refrigerant is passed through the outside of the double pipe 27, and the refrigerant oil 33 (FIG. 2)
(C)) is staying. The refrigerating machine oil 33 is warmed by the high-temperature refrigerant gas, the viscosity increases, and the fluidity is restored. The refrigerating machine oil that has become easier to flow in this way is returned to the compressor 5 by the wind pressure of the refrigerant gas or the like.

【0025】尚、圧縮機5へ向かう冷凍機油はアキュー
ムレータ3に入るが、アキュームレータ3では温度が上
がっているために、冷凍機油の粘度も下がっていると考
えられる。このためアキュームレータ3から冷媒ガスと
ともに圧縮機に戻りやすい。
Although the refrigerating machine oil flowing to the compressor 5 enters the accumulator 3, it is considered that the viscosity of the refrigerating machine oil also decreases because the temperature of the accumulator 3 increases. Therefore, it is easy to return to the compressor together with the refrigerant gas from the accumulator 3.

【0026】以上のように冷凍機油が蒸発器1内部に滞
留することが抑えられるので、圧縮機5へ戻る総量が増
え、いわゆるオイル切れの危険性が低くなる。
As described above, since the refrigerating machine oil is prevented from staying inside the evaporator 1, the total amount returning to the compressor 5 increases, and the risk of running out of oil is reduced.

【0027】また、二重管27の内側に高温冷媒ガスを
導き、外側に冷媒を通すことで、内管すなわち冷媒配管
11を効率的に暖め、よって、冷媒から分離し滞留して
いる冷凍機油33を効率的に暖め流動性を回復させるこ
とが可能である。
Further, by guiding the high-temperature refrigerant gas inside the double pipe 27 and passing the refrigerant outside, the inner pipe, that is, the refrigerant pipe 11 is efficiently heated, and therefore, the refrigerating machine oil separated from the refrigerant and staying therein is retained. 33 can be efficiently heated to restore fluidity.

【0028】(他の実施形態)以上の実施形態において
は、油レベルセンサ29を圧縮機5に設けたが、他の実
施形態においては油レベルセンサ35をアキュームレー
タ3に設けることも可能である。アキュームレータ3の
内部に設けられる油レベルセンサ35は、アキュームレ
ータ3内で二相に分離した冷媒液と冷凍機油との比重差
を利用してレベルの検出を行うことが可能である。すな
わち、冷媒液が下で冷凍機油が上の二層の境界面に浮か
ぶことができる比重を有するフロートを用い、このフロ
ートの位置を検出することでレベルを検出できる。
(Other Embodiments) In the above embodiment, the oil level sensor 29 is provided in the compressor 5, but in other embodiments, the oil level sensor 35 may be provided in the accumulator 3. The oil level sensor 35 provided inside the accumulator 3 can detect the level by using a specific gravity difference between the refrigerant liquid separated into two phases and the refrigerating machine oil in the accumulator 3. That is, the level can be detected by using a float having a specific gravity that allows the refrigerant liquid to float below the refrigerating machine oil at the upper boundary between the two layers, and detecting the position of the float.

【0029】最も、冷凍機油が分離し滞留してしまう場
合には、冷媒が蒸発器1中ですべて冷媒ガスになり、分
離した冷凍機油が冷媒ガスの風圧でのみ流れる。このよ
うな場合には、アキュームレータ3中には、液冷媒の存
在は少ないので、冷凍機油のみのレベルを検出しても構
わない。
When the refrigerating machine oil separates and stays, most of the refrigerant becomes a refrigerant gas in the evaporator 1, and the separated refrigerating machine oil flows only by the wind pressure of the refrigerant gas. In such a case, since there is little liquid refrigerant in the accumulator 3, the level of only the refrigerating machine oil may be detected.

【0030】さて、蒸発器1などに冷凍機油が滞留する
と、アキュームレータ3内の冷凍機油も少なくなるの
で、検出した冷凍機油のレベルが小さくなったら、高温
ガス用管13の電磁弁15を開ける。
When the refrigerating machine oil stays in the evaporator 1 or the like, the amount of the refrigerating machine oil in the accumulator 3 decreases. When the detected level of the refrigerating machine oil decreases, the solenoid valve 15 of the high-temperature gas pipe 13 is opened.

【0031】また、以上の実施形態においては蒸発器1
の冷媒配管11のうち大部分を二重配管27としたが、
他の実施形態においては一部分のみ二重配管とすること
も可能である。すなわち蒸発器1の冷媒配管11のう
ち、冷媒から冷凍機油が分離しやすい部位のみを選んで
二重管とすることも可能である。
In the above embodiment, the evaporator 1
Most of the refrigerant pipes 11 are the double pipes 27,
In another embodiment, it is also possible to form a double pipe only partially. That is, it is also possible to select only a part of the refrigerant pipe 11 of the evaporator 1 where the refrigerating machine oil is easily separated from the refrigerant, and to form a double pipe.

【0032】また、以上の実施形態においては高温冷媒
ガスを導くための電磁弁15は油レベルセンサ29の検
出値によって開閉されるものであったが、他の実施形態
においては油レベルセンサ29ではなくタイマによって
開閉することが可能である。すなわち、冷凍装置の運転
時間をタイマによって監視し、冷媒から冷凍機油が所定
量分離するであろう時間を予め予測しておき、その時間
になった時に制御装置によって所定の短い時間だけ電磁
弁15を開け、高温の冷媒ガスを導くことが可能であ
る。
In the above embodiment, the solenoid valve 15 for guiding the high-temperature refrigerant gas is opened and closed according to the detection value of the oil level sensor 29. And can be opened and closed by a timer. That is, the operation time of the refrigeration system is monitored by a timer, the time in which the refrigerating machine oil will be separated from the refrigerant by a predetermined amount is predicted in advance, and when the time has elapsed, the control device controls the solenoid valve 15 for a predetermined short time. It is possible to introduce a high-temperature refrigerant gas.

【0033】また、以上の実施形態においては複数の分
岐管19にそれぞれ設けた電磁弁25を順に開いて、少
ない量の冷媒ガスによって効率良く滞留した冷凍機油3
3を暖めるものであったが、他の実施形態においては必
ずしもこのような電磁弁25を設ける必要はなく、複数
の分岐管19に同時に高温冷媒ガスを導くことも可能で
ある。電磁弁25を省略することで、装置のコストを抑
えることが可能となる。
In the above-described embodiment, the solenoid valves 25 provided in the plurality of branch pipes 19 are opened in order, so that the refrigerating machine oil 3 which has been efficiently retained by a small amount of the refrigerant gas.
3 is heated, but it is not always necessary to provide such a solenoid valve 25 in other embodiments, and it is also possible to simultaneously guide the high-temperature refrigerant gas to the plurality of branch pipes 19. By omitting the solenoid valve 25, the cost of the device can be reduced.

【0034】また、以上の実施形態においては流動性が
回復した冷凍機油は、従来と同様に通常の冷媒回路を通
って、圧縮機5に戻されアキュームレータ3に蓄えら
れ、アキュームレータ3によって再び蒸発し冷媒に溶
け、冷媒と共に圧縮機5へ戻るものであった。
In the above-described embodiment, the refrigerating machine oil whose fluidity has been restored passes through a normal refrigerant circuit, is returned to the compressor 5, is stored in the accumulator 3, and is evaporated again by the accumulator 3. It was dissolved in the refrigerant and returned to the compressor 5 together with the refrigerant.

【0035】しかし、他の実施形態においては図3に示
すように、アキュームレータ3に溜められた冷凍機油と
冷媒液(二層に分離している)へ、圧縮機5からの高温
高圧の冷媒ガスを導いてかき混ぜ再び混合して相溶さ
せ、これによりアキュームレータ3内に溜まった冷凍機
油を積極的に圧縮機側へ戻すことが可能となる。このた
め圧縮機5の下流側の冷媒配管11とアキュームレータ
3とを第二の高圧ガス用管37で接続し、この第二の高
圧ガス用管37に電磁弁39を設ける(図3)。
However, in another embodiment, as shown in FIG. 3, high-temperature and high-pressure refrigerant gas from the compressor 5 is transferred to the refrigerating machine oil and the refrigerant liquid (separated into two layers) stored in the accumulator 3. Is stirred and mixed again to make them compatible with each other, whereby the refrigerating machine oil accumulated in the accumulator 3 can be positively returned to the compressor side. Therefore, the refrigerant pipe 11 on the downstream side of the compressor 5 and the accumulator 3 are connected by a second high-pressure gas pipe 37, and an electromagnetic valve 39 is provided in the second high-pressure gas pipe 37 (FIG. 3).

【0036】[0036]

【発明の効果】以上説明したように、請求項1乃至4の
発明によれば、圧縮機から導かれた高温の冷媒ガスによ
って、冷媒から冷凍機油が分離しやすい部位の冷媒配管
が暖められ、分離し滞留している冷凍機油の粘度を低く
して流動性を回復させ、これにより冷凍機油を冷媒と共
に圧縮機に戻すことが可能となる。
As described above, according to the first to fourth aspects of the present invention, the high temperature refrigerant gas guided from the compressor warms the refrigerant pipe at the portion where the refrigerating machine oil is easily separated from the refrigerant. The viscosity of the separated and retained refrigerating machine oil is reduced to restore the fluidity, thereby enabling the refrigerating machine oil to be returned to the compressor together with the refrigerant.

【0037】また、請求項2の発明によれば、更に、油
レベルセンサにより冷凍機油のレベルが所定の値になっ
たことを検出することで、電磁弁を開け高温の冷媒ガス
を導くので、必要な場合にのみ二重管を暖めることかで
き、不必要に蒸発器が温度上昇することを抑えることが
できる。
According to the second aspect of the present invention, since the oil level sensor detects that the level of the refrigerating machine oil has reached a predetermined value, the solenoid valve is opened to guide the high-temperature refrigerant gas. The double tube can be warmed only when necessary, and unnecessary temperature rise of the evaporator can be suppressed.

【0038】また、請求項3の発明によれば、更に、冷
凍装置の運転時間をタイマによって監視し断続的に高温
の冷媒ガスを導き冷媒配管を暖めるので、不必要に蒸発
器が温度上昇することを抑えることができる。
Further, according to the third aspect of the present invention, the operation time of the refrigeration system is monitored by the timer, and the high-temperature refrigerant gas is intermittently introduced to warm the refrigerant pipe, so that the temperature of the evaporator rises unnecessarily. Can be suppressed.

【0039】また、請求項4の発明によれば、更に、冷
媒配管の上流側から順に電磁弁を開き高温の冷媒ガスを
順に、冷媒配管の互いに平行な複数の部位に導くこと
で、少ない量の高温冷媒ガスによって、効率良く冷媒配
管を順に暖めることができ、蒸発器が不必要に温度上昇
するのを抑えることができる。上流側から順に暖めるこ
とで、流動性を回復した冷凍機油は、下流側の未だ流動
性を回復していない冷凍機油をも巻き込んで圧縮機へ戻
ることが期待できる。
According to the fourth aspect of the present invention, the solenoid valve is opened in order from the upstream side of the refrigerant pipe, and the high-temperature refrigerant gas is sequentially led to a plurality of portions of the refrigerant pipe parallel to each other. With the high-temperature refrigerant gas, the refrigerant pipes can be efficiently warmed in order, and unnecessary temperature rise of the evaporator can be suppressed. By sequentially warming from the upstream side, the refrigerating machine oil whose fluidity has been recovered can be expected to return to the compressor by involving the refrigerating machine oil of the downstream side that has not yet recovered the fluidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態を示す冷媒回路図であ
る。
FIG. 1 is a refrigerant circuit diagram showing one embodiment of the present invention.

【図2】(A)は図1の蒸発器を構成する熱交換器の全
体概略図、(B)は(A)の要部拡大図、(C)は
(B)の断面図である。
2 (A) is an overall schematic view of a heat exchanger constituting the evaporator of FIG. 1, (B) is an enlarged view of a main part of (A), and (C) is a sectional view of (B).

【図3】この発明のその他の実施形態を示す冷媒回路図
である。
FIG. 3 is a refrigerant circuit diagram showing another embodiment of the present invention.

【図4】従来の冷凍装置を示す冷媒回路図である。FIG. 4 is a refrigerant circuit diagram showing a conventional refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 蒸発器 3 アキュームレータ 5 圧縮機 7 凝縮器 9 キャピラリーチューブ 13、37 高圧ガス用管 15、25、39 電磁弁 17 逆止弁 19 分岐管 27 二重管 29、35 油レベルセンサ 31 制御装置 DESCRIPTION OF SYMBOLS 1 Evaporator 3 Accumulator 5 Compressor 7 Condenser 9 Capillary tube 13, 37 High-pressure gas pipe 15, 25, 39 Solenoid valve 17 Check valve 19 Branch pipe 27 Double pipe 29, 35 Oil level sensor 31 Controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器で蒸発した冷媒ガスを、圧縮機で
圧縮して高温高圧の冷媒ガスとし、凝縮器で周囲の空気
と熱交換して凝縮した冷媒を再び前記蒸発器へ戻す冷媒
流路を備え、冷媒と圧縮機の潤滑のための冷凍機油が混
在している冷凍装置において、 蒸発器を構成する熱交換器に冷媒を通す冷媒配管のう
ち、少なくとも、冷媒から冷凍機油が分離しやすい部位
を二重管にし、この二重管の外側に冷媒を通し、内側に
前記圧縮機からの高温の冷媒ガスを分流して導くことを
特徴とする冷凍装置。
1. A refrigerant flow in which a refrigerant gas evaporated in an evaporator is compressed by a compressor into a high-temperature and high-pressure refrigerant gas, and a refrigerant that exchanges heat with ambient air in a condenser and returns the condensed refrigerant to the evaporator again. In a refrigeration system that includes a refrigerant passage and refrigerant oil for lubricating the compressor, at least the refrigerant oil is separated from the refrigerant in the refrigerant pipe that passes the refrigerant through the heat exchanger that constitutes the evaporator. A refrigerating apparatus, wherein the easy part is a double pipe, a refrigerant is passed through the outside of the double pipe, and a high-temperature refrigerant gas from the compressor is split and guided inside the double pipe.
【請求項2】 二重管の内側に高温の冷媒ガスを導くた
めの高圧ガス用管に電磁弁を設け、圧縮機に油レベルセ
ンサを設け、または蒸発器と圧縮機との間に備えられる
アキュームレータに油レベルセンサを設け、油レベルセ
ンサが検出した冷凍機油のレベルが所定の値になったら
前記電磁弁を開け高温の冷媒ガスを導く制御手段を設け
たことを特徴とする請求項1記載の冷凍装置。
2. A high pressure gas pipe for guiding a high-temperature refrigerant gas inside the double pipe is provided with a solenoid valve, a compressor is provided with an oil level sensor, or provided between the evaporator and the compressor. 2. The accumulator is provided with an oil level sensor, and control means for opening the solenoid valve and guiding high-temperature refrigerant gas when the level of the refrigerating machine oil detected by the oil level sensor reaches a predetermined value is provided. Refrigeration equipment.
【請求項3】 二重管の内側に高温の冷媒ガスを導くた
めの高圧ガス用管に電磁弁を設け、冷凍装置の運転時間
をタイマによって監視し断続的に前記電磁弁を開け高温
の冷媒ガスを導く制御手段を設けたことを特徴とする請
求項1記載の冷凍装置。
3. A high-pressure gas pipe for introducing a high-temperature refrigerant gas inside the double pipe is provided with an electromagnetic valve, and the operation time of the refrigeration system is monitored by a timer, and the electromagnetic valve is intermittently opened to open the high-temperature refrigerant. 2. The refrigeration apparatus according to claim 1, further comprising control means for guiding gas.
【請求項4】 高温の冷媒ガスを導くための高圧ガス用
管を複数の並列な分岐管に分岐させ、この分岐管を、ジ
グザグに配置された冷媒配管の互いに平行な複数の部位
毎に挿通させ、各分岐管に電磁弁を設け、冷媒配管の上
流側から順に電磁弁を開き高温の冷媒ガスを順に並列に
導く制御手段を設けたことを特徴とする請求項1、2、
または3記載の冷凍装置。
4. A high-pressure gas pipe for guiding a high-temperature refrigerant gas is branched into a plurality of parallel branch pipes, and this branch pipe is inserted into each of a plurality of mutually parallel portions of a refrigerant pipe arranged in a zigzag manner. An electromagnetic valve is provided in each branch pipe, and control means for opening the electromagnetic valve in order from the upstream side of the refrigerant pipe and guiding the high-temperature refrigerant gas in parallel in order is provided.
Or the refrigeration apparatus according to 3.
JP30488996A 1996-11-15 1996-11-15 Refrigerating device Pending JPH10148423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30488996A JPH10148423A (en) 1996-11-15 1996-11-15 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30488996A JPH10148423A (en) 1996-11-15 1996-11-15 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH10148423A true JPH10148423A (en) 1998-06-02

Family

ID=17938510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30488996A Pending JPH10148423A (en) 1996-11-15 1996-11-15 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH10148423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230849A (en) * 1999-02-09 2000-08-22 Sanyo Electric Co Ltd Liquid level detector
JP2008101830A (en) * 2006-10-18 2008-05-01 Daikin Ind Ltd Oil separator
JP2016148473A (en) * 2015-02-10 2016-08-18 株式会社デンソー Refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230849A (en) * 1999-02-09 2000-08-22 Sanyo Electric Co Ltd Liquid level detector
JP2008101830A (en) * 2006-10-18 2008-05-01 Daikin Ind Ltd Oil separator
JP2016148473A (en) * 2015-02-10 2016-08-18 株式会社デンソー Refrigeration cycle device

Similar Documents

Publication Publication Date Title
EP0937950B1 (en) Air conditioner
EP3062045A1 (en) Air conditioner
TWI314635B (en)
KR19990064122A (en) Air conditioner
EP1118823B1 (en) Two-refrigerant refrigerating device
JP3637786B2 (en) Brine cooling system
JP2009293899A (en) Refrigerating device
JP2008128570A (en) Refrigerating apparatus
JPH10148423A (en) Refrigerating device
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP2019100603A (en) Hot gas defrosting operation method of refrigeration circuit
JP2981559B2 (en) Air conditioner
CN109442778B (en) Air Conditioning System
JP3492427B2 (en) Refrigeration air conditioner
JP2000118231A (en) Refrigerating cycle
JP2003194427A (en) Cooling device
JP2757660B2 (en) Thermal storage type air conditioner
JP4270803B2 (en) Cold generation system
CN113631876A (en) Defrosting system
JP2981561B2 (en) Air conditioner
JPH10148422A (en) Oil separator
WO2018020566A1 (en) Refrigeration cycle device
JPH10141811A (en) Oil separator
JP2009097813A (en) Cooling device and refrigerator
US20210254865A1 (en) Apparatus and method for transferring heat